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ABSTRACT 

This work was to investigating the corrosion behavior of low carbon steel in a salt 

solution of 3.5wt% NaCl after undergoing two different types of heat treatment at 960 °C in a 

furnace. The material of low carbon steel was cut into nine small pieces under three groups A, 

B and C, without heated annealing and hardening heat treatment respectively. The heat 

treatment was at temperature 960°C. The hardness of the sample as received will be 203 

kg/mm2 while after hardening the hardness was increased. The sample was mounted using hot 

and cold mounting. The microstructure and surface morphology was observed by using 

Scanning Electron Microscope (SEM) and Optical Microscope (OM) after grinding, polishing 

and etching on the sample. In group A cementite can be observed clearly on pearlite on the 

surface before corrosion test. After four days soaking in 3.5 wt% NaCl solution was observed 

all cementite and pearlite will be transformed to austenite with the remnants of cementite 

make the surface unstable hence increases the initial corrosion. After four days soaking when 

the cementite is oxidized and a thick film of corrosion product covers the material surface. 

The formation of Martensite due to quenching and rapid cooling in group C sample increases 

the corrosion rate from 0.072 mpy to 0.302 due to decreased of corrosion potential from -572 

m V to -639 m V after four days soaking. The corrosion rate of each sample was measured by 

using electrochemical polarization measurement and Tafel extrapolation technique. From 

previous result, it was observed that samples which had undergone annealing mode of heat 

treatment turned out to be the ones with the best corrosion resistance. 



ABSTRAK 

Projek ini adalah untuk mengkaji kelakuan terhadap kakisan keluli karbon yang 

rendah dalam larutan garam 3.5wt% NaCl selepas menjalani duajenis rawatan haba iaitu pada 

960 ° C dalam relau. Bahan keluli karbon rendah telah dipotong sembilan keping kecil di 

bawah tiga kumpulan A, B dan C, masing-masing tanpa rawat dan dipenyepuhlindapan dan 

dirawat haba pengerasan. Rawatan haba adalah pada suhu 960 ° C. Kekerasan sampel yang 

diterima terjadi 203 kg/mm2 dan diperhatikan ia akan menjadi bacaan tertinggi selepas 

rawatan pengerusm keras. Sampel telah dipasang menggunakan pelekap panas dan sejuk. 

Mikrostruktur diperhatikan dengan menggunakan Mikroskop Imbasan Elektron (SEM) dan 

Mikroskop optik (OM) selepas pembersihan sampel. Ini kerana, kumpulan simentit boleh 

menjadi jelas dalam pearlit di permukaan sebelum kakisan, (selepas empat hari direndam di 

dalam 3.5 wt% larutan NaCl). Kadar hakisan sampel telah ditentukan dengan menggunakan 

kaedan elektrokirnia polarisasi dan ekstrapolasi Tafel teknik. Permukaan morfologi 

diperhatikan dengan menggunakan Mikroskop imbusan Elektron (SEM) dan didapati 

pertumbuhan karat pada pearlit, di masa sama JUga ada meningkatkan hakisan dengan 

peningkatan masa rendaman. Sebaliknya dikumpulan B penyepuhlindapan rawatan haba 

menukarkan semua simentit dan pearlit lcepada austenit dengan sisa simentit yang menjadikan 

punca permukaan tidak stabil dan meninglcatken kader kalaisan kadar kaksin akan meningiear 

selama empat hair redam dan selepas sepuluh hair rendaman benkatan berikatan pening kecton 

kaksisan.Sample Kumpulan C menerusi proses haba pengerasan dan dimana mengubah 
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struktur mikroskopik komposisi kepads lapisan logam Martensit. Proses pelindapkejutan dan 

penyejukan yang pantas menyebabkan peningkatkan kadar hakisan dari 0.072 mpy kepada 

0.302 mpy dan menurun potensi kakisan dari -572 mV kepada -639 mV. Dari hasil kajian 

sebelumnya, didapati bahawa sampel yang telah menjalani mod penyepuhlindapan rawatan 

haba temyata mempunyai rintangan kakisan yang terbaik . 
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CHAPTERl 

INTRODUCTION 

1.0 Background of Study 

The mainly accepted definition for corrosion is the damage of material due to chemical 

reaction of the material with its environment. Generally, this destruction takes place on its 

surface in the form of material dissolution or redeposit ion in some other forms. Metallic 

systems are the predominant materials of construction, and as a class, are generally 

susceptible to corrosion. Therefore, the bulk of corrosion science focuses upon metals and 

alloys (Guthrie and Gretchen, 2002). Usually it's beginning at the surface of the material 

and occurs because of the natural tendency of the materials to return to their 

thermodynamic stable state or to one of the forms in which they were originally found. 

Metals are generally prone to corrosion because most of them occur naturally as ores, 

which is the most stable state of low energy and there is a net decrease in free energy, ~G 

from metallic to oxidized state (Ogunleye et al., 2011). The corrosion is happening 

extensively in carbon steel because the resistance of its relatively limited, despite from this 

most widely used engineering material, accounts for approximately 85% of the annual steel 

production worldwide, carbon steel is used in large tonnages in marine applications, 

chemical processing, petroleum production and refining, construction and metal processing 

equipment (Fouda et al., 2011). 

The corrosion of carbon steel in natural environments is of practical importance, therefore 

it is considered by many studies. It is widely recognized that the corrosion of carbon steel 
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may be accounted for by the anodic reaction as in Equation 1.1 and cathodic reaction in the 

presence of oxygen Equation 1.2, 

Fe(s)"'illl,__-., .. Fe +2 + 2e- Material dissolution 

Oxygen dissolution 

(1.1) 

(1.2) 

In many corrosion problems, there is strong evidence that the rate of uniform corrosion is 

controlled by mass transfer rate. This is true whether the corrosion fluid remains static or in 

fast motion with respect to the metal surface. However, molecular diffusion is not the only 

factor which influences the rate of corrosion. In addition, in turbulent fluids, the rate of 

transport of eddy diffusion appears to participate in the control of the overall transfer rate 

(Brodkey and Hershey, 1989). Seawater is one of the most corroded and most plentiful 

naturally happening electrolytes. The corrosively of the seawater is reflected by the fact 

that most of the common structural metals and alloys are attacked by this liquid or its 

surrounding environments (Johnsirani et al., 2013) 

The corrosion characteristic of low carbon steel in natural seawater is the formation and 

growth of compact and thick layers composed of oxides, insoluble salts and organic 

materials. The result of surrounding environmental conditions water oxygen supply; ionic 

species; bacteria and organic matter, these layers are formed. The exchange of various 

species (ions, molecules, gas) between seawater and the rust layers or the metal depends 

both on the kinetics of the Faradaic reactions of the entities with either the oxides or the 

metal, as well as on their transport properties through the different strata of the rust layers 

(Memet et al., 2002). 

Salts dissolved in water have a marked influence on the corrosivity of water. At extremely 

low concentrations of dissolved salts, different anions and cations show various degrees of 

influence on the corrosivity of the water. So there are many investigations for corrosion of 
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carbon steel in neutral aerated salt solutions, especially sodium chloride (NaCl) solution. 

Some investigation has been found for corrosion of carbon steel in Na2S04 salt solution. 

For example corrosion of turbine caused by a thin film deposit of fused salt (sodium 

sulphate) on alloy surface (carbon steel) is an example of corrosion in sodium sulphate 

(Bornstein and Decrescente, 1971; Goebel et. al., 1973). During combustion in the gas 

turbine, sulfur from the fuel reacts with sodium chloride from the ingested air at elevated 

temperatures to form sodium sulphate. The sodium sulphate then deposits in the hot­

section components, such as nozzle guide vanes and rotor blades, resulting in an 

accelerated oxidation attack. This is commonly referred to as "hot corrosion" (Stringer, 

2007). Generally, the corrosivity of waters containing dissolved salts increases with 

increasing salt concentration until a maximum is reached, and then the corrosivity 

decreases. This may be attributed to increased electro-conductivity because of the 

increased salt content, until the salt concentration is great enough to cause an appreciable 

decrease in the oxygen solubility, resulting in a decreased rate of depolarization (Revie and 

Uhlig, 2008). It is accepted that the corrosion of mild steel in aerated water is controlled by 

the rate of cathodic reduction of oxygen and hence by the oxygen transport from the 

mainstream solution to the reacting surface, generally if a metal is corroding under 

cathodic control it is apparent that the velocity of the solution will be more significant 

when diffusion of the cathode reactant is rate controlling, although the temperature may 

still have an effect. On the other hand if the cathodic process requires high activation 

energy, temperature will have the most significant effect. The effects of concentration, 

velocity and temperature are complex and it will become evident that these factors can 

frequently outweigh the thermodynamic and kinetic considerations (Shreir et al., 2000). 

Also the temperature representing one of the critical environmental parameters in corrosion 

studies because of its severe effects on physicochemical and electrochemical reaction rates. 
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Accordingly, passive film stability and solubility, pitting and crevice corrosion behavior is 

known to be closely related to temperature (Samuel et al., 2011). 

1.1 Problem Statement 

The use of carbon steel is indispensable to virtually all aspects of human endeavor. Our 

human civilization cannot exist without metals and yet corrosion is their Achilles heel. 

Failure of parts and components of engineering origin in different industries by corrosion 

is one of the major problems. Corrosion is responsible for so many mishaps that have 

occurred in the engineering history of man. The two particular reasons for the 

extraordinary versatility of steel are heat treatment and alloying. 

The usage of steel is well pronounced in various aspects of human life such as in 

manufacturing, oil and gas, construction, medical, textile, transport and aviation industries 

to mention a few. Low carbon steel is a type of metal that has an alloying element made up 

of a relatively low amount of carbon. Typically, it has a carbon content that ranges 

between 0.05% and 0.30% and a manganese content that falls between 0.40 and 1.5%. 

Low carbon steel is one of the most common types of steel used for general purposes, in 

part because it is often less expensive than other types of steel. While the steel contains 

properties that work well in manufacturing a variety of goods, it is most frequently made 

into flat-rolled sheets or strips of steel. 

Items made from low carbon steel compete with products that can be manufactured using 

stainless steel and aluminum alloy metals. Low carbon steel can be used to manufacture a 

wide range of manufactured goods - from home appliances and ship sides to low carbon 

steel wire and tin plates. Since it has a low amount of carbon in it, the steel is typically 

more malleable than other kinds of steel. As a result, it can be rolled thin into products like 

car body panels. So the steel industry as profitable and important as one of the most 

engineering-solution defying problems known to man, is it Corrosion (Kruger, 1986). 
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The cost of corrosion has been estimated at $300 billion per year in the United States 

(Gerhardus et al., 2002). The corrosion-related cost to the transmission pipeline industry is 

approximately $5.4 to $8.6 billion annually (David and James 2008). This can be divided 

into the cost of failures, capital, and operations and maintenance (O&M) at 10, 38, and 52 

percent, respectively (Gerhardus et al., 2002). Carbon steel and wide varieties of materials 

of diverse properties are used in Multi Stage Flash evaporation MSF plants. Especially in 

the Arabian Gulf Countries seawater that containing salts with different concentrations is 

the prime source of fresh water supply by desalination plants. where A seawater 

desalination plant offers numerous corrosion problems due to its process conditions, 

including factors such as temperature and pH, and operation in relatively aggressive 

environments consisting of deaerated seawater, seawater-air and salt-air aerosols, corrosive 

gases, slow moving or stagnant liquids or deposit forming liquids to control the scale 

formation, acid treatment and anti-scale additive are used in desalination plants. (lsmaeel 

and Turgoose, 1999). 

High temperature corrosion is a widespread problem in vanous industries, including; 

establishing (oil pipelines), is an important element low carbon steel in especially at the 

edges of the pipes that are linked through by welding that high temperature is effect on 

microstructures of materials, so when are extended over long distances and sometimes 

within the sea or be displayed to normal environment condition shall be more prone to 

erosion. 

Heat treatment is a heating and cooling operation applied to metals and alloys in solid 

state to impact desirable properties to the metal or alloy. Heat treatment of metals is an 

important operation in the final fabrication process of many engineering components. 

Heat treatment is of various forms which include annealing, normalizing, tempering, 

hardening and isothermal operations. Heat treatment improves the microstructure of the 
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metal, and this is what gives the metal desired properties for different service conditions. 

The purpose of heat treatment of low carbon steel is to improve the ductility, toughness, 

hardness tensile strength, and corrosion resistance. 

Hardening and tempering process of metals offer enormous advantages to the 

manufacturing industry because the heat treatment results can reveal optimum combination 

of mechanical properties (Murugan, 2012). For example annealing process heated to 

austenitic temperature of 960 °C and held for one hour to ensure complete homogenization, 

without excessive grain growth and then cooled inside the furnace to room temperature an 

initial corrosion rate of l 7.58x 10-5 cm/hr was observed after 72 hours. This corrosion rate 

could be attributed to the larger portion of pearlite formed from cooling austenite. After 72 

hours of soaking, corrosion rate reduction was observed, between the 144th hour and the 

216th hour. The corrosion rate decreased due to the thicker corrosion products covering the 

surface of the sample, thus it formed a kind of protective film on the surface which 

retarded the corrosion rate. While the hardening process heated to austenitic temperature of 

960 °C and held for one hour to ensure complete homogenization, without excessive grain 

growth and then quenched in cold water to room temperature If referring to heat treating, 

then the temperature in which the steel starts to tum to Austenite is 727 °C, and to be fully 

austenitic that will depend on the carbon content. Low carbon could be around 900 °C, 

medium around 850 °C and high carbon maybe below 800 °C. It can be observed the 

greatest weight loss trends of all the heat treatment modes the initial corrosion rate notice 

at 72nd hour was the highest after which it took a dive from the 72nd to the 216th hour. This 

initial rise in corrosion rate could be because of the residual stresses in the steel which may 

have arisen due to rapid cooling (Atanda et al., 2012). 

In this research will study the effect of different heat treatment (annealing and hardening) 

on low carbon in saline solution soaking time to 96-240 hours the initiated, finally 
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