

Faculty of Information and Communication Technology

MAINTENANCE MODELLING TOOLS WITH SPECIAL REFERENCE TO INCOMPLETE DATA

Abd. Samad bin Hasan Basari

PhD in Information and Communication Technology

2009

MAINTENANCE MODELLING TOOLS WITH SPECIAL REFERENCE TO INCOMPLETE DATA

ABD. SAMAD BIN HASAN BASARI

A thesis submitted

in fulfillment of the requirements for the degree of Doctor of Philosophy
in Information and Communication Technology

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2009

DECLARATION

I declare that this thesis entitle "Maintenance Modelling Tools with Special Reference to Incomplete Data" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :

Name : ABD. SAMAD BIN HASAN BASARI

Date : 28 August 2009

DEDICATION

Dear Allah

Devoted my life and death to You, Allah. May my life is within Your guidance.

Dear My Rarent

Thank you for your sacrifice and love. No such compensate except from Allah.

Dear My Beloved Wife

Pour support, patience and encouragement give me strength to finish this study. May Allah bless us.

Dear Ceachers

Thank you for all the knowledge. May your knowledge are beneficial and useful for all humanity.

Dear My Biblings

Thank you for your support and love. May Allah forgive us.

Dear My Children

Map Allah guide and protect us to be good Muslims.

ACKNOWLEDGEMENT

In the Name of Allah, Most Gracious, Most Merciful,

First and foremost, all praise to Allah, Subhanahu-wa-Ta'ala, the Almighty, Who gave me an opportunity, courage and patience to carry out this work. I feel privileged to glory His name in the sincerest way through this small accomplishment. I seek His mercy, favour and forgiveness.

Acknowledgment is due to Universiti Teknikal Malaysia Melaka and Government of Malaysia for providing financial support for this work.

I would like to express my deepest gratitude to my Thesis Supervisor, Prof. Dr. Nanna Suryana Herman and Prof. Dr. Mohammad Ishak Desa for their constant support and constructive guidance throughout this research. Special thanks also to Prof. Dr. Shahrin Sahib, PhD colleagues and friends, interim evaluation committee and CMMS research team, Nizam, Azirah and Zuraida. Not leaving out staffs from the Faculty of Information and Communication Technology, Postgraduate Study Centre and Study Leave Unit. I would also like to thank Palm Oil Mill managements especially En. Abu Bakar Suradi, En. Ahmad Taredi Musa, En. Bakhtiar Kamalludin and Mr. Lee Mang Cheang for their cooperation. Lastly, I am deeply indebted to my family, my wife and my children for their patience and encouragement during the period of this research.

Abd. Samad Hasan Basari, Melaka, March 2009.

TABLE OF CONTENT

		PAGE
DECL	ARATION	ii
DEDIC	CATION	iii
ACKN	OWLEDGEMENT	iv
TABLI	E OF CONTENT	v
LIST (OF TABLES	x
LIST (OF FIGURES	xvi
LIST (OF ABBREVIATIONS AND GLOSSARY	xxii
LIST (OF APPENDICES	xxv
ABSTI	RACT	xxvi
ABSTI	RAK	xxviii
1. INT	RODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	4
1.3	Objectives of the Research	7
1.4	Contributions of the Research	8
1.5	The Proposed Research Framework	9
1.6	Research Methodology	11

1.7	Thesis Organisation	16
2. LITI	ERATURE REVIEW	18
2.1	Introduction	18
2.2	Literature Categories	18
2.3	Maintenance Management	19
2.4	Maintenance Modelling	25
2.5	Maintenance Problem Recognition: Tools and Applications	27
2.6	Delay Time Model: Data Collection Methods and Applications	30
2.7	Decision Analysis Technique	33
2.8	Decision Support System	35
2.9	Conclusions	37
3. THE	E MAINTENANCE PROBLEM RECOGNITION TOOL	42
3.1	Introduction	42
3.2	The Snapshot Model	42
3.3	Snapshot Modelling Process	43
3.4	The Drawback of the Current Snapshot Model	44
3.5	The Proposed Problem Recognition Tool	46
	3.5.1 Elements of Enhancement	46
	3.5.1.1 Information Technology	47
	3.5.1.2 Failure Mode, Effect and Criticality Analysis	48
	3.5.1.3 Decision Analysis	52
3.6	The Design of the Maintenance Problem Recognition Tool	61
	3.6.1 The Design of the Data Collection Module	64
	3.6.1.1 Database Tables Design	64

	3.6.1.2 The Forms Design	75
	3.6.2 The Design of Snapshot Analysis Module	81
	3.6.3 The Design of Decision Analysis Module	89
	3.6.3.1 The Analytic Hierarchy Process Module	90
	3.6.3.2 The Fuzzy Logic Rule-Based Module	96
3.7	Conclusions	101
4. TES	TING OF THE MAINTENANCE PROBLEM RECOGNITION	TOOL 102
4.1	Introduction .	102
4.2	Verification of the Tool	102
	4.2.1 Verification via Check Lists	103
	4.2.2 Verification via Cases	104
	4.2.2.1 The Result Using Current Snapshot Model	107
	4.2.2.2 The Result Using Automated Snapshot Model	119
4.3	Validation of the Tool	147
	4.3.1 User Interface Evaluation	147
4.4	Testing of the Tool	153
	4.4.1 Hypothesis One (Number-of-Features-Examined Test)	155
	4.4.2 Hypothesis Two (Time-to-Reach-Decisions Test)	158
4.5	Conclusions	165
5. THI	E DELAY TIME DATA COLLECTION METHOD	166
5.1	Introduction	166
5.2	Maintenance Modelling using Delay Time Concept	166
	5.2.1 Basic Delay Time Model	167

5.3	The Existing Methods for Delay Time Data Collection	168
	5.3.1 The Objective Method	169
	5.3.2 The Subjective Probability Method	171
	5.3.3 The Subjective Survey Method	173
	5.3.3.1 Drawback of the Subjective Survey Method	174
5.4	The Proposed Tool for Subjective Survey Method	175
	5.4.1 FMECA and Snapshot Analysis	177
	5.4.2 Elicitation of the Data	178
	5.4.3 The Calibration Phase	180
	5.4.4 The Use of Data Integrity and Validity in ESS	180
	5.4.5 The Utilisation of IT in the Method	184
	5.4.6 The Design of the ESS Method	185
	5.4.7 Development of the ESS Method	187
	5.4.8 The User Interaction	187
5.5	Conclusions	190
6. TES	TING OF THE ENHANCED DELAY TIME DATA COLLECTION	
ME	тнор	191
6.1	Introduction	191
6.2	Data Collection Technique	192
6.3	Estimation of the Delay Time Distribution	192
	6.3.1 Estimation Based on the Subjective Survey Method	194
	6.3.1.1 Identifying the Defect Arrival Process	201
	6.3.2 Estimation Based on the Proposed ESS Method	205
6.4	The Maintenance Modelling and Testing of the Methods	207

	6.4.1 Models Building	207
	6.4.2 The Testing of the Methods	211
	6.4.2.1 The Expected Number of Breakdowns Model	212
	6.4.2.2 The Cost Model	220
	6.4.2.3 The Downtime Model	227
6.5	Conclusions	240
7. CON	NCLUSIONS AND RECOMMENDATIONS	242
7.1	Introduction	242
7.2	Conclusions Related to Research Objectives	242
7.3	Recommendations Relating to Research Objectives	245
7.4	Final Conclusions and Recommendations	248
REFE	RENCES	251
APPE	NDICES	265

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Factors in Maintenance Management Framework	21
2.2	Comparative Analysis of Maintenance Problem Recognition	38
2.3	Comparative Analysis of Delay Time Data Collection Methods	39
3.1	Sample of the Failure Modes and Effects Analysis Form	51
3.2	Scale of Relative Importance	55
3.3	Random Index/Random Consistency Index for Different Value of n	58
3.4	Summary of Rules for Maintenance Actions	60
3.5	Design of Snapshot Table	68
3.6	Machine Table	71
3.7	Component Table	72
3.8	Reference Table	75
3.9	Design of Snapshot Analysis Table	83
3.10	Design of AHP Table	94
3.11	Design of FLRB Table	98
4.1	Template Checklist for the Tool Function Verification	104
4.2	Number of Faults by Area and Types of Faults for the	
	Period from 1 August 2005 to 30 September 2005	111

4.3	Number of Faults by Cause of Faults and their Percentages	
	for the Period from 1 August 2005 to 30 September 2005	113
4.4	Estimated Total Cost by Area and their Percentages for the	
	Period from 1 August 2005 to 30 September 2005	115
4.5	Estimated Total Downtime by Area and their Percentages for t	he
	Period from 1 August 2005 to 30 September 2005	117
4.6	Number of Faults by Prevention Actions and their Percentages	3
	for the Period from 1 August 2005 to 30 September 2005	119
4.7	Combined Major Fault with the Fault Mode Analysis for the	
	Period from 1 August 2005 to 30 September 2005	125
4.8	Combined Major Fault with the Fault Effect Analysis for the	
	Period from 1 August 2005 to 30 September 2005	127
4.9	Combined Fault Mode with the Cost Analysis for the	
	Period from 1 August 2005 to 30 September 2005	129
4.10	Combined Fault Mode with the Downtime Analysis for the	
	Period from 1 August 2005 to 30 September 2005	131
4.11	Combined Fault Mode with the Criticality Analysis for the	
	Period from 1 August 2005 to 30 September 2005	133
4.12	Combined Major Fault with the Cost Analysis for the	
	Period from 1 August 2005 to 30 September 2005	136
4.13	Combined Major Fault with the Downtime Analysis for the	
	Period from 1 August 2005 to 30 September 2005	138
4.14	Combined Major Fault with the Number of Faults, Criticality,	
	Cost and Downtime Analysis for the Period from	
	1 August 2005 to 30 September 2005	140

4.15	Final Result based on the AHP Method in the Decision	
	Analysis Technique to Select the Most Critical Components	
	for the Period from 1 August 2005	
	to 30 September 2005 (Case Study: Screw Press)	142
4.16	Final Result based on the FLRB Method in the Decision	
	Analysis Technique to Select Prevention Action for the	
	Period from 1 August 2005 to 30 September 2005	
	(Case Study: Screw Press)	143
4.17	Final Result based on the AHP Method in the Decision Analysis	
	Technique to Select the Most Critical Components for the	
	Period from 1 August 2005 to 30 September 2005	
	(Case Study: Digestor)	144
4.18	Final Result based on the FLRB Method in the Decision	
	Analysis Technique to Select Prevention Action for the	
	Period from 1 August 2005 to 30 September 2005	
	(Case Study: Digestor)	145
4.19	Final Result based on the AHP Method in the Decision	
	Analysis Technique to Select the Most Critical Components	
	for the Period from 1 August 2005 to 30 September 2005	
	(Case Study: Conveyor)	146
4.20	Final Result based on the FLRB Method in the Decision	
	Analysis Technique to Select Prevention Action for the Period	
	from 1 August 2005 to 30 September 2005	
	(Case Study: Conveyor)	146
4.21	User Interface Evaluation Results	148

4.22	Results of Pair Wise Comparison using Geometric Mean	151
4.23	Results of Pair Wise Comparison using Arithmetic Mean	151
4.24	Results of Function Variables Measurements	152
4.25	Qualified Participants' Surveys and their Corresponding	
	Case Studies and Tool	155
4.26	Number-of-Features-Examined Table - All Participants	156
4.27	Changes in Mean Number of Features Examined -	
	All Participants	158
4.28	Time-to-Reach-Decisions Table - All Participants	159
4.29	Changes in Mean Time to Reach Decisions - All Participants	160
4.30	Result Summary - Hypothesis I and II - All Participants	161
4.31	Result Summary - Hypothesis I and II - Sub experiment	
	Groups for Case A-then-B	162
4.32	Result Summary - Hypothesis I and II - Sub experiment	
	Groups for Case B-then-A	163
5.1	Sample of the FMECA and Snapshot Analysis	
	(for Screw Press Machine)	178
5.2	Sample of Obtaining Prior Delay Time Data	179
6.1	Template of the Delay Time Questions included in the Survey	
	Form for the Subjective Survey Method	195
6.2	Frequency of Delay Time Data (Original Data before	
	Correction of the Subjective Survey Method)	197
6.3	Estimated Delay Time Distribution Parameters, Information	
	Criteria and Goodness of Fit Test Statistic (Based on the	
	Subjective Survey Method before the Data Correction)	108

6.4	Estimated Delay Time Distribution Parameters, Information	
	Criteria and Goodness of Fit Test Statistic	
	(Based on the Subjective Survey Method after the	
	Data Correction)	200
6.5	Rate of Occurrence of Faults per Machine per Week	203
6.6	Estimation of the Regression Parameters	203
6.7	Frequency of Delay Time (ESS Method)	206
6.8	Estimated Delay Time Distribution Parameters, Information	
	Criteria and Goodness of Fit Test Statistic	
	(Based on the ESS Method)	207
6.9	Comparison between the Perfect and Imperfect Inspection	
	to Fit the Status Quo Point of Number of Breakdowns	
	for SS Method	214
6.10	Comparison between the Perfect and Imperfect Inspection	
	to Fit the Status Quo Point of Number of Breakdowns	
	for ESS Method	217
6.11	Comparison between the Perfect and Imperfect Inspection	
	to Fit the Status Quo Point of Cost for SS Method	221
6.12	Comparison between the Perfect and Imperfect Inspection	
	to Fit the Status Quo Point of Cost for ESS Method	224
6.13	Comparison between the Perfect and Imperfect Inspection	
	to Fit the Status Quo Point of Downtime for SS Method	228
6.14	Comparison between the Perfect and Imperfect Inspection	
	to Fit the Status Quo Point of Downtime for ESS Method	231
6.15	Comparison between the SS Method and ESS Method	

	to Fit the Status Quo Point for the Date from	
	1 August 2006 to 30 September 2006	235
6.16	Comparison between the SS Method and ESS Method	
	to Fit the Status Quo Point for the Date	
	from 1 November 2006 to 31 December 2006	236
6.17	Comparison between the SS method and ESS Method	
	to Fit the Status Quo Point for the Date from 1 August 2005	
	to 30 September 2005 (Case Study: Digestor)	238
6.18	Comparison between the SS method and ESS Method	
	to Fit the Status Quo Point for the Date from 1 August 2005	
	to 30 September 2005 (Case Study: Conveyor)	239

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Overview of OR Applications in Maintenance	
	(Adapted from Christer & Waller, 1984b)	2
1.2	A Schematic Overview of the Framework	
	(Adapted from Waeyenbergh and Pintelon, 2002)	10
2.1	Delay Time Concept	
	(Adapted from Christer & Waller, 1984a)	30
3.1	Conceptual Hybrid of FMECA, IT and Decision Analysis into	
	Snapshot Model	47
3.2	Analytic Hierarchy Process (AHP) Workflow	53
3.3	Data Flow Diagram for Snapshot Analysis Tool (Level One)	63
3.4	Details Data Flow Diagram with Data Stores	65
3.5	Entities Relationship Diagram	66
3.6	Relationships between Snapshot and Machine Table	70
3.7	Relationships among Snapshot, Machine and Component Table	72
3.8	Relationships between Snapshot and Reference Table	74
3.9	Snapshot and Delay Time Data Entry Form	78
3.10	Machine Information Data Entry Form	79
3.11	Component Information Data Entry Form	80

3.12	Reference Table Data Entry Form	81
3.13	Detail Data Flow Diagram for Snapshot Analysis Process	82
3.14	Relationships between Snapshot Analysis and Snapshot Table	84
3.15	Request Analysis Screen for Snapshot Analysis Module	87
3.16	Analysis Process Procedures Diagram	88
3.17	Snapshot Analysis and Data Collection Menu	89
3.18	Detail Data Flow Diagram for Decision Analysis Process	91
3.19	Detail Data Flow Diagram for Calculate AHP Process	93
3.20	Relationships between Snapshot Analysis and AHP Table	94
3.21	Interface of AHP Criteria, Sub criteria and Alternatives	95
3.22	Interface of AHP Calculation	95
3.23	Interface of Component Rank	96
3.24	Detail Data Flow Diagram for Establish FLRB Process	97
3.25	Relationships among Snapshot Analysis, AHP and FLRB Table	99
3.26	Interface of FLRB	100
3.27	Interface of DMG	100
4.1	Typical Palm Oil Mill Process Flowcharts	106
4.2	Number of Faults by Area and Types of Faults for the	
	Period from 1 August 2005 to 30 September 2005	110
4.3	Number of Faults by Area and Cause of Faults for the	
	Period from 1 August 2005 to 30 September 2005	112
4.4	Estimated Total Cost by Area and Cause of Faults for the	
	Period from 1 August 2005 to 30 September 2005	114
4.5	Estimated Total Downtime by Area and Cause of Faults	
	for the Period from 1 August 2005 to 30 September 2005	116

4.6	Number of Faults by Area and Prevention Actions for the	
2	Period from 1 August 2005 to 30 September 2005	118
4.7	Snapshot Analysis Main Menu to Conduct Snapshot Analysis	122
4.8	Number of Faults by Area and Mode of Faults for the	
	Period from 1 August 2005 to 30 September 2005	124
4.9	Number of Faults by Area and Effect of Fault for the	
	Period from 1 August 2005 to 30 September 2005	126
4.10	Total Cost by Area and the Associated Fault Mode for the	
	Period from 1 August 2005 to 30 September 2005	128
4.11	Total Downtime by Area and the Associated Fault Mode	
	for the Period from 1 August 2005 to 30 September 2005	130
4.12	Total Criticality by Area and Associated Fault Mode for the	
	Period from 1 August 2005 to 30 September 2005	132
4.13	Number of Faults and the Associated Cost by Area for the	
	Period from 1 August 2005 to 30 September 2005	135
4.14	Number of Faults and the Associated Downtime by Area	
	for the Period from 1 August 2005 to 30 September 2005	137
4.15	Combined Major Fault with the Associated Number of Faults,	
	Criticality, Cost and Downtime Analysis for the Period	
	from 1 August 2005 to 30 September 2005	139
4.16	Result Summary - Hypothesis I and II - Graphic Comparisons	163
5.1 (a)	Delay Time Failure: h = HLA	173
5.1 (b)	Delay Time Inspection: $h = HLA + HML$	174
5.2	Conceptual Framework of the Proposed ESS Method	177
5.3	Relationships between Snapshot and Machine Table	182

5.4	Relationships between Snapshot and Rule-based Table	183
5.5	Delay Time Data Entry Form	186
5.6	Rule-Based Data Entry Form	187
6.1	Histogram of the Delay Time Data	
	(Original Data before Correction of the Subjective Survey	
	Method)	196
6.2	Histogram of Delay Time Data using Subjective Survey	
	Method (Data after Correction)	200
6.3	Histogram of Delay Time Data using ESS Method	206
6.4	Expected Number of Breakdowns per Machine per Day	
	based on Perfect Inspection $(r = 1)$ and Imperfect Inspection	
	(r = 0.3 and r = 0.6) using SS Method	213
6.5	Sensitivity Analysis of the Expected Number of Breakdowns	
	per Machine per Day based on Perfect Inspection $(r = 1)$ and	
	Imperfect Inspection $(r = 0.3)$ using SS Method	215
6.6	Sensitivity Analysis of the Expected Number of Breakdowns	
	per Machine per Day based on Perfect Inspection ($r = 1$) and	
	Imperfect Inspection ($r = 0.6$) using SS Method	216
6.7	Expected Number of Breakdowns per Machine per Day	
	based on Perfect Inspection ($r = 1$) and Imperfect Inspection	
	(r = 0.3 and r = 0.6) using ESS Method	217
6.8	Sensitivity Analysis of the Expected Number of Breakdowns	
	per Machine per Day based on Perfect Inspection $(r = 1)$ and	
	Imperfect Inspection ($r = 0.3$) using ESS Method	218
6.9	Sensitivity Analysis of the Expected Number of Breakdowns	

	per Machine per Day based on Perfect Inspection ($r = 1$) and	
	Imperfect Inspection ($r = 0.6$) using ESS Method	219
6.10	Expected Cost per Machine per Day based on	
	Perfect Inspection and Imperfect Inspection	
	(r = 0.3 and r = 0.6) using SS Method	220
6.11	Sensitivity Analysis of the Expected Cost per Machine	
	per Day based on Perfect Inspection $(r = 1)$ and	
	Imperfect Inspection ($r = 0.3$) using SS Method	222
6.12	Sensitivity Analysis of the Expected Cost per Machine	
	per Day based on Perfect Inspection $(r=1)$ and	
	Imperfect Inspection ($r = 0.6$) using SS Method	223
6.13	Expected Cost per Machine per Day based on Perfect	
	Inspection $(r = 1)$ and Imperfect Inspection	
	(r = 0.3 and r = 0.6) using ESS Method	224
6.14	Sensitivity Analysis of the Expected Cost per Machine	
	per Day based on Perfect Inspection ($r = 1$) and	
	Imperfect Inspection ($r = 0.3$) using ESS Method	225
6.15	Sensitivity Analysis of the Expected Cost per Machine	
	per Day based on Perfect Inspection ($r = 1$) and	
	Imperfect Inspection ($r = 0.6$) using ESS Method	226
6.16	Expected Downtime per Machine per Day based on	
	Perfect Inspection $(r=1)$ and Imperfect Inspection	
	(r = 0.3 and r = 0.6) using SS Method	227
6.17	Sensitivity Analysis of the Expected Downtime per Machine	
	per Day based on Perfect Inspection $(r = 1)$ and	

	Imperfect Inspection ($r = 0.3$) using SS Method	229
6.18	Sensitivity Analysis of the Expected Downtime	
	per Machine per Day based on Perfect Inspection $(r = 1)$ and	
	Imperfect Inspection ($r = 0.6$) using SS Method	230
6.19	Expected Downtime per Machine per Day based on	
	Perfect Inspection $(r = 1)$ and Imperfect Inspection	
	(r = 0.3 and r = 0.6) using ESS Method	231
6.20	Sensitivity Analysis of the Expected Downtime per Machine	
	per Day based on Perfect Inspection $(r = 1)$ and	
	Imperfect Inspection ($r = 0.3$) using ESS Method	232
6.21	Sensitivity Analysis of the Expected Downtime per Machine	
	per Day based on Perfect Inspection ($r = 1$) and	
	Imperfect Inspection ($r = 0.6$) using ESS method	233

LIST OF ABBREVIATIONS AND GLOSSARY

AHP Analytic Hierarchy Process, a method which can allow the

decision makers to model a complex problem in a

hierarchical structure showing the relationship of the goal,

criteria, sub criteria and alternatives.

AI Artificial Intelligent

CMMS Computerised Maintenance Management System

CN Criticality Number, a number used in FMECA to represent

components/machines criticality with a specific formula

based on probability theory.

CPO Crude Palm Oil, a palm oil which is one of a final product at

POM.

Decision Analysis A decision support technique that utilise AHP, FLRB and

DMG.

Defuzzification A process to derive a crisp value from a fuzzy function. The

crisp value then presented in a meaningful value that could

be understand by the users.

Delay Time The time lapse from when a defect can be first identified at

an inspection to the time that the defect causes a failure

(breakdown).

DMG Decision Making Grid, a method to conduct prevention

action analysis.

DSS Decision Support System

ESS Enhance Subjective Survey, a computer-based survey form

aims to collect all information needed in developing

maintenance model.

FFB Fruit Bunches, a fresh ripe fruit plucked from palm

tree to be processed at POM.

FLRB Fuzzy Logic Rule Base, a rule base technique adopted from

fuzzy logic theory.

FMECA Failure Mode, Effect and Criticality Analysis, a bottoms-up

method of analysing a system design or manufacturing

process in order to properly evaluate the potential of

failures.

FTA Fault Tree Analysis, a top-down method of analysing a

system in order to properly evaluate the potential of

problems.

Fuzzification A process to classify a membership function and universe of

discourse in the fuzzy logic theory.

HLA How Long Ago

HML How Much Longer

IT Information Technology

KKSBP Kilang Kelapa Sawit Bukit Pasir

KKSS Kilang Kelapa Sawit Semenchu

KSUB Kilang Sawit United Bell