PSZ 19:16 (Pind. 1/07)

UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS /	UNDERGRADUATE PROJECT PAPER AND COPYRIGHT
Author's full name : <u>MOHD SHA</u> Date of birth : <u>19th DECEI</u> Title : <u>ADAPTIVE</u> <u>DEPTH CO</u> <u>VEHICLE</u>	HRIEEL BIN MOHD ARAS MBER 1980 SIMPLIFIED FUZZY LOGIC CONTROLLER FOR NTROL OF UNDERWATER REMOTELY OPERATED
Academic Session : 2014-2015	(2)
l declare that this thesis is classif	ied as :
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
	I agree that my thesis to be published as online open access (full text)
I acknowledged that Universiti	Teknologi Malaysia reserves the right as follows:
 The thesis is the property The Library of Universiti T of research only. The Library has the right 	y of Universiti Teknologi Malaysia. eknologi Malaysia has the right to make copies for the purpose to make copies of the thesis for academic exchange.
SIGN ATURE 801219-04-5503	SIGNATURE OF SUPERVISOR DR. SHAHRUM SHAH BIN ABDULLAH
Date 115th APPIL 2015	Date : 15th APPIL 2015
Dure , 15th APRIL 2015	

NOTES : * If the thesis is CONFIDENTAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

"I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of the degree of Doctor of Philosophy (Electrical Engineering)"

Signature

÷

MM

Name Date : DR. SHAHRUM SHAH BIN ABDULLAH : 15th APRIL 2015

BAHAGIAN A – Pengesahan Kerjasama*

Adalah disahkan bahawa projek penyelidikan tesis ini telah dilaksanakan melalui kerjasama

antara		dengan		
Disahkan oleh:				
Tandatangan			Tarikh :	
Nama	;			
Jawatan (Cop rasmi)	:			

* Jika penyediaan tesis/projek melibatkan kerjasama.

BAHAGIAN B - Untuk Kegunaan Pejabat Sekolah Pengajian Siswazah

Tesis ini telah diperiksa dan diakui oleh:

Nama dan Alamat Pemeriksa Luar	1	Prof. Madya Dr. Mohd Rizal Arshad
		School of Electrical & Electronic Engineering
		<u>Universiti Sains Malaysia</u>
		Nibong Tebal, Seri Ampangan,
		14300 Seberang Perai Selatan
		Pulau Pinang.

Nama dan Alamat Pemeriksa Dalam : <u>Prof. Madya Dr. Rosbi bin Mamat</u> <u>Fakulti Kejuruteraan Elektrik,</u> <u>UTM Johor Bahru.</u>

Disahkan oleh Timbalan Pendaftar di Sekolah Pengajian Siswazah:

kh:	

ADAPTIVE SIMPLIFIED FUZZY LOGIC CONTROLLER FOR DEPTH CONTROL OF UNDERWATER REMOTELY OPERATED VEHICLE

MOHD SHAHRIEEL BIN MOHD ARAS

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > APRIL 2015

C Universiti Teknikal Malaysia Melaka

I declare that this thesis entitled "Adaptive Simplified Fuzzy Logic Controller for Depth Control of Underwater Remotely Operated Vehicle" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Shaffral

Signature Name

Date

: MOHD SHAHRIEEL BIN MOHD ARAS : 15th APRIL 2015

DEDICATION

This project is dedicated to my mom, Mariam binti Mahat, my lovely wife Norzaima binti Zainal Badri and my sons Ammar Zulqarnain, Adam Zahirulhaq and Annas Zulqairy and not forgets to my friends who have always sincerely pray for my success and glory.

ACKNOWLEDGEMENTS

Alhamdullillah, I am being grateful to ALLAH SWT on His blessing in completing this research. I would like to express my deepest gratitude and thanks to Dr. Shahrum Shah bin Abdullah, my honorable supervisor, for his continuous guidance, committed support, critics, and invaluable advice throughout my study.

I wish to express my gratitude to Ministry of Higher Education and the honorable University (Universiti Teknikal Malaysia Melaka) especially higher management for giving a support and budget. And also would like to thank UTM (Universiti Teknologi Malaysia) especially Faculty of Electrical Engineering because their tolerance for complete this research successfully.

I would also wish to extend my gratitude to my mother, my wife and family for their support and their understanding. And of course to all my friends that help me in this research.

Thank you very much...

ABSTRACT

A Remotely Operated Vehicle (ROV) is one class of the unmanned underwater vehicles that is tethered, unoccupied, highly manoeuvrable, and operated by a person on a platform on water surface. For depth control of ROV, an occurrence of overshoot in the system response is highly dangerous. Clearly an overshoot in the ROV vertical trajectory may cause damages to both the ROV and the inspected structure. Maintaining the position of a small scale ROV within its working area is difficult even for experienced ROV pilots, especially in the presence of underwater currents and waves. This project, focuses on controlling the ROV vertical trajectory as the ROV tries to remain stationary on the desired depth and having its overshoot, rise time and settling time minimized. This project begins with a mathematical and empirical modelling to capture the dynamics of a newly fabricated ROV, followed by an intelligent controller design for depth control of ROV based on the Single Input Fuzzy Logic Controller (SIFLC). Factors affecting the SIFLC were investigated including changing the number of rules, using a linear equation instead of a lookup table and adding a reference model. The parameters of the SIFLC were tuned by an improved Particle Swarm Optimization (PSO) algorithm. A novel adaptive technique called the Adaptive Single Input Fuzzy Logic Controller (ASIFLC) was introduced that has the ability to adapt its parameters depending on the depth set point used. The algorithm was verified in MATLAB® Simulink platform. Then, verified algorithms were tested on an actual prototype ROV in a water tank. Results show it was found that the technique can effectively control the depth of ROV with no overshoot and having its settling time minimized. Since the algorithm can be represented using simple mathematical equations, it can easily be realized using low cost microcontrollers.

ABSTRAK

Kenderaan Operasi Kawalan Jauh (ROV), adalah salah satu daripada kenderaan dalam air tanpa manusia, mempunyai kabel dan mudah dikendalikan oleh jurumudi daripada platform di permukaan air. Bagi kawalan kedalaman ROV, sekiranya ia terlajak daripada had ketetapan kedalaman yang dikehendaki, maka risikonya adalah sangat berbahaya. Jelas sekali, sekiranya ia melebihi had kedalaman yang ditetapkan, kerosakan pada ROV atau pada struktur yang hendak diperiksa boleh berlaku. Penstabilan posisi ROV skala kecil di kawasan kerjanya adalah satu tugas yang sukar, terutamanya apabila ada arus dalam air dan ombak, walaupun dikendalikan oleh jurumudi ROV yang berpengalaman. Projek ini memberi fokus kepada reka bentuk pengawal ROV bagi memastikan ianya stabil dan mengikut kedalaman yang telah ditetapkan tanpa wujudnya lajakan, dengan memiliki masa naik dan masa pengenapan yang pantas. Projek ini bermula dengan permodelan matematik dan empirikal bagi mewakilkan keadaan dinamik sebuah ROV baru dengan diikuti oleh reka bentuk pengawal pintar bagi kawalan kedalaman ROV. Pengawal pintar yang digunakan adalah berdasarkan Pengawal Logik Kabur Satu Masukkan (SIFLC) dimana faktor-faktor yang mempengaruhinya seperti jumlah aturan, penggunaan persamaan linear dan penambahan model rujukan telah dikaji. Parameter yang optima bagi SIFLC telah ditentukan menggunakan algoritma Pengoptimuman Kumpulan Zarah (PSO). Satu kaedah pengawal mudah suai baru telah diperkenalkan iaitu Mudah Suai Pengawal Logik Kabur Satu Masukkan (ASIFLC) yang mempunyai kebolehan menyesuaikan parameternya bergantung kepada nilai kedalaman yang ditetapkan. Pelaksanaan pengawal baru ini telah disahkan menggunakan perisian MATLAB[®] Simulink. Algoritma ini kemudiannya diuji pada prototaip sebenar ROV di dalam tangki air. Keputusan membuktikan bahawa teknik ini berjaya mengawal ROV dengan berkesan dengan tiada lajakan dan dengan masa pengenapan yang singkat. Oleh kerana algoritma pengawal ini dapat diwakilkan menggunakan persamaan matematik yang mudah, ianya boleh direalisasikan dengan menggunakan pengawal mikro kos rendah.

TABLE OF CONTENTS

TITLE

CHAPTER

	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	COWLEDGEMENT	iv
	ABS	TRACT	v
	ABS	TRAK	vi
	TAB	LE OF CONTENTS	vii
	LIST	T OF TABLES	xii
	LIST	COFFIGURES	xiii
	LIST	COF SYMBOLS	XX
	LIST	COF ABBREVIATIONS	xxii
	LIST	COF APPENDICES	XXV
1	INTI	RODUCTION	1
	1.1	Introduction	1
	1.2	Research Background	4
	1.3	Problem Statement and Significant of the Research	7
	1.4	Objectives of the Research	9
	1.5	Research Scopes	9
	1.6	Contribution of the Research Work	11
	1.7	Organization of the Thesis	12
	1.8	Summary	14

vii

PAGE

2	LITE	RATURE	REVIEW	15
	2.1	Introdu	ction	15
	2.2	Control	System of the ROV	16
	2.3	Depth C	Control of the ROV	19
	2.4	Critical	Review of the ROV Depth Control from	
		Existing	g Works	22
	2.5	System	Identification	23
	2.6	Fuzzy I	Logic Controller	24
	2.7	Single I	nput Fuzzy Logic Controller	25
	2.8	Particle	Swarm Optimization (PSO)	26
	2.9	Hardwa	re comparison	28
		2.9.1 U	JTeRG ROV	28
	2.10	Summa	ry	29
3	RESE	CARCH M	IETHODOLOGY	30
	3.1	Introduct	tion	30
	3.2	ROV Co	ordinate System	32
	3.3	Modellin	ng of the ROV	34
	3.4	Assertion	ns on Dynamics Equation of the ROV	36
		3.4.1 L	low Speed	36
		3.4.2 R	coll and Pitch	36
		3.4.3 S	ymmetry	37
		3.4.4 E	Invironmental Disturbances	38
		3.4.5 E	Decoupling	39
	3.5	Simplifie	ed Equations of the ROV Modelling	39
		3.5.1 N	lass and Inertia Matrix	40
		3.5.2 H	Iydrodynamic Damping Matrix	41
		3.5.3	Fravitational and Buoyancy Vector	41
		3.5.4 F	forces and Torque Vector	43
	3.6	Factors A	Affecting the ROV Design	45
	3.7	Mathema	atical Modelling of Thrusters	46
	3.8	Hardwar	e Implementation	48
		3.8.1 S	ystem Identification Approach	49
		3.8.2 N	4icrobox 2000/2000C	50

3.9	Model	ling of Thrusters using Microbox 2000/2000C	51
	3.9.1	Depth Sensor using Pressure Sensor	52
	3.9.2	Fabrication of Depth Sensor	54
	3.9.3	Depth Sensor Testing using Microbox 2000/	
		2000C	55
	3.9.4	Pressure for Depth using Mini Compressor	56
	3.9.5	Input Ramp	58
	3.9.6	Encoder signal	60
	3.9.8	Thruster Modelling using System Identification	
		Toolbox	62
	3.9.9	Implementation on Real Time System	65
3.10	ROV I	Design and Modelling	65
	3.10.1	Solidworks design	65
	3.10.2	ROV Testing	68
	3.10.3	Data Acquisition	71
	3.10.4	ROV Modelling using System Identification	
		Toolbox	73
	3.10.5	Conventional PID Controller Design	73
3.11	Intellig	gent Controller Design	74
3.12	Conve	ntional Fuzzy Logic Controller (CFLC)	76
3.13	Single	Input Fuzzy Logic Controller (SIFLC)	80
	3.13.1	Piecewise Linear Control Surface for	
		SIFLC	82
3.14	An Im	proved Single Input Fuzzy Logic Controller	84
	3.14.1	Number of Rules	84
	3.14.2	Linear Equation	87
	3.14.3	Reference Model	89
3.15	Compa	arison an Improved SIFLC with Other	
	Contro	oller	90
	3.15.1	Conventional PID Controller	90
	3.15.2	Observer based Output Feedback	90
	3.15.3	Neural Network Predictive Control (NNPC)	92
3.16	An Im	proved SIFLC Tuning using Particle	
	Swarm	Optimization (PSO)	94

	3.16.1	An Improved PSO	94
3.17	Observ	ver based Feedback Control Output based	
	on Lin	ear Quadratic Regulator	98
3.18	Adapti	ve Single Input Fuzzy Logic Controller	
	(ASIFI	LC)	99
3.19	Hardw	are Implementations	104
	3.19.1	Electronics Design and Components	106
	3.19.2	PIC 16F877A Microcontroller	106
	3.19.3	Circuit for Pressure sensor	107
3.20	Implen	nentation of ASIFLC to Other ROV	111
	3.20.1	Mako ROV	111
	3.20.2	Nonlinear RRC ROV- Unperturbed (6DOF)	113
	3.20.3	Gaymarine Pluto–Gigas ROV	114
	3.20.4	Deep Submergence Rescue Vehicle (DSRV)	115
3.21	Summ	ary	116
RES	ULTS A	ND DISCUSSION	118
4.1	Introdu	action	118
1.2	Model	ling of Thrusters and the ROV	119
	4.2.1	Pressure Sensor Testing	119
	4.2.2	Thrusters Modelling using System	
		Identification	121
	4.2.3	Real-Time System using Microbox	
		2000/2000C	123
	4.2.4	ROV Modelling using System Identification	126
	4.2.5	ROV Modelling based on Mathematical	
		Modelling	131
		4.2.5.1 Mass and Inertia Matrix	131
		4.2.5.2 Hydrodynamic Damping Matrix	132
		4.2.5.3 Gravitational and Buoyancy Vector	133
		4.2.5.4 Forces and Torque Vector	133
	4.2.6	The Conventional PID Controller for	
		Control the ROV System	134
1.0	. .	and the second sec	120
4.3	An 1mj	proved Single Input Fuzzy Logic Controller	138

4

		4.3.1	Number of Rules	138
		4.3.2	Linear Equation	140
		4.3.3	Reference Model	146
		4.3.4	Comparison with other Control Method	148
	4.4	SIFLO	C Tuning using Particle Swarm Optimization	
		(PSO)		154
		4.4.1	Intersection in y-axis and The Average Value	156
		4.4.2	Hypothesis Testing	163
		4.4.3	Time Execution	166
		4.4.4	Observer based Output Feedback Control	167
	4.5	Adapt	ive Single Input Fuzzy Logic Controller	
		(ASIF	LC)	170
		4.5.1	ASIFLC Implemented on Others ROV	183
	4.6	Summ	nary	189
5	CON	NCLUSI	ON	191
	5.1	Concl	usion	191
	5.2	Future	e Work	193
REFERENC	ES			195
Appendices A	A - F			204-230

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Categories of ROV	3
2.1	Control method with limitations	17
2.2	Specification of the ROV	29
3.1	The coordinate system for 6 DOF of the ROV	34
3.2	DC Motor parameters	48
3.3	Operating characteristics	53
3.4	Specification of compressor	56
3.5	5x5 Matrix rules of CFLC	79
3.6	One-dimension rule table for an improved SIFLC	85
3.7	The proposed reduced SISO rule table 1	86
3.8	The proposed reduced SISO rule table 2	86
3.9	Look-up table parameter	87
3.10	Example of optimal K1 and K2 parameters using BPFPSO	97
4.1	The result of testing pressure sensor in lab tank	119
4.2	The result of pressure sensor experiment in pool	120
4.3	PID parameter	135
4.4	The parameter for an improved SIFLC response	148
4.5	PID and PI controller parameter	148
4.6	Comparison System Performances of depth control for	
	ROV	154
4.7	Computation run-time	154
4.8	Three parameter for SIFLC tuning using PSO	155
4.9	Comparison between PFPSO AND BPFPSO for K1 and K2	156

4.10	Optimum parameter using a linear equation and average	160
4.11	Time execution testing for PFPSO and BPFPSO	167
4.12	Comparing system performances of depth control for the	
	ROV	169
4.13	The parameter obtained from Set point 3	175
4.14	The results for different set point	175
4.15	Comparing system performances of depth control using	
	ASIFLC for the other ROV	188

xiii

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

Classification of Underwater Vehicles	2
Unmanned Underwater Vehicle Control system	6
A basic picture of an ARX system	24
Example of initialize particle swarm optimization	
algorithm	27
The prototype of the ROV	29
The flow chart of research methodology	31
The coordinate system of the ROV	33
Symmetrical view using Solidworks software	37
View for every axis	38
The gravitational and buoyant forces of the ROV	43
The mapping matrix, L Thrust position	43
Example of UTeRG Thruster design	47
Stage 2 (Modelling Design) of thrusters and ROV modelling	49
System identification approach	50
MicroBox 2000/2000C	51
MPX4250AP CASE 867B-04 with pin configurations	52
Fully integrated pressure sensor schematic	52
Recommended power supply decoupling and output	
filtering	53
Output voltage vs depth	54
Depth sensor complete circuit	54
Pressure sensor setting	56
	Classification of Underwater Vehicles Unmanned Underwater Vehicle Control system A basic picture of an ARX system Example of initialize particle swarm optimization algorithm The prototype of the ROV The prototype of the ROV The flow chart of research methodology The coordinate system of the ROV Symmetrical view using Solidworks software View for every axis The gravitational and buoyant forces of the ROV The mapping matrix, L Thrust position Example of UTeRG Thruster design Stage 2 (Modelling Design) of thrusters and ROV modelling System identification approach MicroBox 2000/2000C MPX4250AP CASE 867B-04 with pin configurations Fully integrated pressure sensor schematic Recommended power supply decoupling and output filtering Output voltage vs depth Depth sensor complete circuit Pressure sensor setting

3.17	Mini compressor used as pressure supplied	57	
3.18	Pressure applied to sensor	57	
3.19	Converter configuration		
3.20	Input Ramp	58	
3.21	Ramp parameters set up	59	
3.22	Comparison between ramp input and data sheet	59	
3.23	Encoder signal	60	
3.24	Completed open loop for thrusters	61	
3.25	Open loop system	61	
3.26	System identification toolbox window	62	
3.27	Time domain signal	63	
3.28	Select state space model	63	
3.29	Model order selection	64	
3.30	Mechanical design	66	
3.31	Centre of gravity of the ROV	67	
3.32	ROV free body diagram	67	
3.33	ROV's system for depth control	69	
3.34	Component of the ROV and integrated sensor	69	
3.35	ROV will be tested on swimming pool and lab tank test	70	
3.36	NI-DAQ card and its block diagram	72	
3.37	LabVIEW SignalExpress	72	
3.38	The both ROV models tested using PID controller on		
	MATLAB [®] Simulink	74	
3.39	Stage 3 (Controller Design) of the ROV	75	
3.40	The structure of fuzzy logic	77	
3.41	Fuzzy Inference System (FIS) for CFLC	77	
3.42	Input and output variable for CFLC	78	
3.43	Surface view	79	
3.44	Diagonal line	81	
3.45	SIFLC structure	82	
3.46	Control surfaces for input and output membership functions	83	
3.47	Simulink for an improved SIFLC for the ROV system	86	
3.48	SIFLC block diagram	86	
3.49	Plotted graph using Look-Up Table for a control surface	87	

3.50	Linear equation in MATLAB Simulink	88
3.51	Example of (a) positives linear equation (b) negative	
	linear equation	89
3.52	Reference Model	89
3.53	The ROV model control system using PID controller	90
3.54	Block diagram for observer based output feedback control	91
3.55	System configuration for observer based output feedback	
	for the ROV.	91
3.56	Block diagram for observer	92
3.57	Block diagram neural network predictive control for the	
	ROV	92
3.58	Neural network predictive block	93
3.59	An improved PSO approach	95
3.60	PSO block diagram	97
3.61	Implementation of an improved PSO algorithm to	
	tune SIFLC parameters	98
3.62	A reference model based on output feedback observer tuning	
	using an improved SIFLC	99
3.63	ASIFLC is applied to control the ROV	101
3.64	SIFLC for ROV simulation using MATLAB	102
3.65	Adaptive Single Input Fuzzy Logic Controller	102
3.66	ASIFLC controller Simulink Block diagram for depth	
	control with present of environmental disturbances	103
3.67	Environmental disturbances	104
3.68	Interfacing for Microbox 2000/2000C	105
3.69	Simulink block for Microbox interfacing with MATLAB	105
3.70	Electronic circuit for ROV depth Control	107
3.71	Pressure sensor act as depth sensor	108
3.72	Auto- depth control with the PIC microcontroller using	
	Proteus software	108
3.73	ROV tested for ASIFLC algorithm	110
3.74	ROV Mako	111
3.75	Modelling of Mako ROV	112
3.76	Simulink for Mako ROV using ASIFLC	112

C Universiti Teknikal Malaysia Melaka

3.77	Nonlinear RRC ROV- unperturbed (6DOF)	113	
3.78	Adaptive SIFLC applied on six DOF RRC ROV II	113	
3.79	Gaymarine Pluto-Gigas ROV		
3.80	Gaymarine Pluto-Gigas ROV using ASIFLC controller	114	
3.81	Configuration of Gaymarine Pluto-Gigas ROV	115	
3.82	Simulink of DSRV model by using ASIFLC controller	115	
4.1	Output signal for three readings of experiments in the pool	121	
4.2	Closed loop system	122	
4.3	System response of thrust control based on system		
	identification model	123	
4.4	Closed loop system using proportional controller	124	
4.5	Closed loop system with model of thrusters	124	
4.6	Initial operation	125	
4.7	System response for full operation	126	
4.8	Experiment results testing open loop system for the ROV	127	
4.9	Model singular values vs. order	128	
4.10	Measured and simulated model output	128	
4.11	Residual analysis	129	
4.12	Poles and zeros	129	
4.13	Frequency response	129	
4.14	Power spectrum	130	
4.15	ROV model based on mathematical modelling	135	
4.16	The both ROV models tested using PID controller	135	
4.17	System response of ROV for depth control	136	
4.18	Comparison between mathematical models with system		
	identification model	137	
4.19	SIFLC system response's different numbers of rules	140	
4.20	The system response of ROV system based on linear		
	equation	141	
4.21	The different slope of linear equation	144	
4.22	The system response of ROV system	145	
4.23	System response without reference model	146	
4.24	Closed up for system response without adding references		
	model	147	

4.25	System response with reference model	147
4.26	All the system responses for PID controller	150
4.27	PID parameter tuning	151
4.28	Conventional PI controller system response	151
4.29	Observer-based output feedback control with linear	
	quadratic system response	152
4.30	Neural network predictive controller system response	152
4.31	Comparison for all control method applied for ROV depth	
	control	153
4.32	The optimized value for K ₃	155
4.33	Optimum parameter for K_1 between BPFPSO and PFPSO	157
4.34	Optimum parameter for K ₂ between BPFPSO and PFPSO	157
4.35	(a) K_1 for BPFSPO (b) K_2 BPFPSO	158
4.36	(a) K_1 for PFPSO (b) K_2 for PFPSO	159
4.37	System response for the average value of optimum	
	value tuning by PFPSO	160
4.38	System response for intersection value of optimum	
	value tuning by PFPSO	161
4.39	System response for the average value of optimum	
	value tuning by BPFPSO	161
4.40	System response for intersection value of optimum	
	value tuning by BPFPSO	162
4.41	System response of optimum value tuning by an improved	
	PFPSO for average value and intersection value	163
4.42	Graph exhibit random pattern for absolute error	
	(a) K ₁ BPFPSO (b) K ₁ PFPSO	165
4.43	Graph exhibit random pattern for absolute error	
	(a) K ₂ BPFPSO (b) K ₂ PFPSO	166
4.44	Observer based output feedback control for ROV	
	based on linear quadratic performance	168
4.45	PSO tuning SIFLC based on reference model and the	
	output feedback observer	168
4.46	System response for feedforward based observer	
	feedback output control and SIFLC-LQR	169

C Universiti Teknikal Malaysia Melaka

4.47	The system response for set point 1	170	
4.48	The system response for set point 2	171	
4.49	The system response for set point 3	173	
4.50	System response on different set point with parameter		
	obtained by PSO algorithm	175	
4.51	Parameter K_1 and K_2 plotted in a linear equation	176	
4.52	System response for depth control of ROV using ASIFLC		
4.53 System response of ASIFLC with presence of environm			
	disturbances	179	
4.54	The simulation of system response of ASIFLC using		
	MATLAB [®]	180	
4.55	Experiment for depth control for 0.5m	181	
4.56	Experiment for depth control for 1 m.	181	
4.57	Comparison between Simulation and real time of		
	ASIFLC	182	
4.58	System response of depth control for MAKO ROV	185	
4.59	System response of depth control for RRC ROV II	186	
4.60	System response of depth control for Gaymarine Pluto-		
	Gigas ROV	187	
4.61	System response of depth control for Deep		
	Submergence Rescue Vehicle	188	

LIST OF SYMBOLS

В	_	Vehicle's buoyancy
С	_	Matrix of the Coriolis and centripetal forces
D	_	Vector of forces on vehicle due to drag
g	_	Vector of forces on vehicle due to gravitational effects
Ix, Iy, Iz	_	Moments of inertia around the vehicle's x-,y-, and z- axes
		respectively
J	_	Euler angle transformation matrix
К, М, N	_	Moment about the vehicle's x-,y-, and z- axis respectively
K_D	—	Derivative gain, a tuning parameter
K_I	_	Integral gain, a tuning parameter
K_P	_	Proportional gain, a tuning parameter
L_{NS}	_	Diagonal line of Negative Small membership function
L_{NL}	_	Diagonal line of Negative Large membership function
L_{PS}	_	Diagonal line of Positive Small membership function
L_{PL}	_	Diagonal line of Positive Large membership function
L_Z	_	Diagonal line of Zero membership function
L	_	Vehicle length
m	_	Vehicle's mass
N_{I}	_	The minimum costing horizon
N_2	_	The maximum costing horizon
Nu	_	The control horizon
р	_	Roll rate [rad/s]
q	_	Pitch rate [rad/s]
r	_	Yaw rate [rad/s]
S(t)	_	Set point trajectory

Tref	—	Speed response
Ts	_	Sampling interval
U	_	Surge speed [m/s]
V	_	Sway speed [m/s]
W	_	Heave speed [m/s]
X, Y, Z	_	Forces parallel to the vehicle's x-,y-, and z- axes respectively
<i>х</i> _B , <i>у</i> _B , <i>z</i> _B	_	Position of vehicle's centre of buoyancy
х, у	_	Horizontal position of vehicle with regard to earth-fixed
		coordinates
y(k)	—	Plant output
<i>x</i> _G , <i>y</i> _G , <i>z</i> _G	-	Position of vehicle's centre of mass
ym	—	Predicted output of the neural network
yr	_	Reference trajectory
Z.	_	Depth [m]
η	_	Vector of global vehicle coordinate
Φ	-	Vehicle global roll angle [rad]
Θ	—	Vehicle global pitch angle [rad]
Ψ	—	Vehicle global yaw angle [rad]
λ	-	Main diagonal line slope
μ	-	Degree of membership
ρ	_	The control input weighting factor