

DESIGN OF ANTENNA WITH MATCHING AND RECTIFYING CIRCUIT FOR RADIO FREQUENCY ENERGY HARVESTING SYSTEM

NUR AISHAH BINTI ZAINUDDIN

MASTER OF SCIENCE IN ELECTRONIC ENGINEERING

2015

Faculty of Electronic and Computer Engineering

DESIGN OF ANTENNA WITH MATCHING AND RECTIFYING CIRCUIT FOR RADIO FREQUENCY ENERGY HARVESTING SYSTEM

Nur Aishah Binti Zainuddin

MSc. in Electronic Engineering

2015

DESIGN OF ANTENNA WITH MATCHING AND RECTIFYING CIRCUIT FOR RADIO FREQUNCY ENERGY HARVESTING SYSTEM

NUR AISHAH BINTI ZAINUDDIN

A thesis submitted in fulfillment of requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

DECLARATION

I declare that this thesis entitled "Design of Antenna with Matching and Rectifying Circuit for Radio Frequency Energy Harvesting System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature	:	
Supervisor Name	:	
Date	:	

ABSTRACT

Nowadays, the development of wireless communication has become more important and has received huge demands around the globe. As the technologies of wireless communication systems are evolving, the energy or power that is needed to operate these wireless devices are also increasing. However, limited natural power sources have stimulated a few alternatives of producing renewable energy, including the energy harvesting system. The purpose of this project was to design a radio frequency (RF) energy harvesting system to scavenge RF energy from the ambient. An RF energy harvesting device consists of three primary subsystems. The first subsystem is the receiving antenna, which is responsible for capturing all the RF energy that is later used to power the integrated embedded system. The second main subsystem is the matching circuit, which is used to match the impedance between antenna and rectifier in minimizing power loss, hence improving the efficiency of the overall system. Meanwhile, the third subsystem is the rectification circuitry, which efficiently converts the input RF power into DC output power. Each one of these three subsystems is integral to the operation of the entire harvester system. Thus, a 2.45GHz RF energy harvester was proposed. The presented work consisted of defining the characterizations of all subsystems and was preceded with optimized design process. The prototype of the system was then fabricated in-house for lab measurement and test. From the measurement that had been carried out, the RF energy system produced low DC voltage, which was applicable to operate low voltage applications and devices. The final design of antenna operated at 2.45GHz with 14.16dB gain and a strong directional radiation pattern, while the measured efficiency of the single stage and the cascaded rectifier were up to 13.99% and 42.26% respectively. The simulation and the measurement results were then compared. The antenna was designed with Computer Simulation Technology (CST) Studio suite 2011 software, whereas the rectifier and the matching circuit were designed with Agilent Technology Advanced Design System (ADS) 2011 software. From the measurement results obtained in this project, the integration between the antenna and the rectifying circuit was done successfully to obtain output DC voltage, and subsequently proved the concept of the RF energy harvesting system. The output result obtained from this system is adequate and should be able to operate some applications, for instance, sensors with appropriate supplying voltage to operate.

ABSTRAK

Pada masa kini, pembangunan komunikasi tanpa wayar telah menjadi satu kepentingan dan menerima permintaan yang besar di seluruh dunia. Seperti mana teknologi sistem komunikasi tanpa wayar sedang berkembang, tenaga atau kuasa yang diperlukan untuk mengendalikan alat-alat tanpa wayar juga semakin meningkat. Walau bagaimanapun, sumber tenaga semula jadi yang terhad telah merangsang beberapa langkah alternatif untuk menghasilkan tenaga yang boleh diperbaharui, termasuk sistem penuaian tenaga. Tujuan projek ini adalah untuk mereka bentuk satu sistem penuaian tenaga berasaskan frekuensi radio (RF) dari ambien atau persekitaran. Alat penuaian tenaga RF ini terdiri daripada tiga sub-sistem utama. Sub-sistem pertama adalah antena penerima, yang bertanggungjawab untuk menyerap semua tenaga RF yang kemudiannya akan digunakan untuk menguasakan seluruh sistem bersepadu yang telah diintegrasikan. Sub-sistem utama kedua adalah litar padanan, yang digunakan untuk memadankan galangan antara antena dan rektifier untuk meminimumkan kehilangan kuasa, seterusnya meningkatkan kecekapan keseluruhan sistem ini. Sub-sistem ketiga adalah litar rektifier, yang cekap menukarkan kuasa RF kepada kuasa arus terus sebagai output. Setiap sub-sistem secara keseluruhannya adalah penting untuk operasi sistem penuai. Sebuah penuai tenaga RF pada frekuensi 2.45GHz adalah dicadangkan. Kerja-kerja yang dibentangkan mengandungi penakrifkan sifat bagi semua sub-sistem dan diteruskan dengan proses reka bentuk yang optimum. Prototaip sistem ini kemudian difabrikasikan untuk ukuran prestasi dan ujian makmal. Dari pengukuran prestasi yang telah dijalankan, sistem tenaga RF ini berjaya menghasilkan voltan arus terus rendah yang boleh digunakan untuk mengendalikan aplikasi dan peranti voltan rendah. Reka bentuk akhir antena beroperasi pada 2.45GHz dengan 14.16dB gandaan dan corak radiasi sehala yang besar. Sementara itu, kadar kecekapan yang diukur bagi rectifier seperingkat dan rectifier berganda masingmasing adalah sebanyak 13.99% dan 42.46%. Keputusan simulasi dan ukuran kemudiannya dibandingkan. Antena direka menggunakan perisian CST Studio Suite 2011 manakala rektifier dan litar padanan direka menggunakan perisian Agilent Advanced Design System 2011. Daripada hasil pengukuran, integrasi antara antena dan rektifier telah Berjaya dilakukan bagi menghasilkan keluaran voltan arus terus dan seterusnya mengesahkan konsep sistem penuai tenaga RF. Voltan keluaran daripada sistem ini adalah mencukupi untuk beroperasi bagi beberapa aplikasi seperti sensor yang memerlukan voltan yang bersesuaian untuk berfungsi.

ACKNOWLEDGEMENTS

First and foremost, all praises to Allah SWT for the strengths and His blessing in completing this thesis. In preparing this thesis, I had learned a lot of new things and knowledge. I was also in contact with many people who have contributed towards my understanding and thought. In particular, I wish to express my sincere appreciation to my main supervisor, Associate Professor Dr. Zahriladha Zakaria, for his valuable encouragement, guidance critics and moral support. I am also very thankful to my cosupervisors Dr. Mohamad Zoinol Abidin Abd Aziz and Dato' Professor Dr. Mohd Nor Husain for their guidance, advices and motivation. Without their continued support and interest, this thesis would not have been same as presented here. I am also indebted to my beloved Universiti Teknikal Malaysia Melaka (UTeM) particularly to all technicians of FKEKK who provided me with their assistance throughout my experiments and lab tests. My devoted fellow postgraduate colleagues were definitely deserved to be recognized for their help and support at various occasions. Every seconds of time spent with them gives me that wonderful passion of completing my study. Last but surely, I would like to express my gratitude to my precious parents, Zainuddin Mohd Zin and Nurul Hidayah Ayob, and my beloved brothers for their never-ending love and support in my whole life. I would never have the guts to start this inspiring journey without their encouragement. May Allah bless them all.

TABLE OF CONTENTS

DECI	LARA	TION			
APPR	ROVA	L			
ABST	RAC	Т			i
ABST	RAK	- -			ii
ACK	NOW	LEDGE	MENTS		iii
		F CONT			iv
LIST	OF T	ABLES			vi
		IGURE			viii
	-		IATIONS	5	xiii
		PPEND			xiv
			ATIONS		XV
AWA	RDS				xvii
CHA					
1.		RODUC			1
	1.0		ch Backgro		1
	1.1		m Statemer	nt	9
	1.2	Object			11
	1.3	-	of Researc		12
	1.4		fResearch		13
	1.5	-		tion Presented by this Thesis	14
	1.6	Thesis	Organizati	on	16
2.	LIT	ERATU	RE REVI	EW	18
	2.0	Introdu			18
	2.1			nication System	19
	2.2		Harvestin	-	20
	2.3	0.		(RF) Energy Harvesting System	21
		2.3.1		Rectifier & Matching Circuit	23
	2.4	Design	ofAntenn	-	24
		2.4.1		w of Microstrip Patch Antenna	24
		2.4.2	Transmis	ssion Line Model of Microstrip Antenna	27
		2.4.3	Overview	w of Array Antenna	28
			2.4.3.1	Transmission Line Model for Array Antenna	30
		2.4.4	Feeding	Method	31
			2.4.4.1	Coaxial Feeding	32
			2.4.4.2	Proximity Feeding	33
			2.4.4.3	Microstrip Line Feeding	33
			2.4.4.4	Aperture Feeding	35
	2.5	Design	of Rectifie	er	36
		2.5.1	Overview	w of Rectifier	36
		2.5.2	Factors '	That Affect Rectifier's Performance	40
			2.5.2.1	Choice of Diodes	40
			2.5.2.2	Number of Stages	40
			2.5.2.3	Load Impedance	41
	2.6	Design	of Matchi	ngCircuit	42

Design of Matching Circuit 2.6

	2.7	Recent Review of RF Energy Harvesting System	44
		2.7.1 Recent Review of Antenna for RF Energy Harvesting	44
		2.7.2 Recent Review of Rectifier for RF Energy Harvesting	49
	2.8	Summary	52
3.	ME	THODOLOGY	54
	3.0	Introduction	54
	3.1	Flow Chart	55
	3.2	Design of Antenna	57
		3.2.1 Design 1: Rectangular Microstrip Patch Antenna	59
		3.2.2 Design 2: Microstrip 1×2 Array Antenna	61
		3.2.3 Design 3: Aperture Coupled Microstrip Array Antenna	62
		3.2.4 Design 4: Microstrip 2×2 Array Antenna	65
	3.3	Design of Microstrip Rectifier	69
		3.3.1 Design of Single Stage Rectifier	72
		3.3.2 Design of Cascaded Stage Rectifier	72
		3.3.3 Interdigital Capacitor and Microstrip Stubs	74
	3.4	Simulation Process	78
		3.4.1 Antenna Simulation Process	78
		3.4.2 Rectifier Simulation Process	80
	3.5	Design of Matching Circuit	84
	3.6	Fabrication Process	87
	3.7	Measurement Process	88
		3.7.1 Antenna Measurement	88
	•	3.7.2 Rectifier Measurement	91
	3.8	Summary	93
4.		SULTS AND DISCUSSIONS	94
	4.0	Introduction	94
	4.1	Analyses of Antennas	94
		4.1.1 Design 1: Rectangular Microstrip Patch Antenna	95
		4.1.2 Design 2: Microstrip 1×2 Array Antenna	98
		4.1.3 Design 3: Aperture Coupled Microstrip Array Antenna	101
		4.1.4 Design 4: Microstrip 2×2 Array Antenna	104
	4.2	Analyses of Single Stage Rectifier and Cascaded Rectifier	108
	4.3	5 6	114
	4.4	Measurement Results	118
		4.4.1 Design 4: Microstrip 2×2 Array Antenna	118
		4.4.2 Rectifier Circuit	122
		4.4.3 RF Energy Harvesting System	126
	4.5	Comparison with Other RF Energy Harvesting Systems	130
	4.6	Summary	134
5.		COMMENDATION FOR FUTURE WORKS	135
	5.0	Conclusion	135
	5.1	Suggestions for Future Works	136
	FEREN		138
APP	PENDI	CES	158

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Power density of energy harvesting and their applications	21
2.2	Comparison of rectifiers	37
2.3	Advantages and disadvantages of voltage multipliers	38
2.4	Comparison of typical parameters for common diodes	39
3.1	Design material of antenna	58
3.2	Optimized design parameter of rectangular microstrip patch antenna	61
3.3	Optimized design parameter of microstrip 1×2 array antenna	62
3.4	Optimized design parameter of aperture coupled microstrip antenna	65
	array	
3.5	Optimized design parameter of microstrip 2×2 array antenna	69
3.6	Design specifications of rectifier	70
3.7	Design material of rectifier	70
3.8	Interdigital capacitor dimension's descriptions	75
3.9	Range of usage of the characteristic specification	75
3.10	Parameters setup for FR-4 substrate	78
3.11	Dimension of probe feed layer	79
3.12	Microstrip line length of rectifying circuit	83
4.1	Simulation results of rectangular microstrip patch antenna	98

4.2	Simulation results of microstrip 1×2 array antenna	101
4.3	Simulation results of aperture coupled microstrip array antenna	104
4.4	Simulated antenna parameters of microstrip 2×2 array antenna at	106
	different air gap height, d ₁	
4.5	Simulation results of microstrip 2×2 array antenna	108
4.6	Simulated output voltage of single stage and cascaded rectifier	113
4.7	Simulated output voltage of single stage rectifier circuit with no stub,	114
	single stub and double stub matching network at various input power	
4.8	Simulated output voltage of cascaded rectifier circuit with no stub,	116
	single stub and double stub matching network at various input power	
4.9	Power received by the microstrip 2×2 array antenna at different	121
	distances	
4.10	Measurement result for single stage and cascaded rectifier	123
4.11	Comparison of simulated and measured output voltage for single stage	125
	and cascaded rectifier	
4.12	Measurement result at the distance of 30cm	127
4.13	Measurement result at the distance of 60cm	127
4.14	Measurement result at the distance of 90cm	128
4.15	Measurement result at the distance of 120cm	128
4.16	Comparison of the RF energy harvesting system with the state of art	132

LIST OF FIGURES

FIGURE	TITLE	
1.1	Recent energy demands for daily usage	1
1.2	Various sources of energy harvesting from ambient	3
1.3	Irrigation sensors application	5
1.4	Sensor network applications in a room	5
1.5	Solar energy conversion system for home use	6
1.6	Biomedical implantable devices sourced by scavenged energy	7
1.7	Various sources of RF signals	8
1.8	RF energy harvesting block diagram	8
2.1	Applications of wireless communication networks	19
2.2	Schematic view of an RF energy harvesting system	22
2.3	Physical structure of microstrip antenna	25
2.4	Common shapes of microstrip patch elements	25
2.5	Structures of typical array antenna	29
2.6	Common type of feeding methods for microstrip antenna	32
2.7	Direct microstrip feed line	34
2.8	Inset micsrostrip feed line	34
2.9	Gap-coupled microstrip feed line	35
2.10	Types of rectifier	37

2.11	Effect of number of stages on the efficiency of energy harvesting	41
	circuit	
2.12	Effect of load impedance on the efficiency of energy harvesting	41
	circuit	
2.13	Possible circuit topologies of matching network	42
2.14	Array antenna structure of 64 spiral elements	46
2.15	Stacked patch antenna array structure	47
2.16	Compact array antenna with reflector	48
2.17	A 3-stage Villard voltage multiplier circuit	49
2.18	Low frequency 5-stage rectifier	50
2.19	Assembled rectifying circuit board	51
3.1	Flowchart of methodology	55
3.2	Structure of rectangular microstrip patch antenna	60
3.3	Structure of microstrip 1×2 array antenna	61
3.4	Perspective view of aperture coupled microstrip array antenna	63
3.5	Structure view of aperture coupled microstrip array antenna	64
3.6	Structure view of microstrip 2×2 array antenna	67
3.7	Structure of a basic rectifier	71
3.8	Lumped element circuit of single stage rectifier	72
3.9	Lumped element circuit of cascaded rectifier	73
3.10	Interdigital capacitor basic structure	74
3.11	Introducing the interdigital capacitor and open circuit stub	76
3.12	Characteristic impedance	76
3.13	LineCalc tools in ADS	77
3.14	Structure of probe feed connector and design of waveguide port	79
	ix	

3.15	Summarization of simulation process	80
3.16	Transmission lines insertion	80
3.17	Transmission line tuning process	81
3.18	Example of comparison in tuning process	82
3.19	The replacement of microstrip lines over the transmission lines	82
3.20	Inserting input and output port into the circuit	83
3.21	Microstrip layout	84
3.22	Interdigital capacitor layout in microstrip layout	84
3.23	Matching network in microstrip lines circuit	85
3.24	Rectifier in microstrip layout symbol form with double stub	86
	matching network	
3.25	Fabricated antenna and rectifying circuits	87
3.26	Equipment for antenna and rectifier fabrication process	88
3.27	Summary of measurement process	89
3.28	Return loss measurement setup	89
3.29	Radiation pattern measurement setup	90
3.30	Rectifier measurement setup for lab test	91
3.31	Measurement setup of RF energy harvesting system	92
4.1	Rectangular microstrip patch antenna	95
4.2	Simulated return loss of rectangular microstrip patch antenna	96
4.3	Simulated gain of rectangular microstrip patch antenna	96
4.4	Simulated radiation pattern of rectangular microstrip patch antenna	97
4.5	Simulated VSWR of rectangular microstrip patch antenna	97
4.6	Microstrip 1×2 array antenna	98
4.7	Simulated return loss of microstrip 1×2 array antenna	99

х

4.8	Simulated gain of microstrip 1×2 array antenna	99
4.9	Simulated radiation pattern of microstrip 1×2 array antenna	100
4.10	Simulated VSWR of microstrip 1×2 array antenna	101
4.11	Aperture coupled microstrip array antenna	101
4.12	Simulated return loss of aperture coupled microstrip array	102
	antenna	
4.13	Simulated gain of aperture coupled microstrip array antenna	102
4.14	Simulated radiation pattern of aperture coupled microstrip array	103
	antenna	
4.15	Simulated VSWR of aperture coupled microstrip array antenna	104
4.16	Microstrip 2×2 array antenna	104
4.17	Analyses of air gap height of microstrip 2×2 array antenna	105
4.18	Simulated return loss of microstrip 2×2 array antenna	106
4.19	Simulated gain of microstrip 2×2 array antenna	107
4.20	Simulated radiation pattern of microstrip 2×2 array antenna	107
4.21	Simulated VSWR of microstrip 2×2 array antenna	108
4.22	Lumped element design of single stage Villard voltage multiplier	109
4.23	Optimized simulated DC output voltage of single stage rectifier	110
	circuit	
4.24	Comparison of simulated output DC voltage for single stage	111
	rectifier circuit with different type of diodes	
4.25	Comparison of simulated output DC voltage for single stage	112
	rectifier circuit with different value of loads	
4.26	Comparison of simulated output DC voltage for single stage and	113
	cascaded rectifier	

4.27	Comparison of output voltage for single stage rectifier circuit with	115
т. <i>21</i>		115
	no stub, single stub and double stub matching network	
4.28	Comparison of output voltage for cascaded rectifier circuit with no	117
	stub, single stub and double stub matching network	
4.29	Comparison of simulated efficiency for single stage and cascaded	117
	rectifier	
4.30	Simulated and measured return loss characteristic of microstrip	120
	2×2 array antenna	
4.31	Measured radiation pattern of microstrip 2×2 array antenna	120
4.32	Experimental setup for power receive measurement	121
4.33	Measurement process for the rectifier performance	122
4.34	Comparison of measured output DC voltage for single stage and	123
	cascaded rectifier	
4.35	Comparison of measured efficiency for single stage and cascaded	124
	rectifier	
4.36	Measurement setup for RF energy harvesting system performance	126
4.37	Measured output DC voltage of single stage rectifier at different	129
	distances	
4.38	Measured output DC voltage of cascaded rectifier at different	130
	distances	

LIST OF ABBREVIATIONS

AC	-	Alternating Current
ADS	-	Advanced Design System
BiCMOS	-	Bipolar Complimentary Metal-Oxide-Semiconductor
CPW	-	Coplanar Waveguide
CST	-	Computer Simulation Technology
DC	-	Direct Current
EM	-	Electromagnetic
GSM	-	Global System for Mobile
ISM	-	Industrial Scientific & Medical
PC	-	Personal Computer
PCB	-	Printed Circuit Board
RF	-	Radio Frequency
TV	-	Television
UV	-	Ultra Violet
VSWR	-	Voltage Standing Wave Ratio
WLAN	-	Wireless Local Area Network
WSN	-	Wireless Sensor Networks

xiii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	FR-4 Material and Characteristics	158
В	HSMS-286X Diode Data Sheet	159
С	LM94022 Data Sheet	161
D	Flow Chart of Research Step	162
Е	Antenna Properties	163

LIST OF PUBLICATIONS

The research papers produced and published during the course of this research are as follows:

- Zahriladha Zakaria, Nur Aishah Zainuddin, Mohd Nor Husain, Mohamad Zoinol Abidin Abd Aziz, Mohamad Ariffin Mutalib, Abdul Rani Othman, "Current Developments of RF Energy Harvesting System for Wireless Sensor Networks", *Advances in Information Sciences and Service Sciences (AISS)*, Vol. 5, No. 11, pp. 328-338, June 2013.
- Zahriladha Zakaria, Nur Aishah Zainuddin, Mohd Nor Husain, Bazilah Mohd Derus, Mohamad Zoinol Abidin Abd Aziz, Mohamad Ariffin Mutalib, "Investigation of Wideband Coplanar Antenna for Energy Scavenging System", Australian Journal of Basic and Applied Sciences, Vol. 8, No. 4, pp. 270-277, 2014.
- 3. Zahriladha Zakaria, Nur Aishah Zainuddin, Mohd Nor Husain, Mohamad Zoinol Abidin Abd Aziz, Mohamad Ariffin Mutalib, "Investigation of Compact Tree-Shaped Coplanar Waveguide (CPW) Antenna for RF Energy Harvesting", *Journal* of Applied Mechanics and Materials, Vol. 699, pp. 903-908, November 2014.
- 4. Zahriladha Zakaria, Nurul Nadia Razak, Nur Aishah Zainuddin, Mohd Nor Husain, Yosza Dasril, "Analysis of Matching Circuit to Improve the Efficiency of RF to

DC Conversion for Ambient RF Energy Harvesting", *Journal of Applied Mechanics and Materials*, Vol. 699, pp. 909-914, November 2014.

- Zahriladha Zakaria, Nur Aishah Zainuddin, Mohd Nor Husain, Mohd Nabil Imran Kamaruzaman, Mohamad Zoinol Abidin Abd Aziz, Nor Zaidi Haron, Mohd Sa'ari Mohamad Isa, Mohamad Ariffin Mutalib, "Design of Antenna with Rectifying Circuit for Low Power Wireless Sensor Network Application", *Advanced Science Letters*, Vol. 20, No. 10-12, pp. 1788-1792, October 2014.
- 6. Zahriladha Zakaria, Nur Aishah Zainuddin, Mohamad Zoinol Abidin Abd Aziz, Mohd Nor Husain, Mohamad Ariffin Mutalib, "Dual-Band Monopole Antenna for Energy Harvesting System" IEEE Symposium on Wireless Technology and Applications, pp.225-229, Kuching, Sarawak, 22-25 September 2013.
- Zahriladha Zakaria, Nur Aishah Zainuddin, Mohamad Zoinol Abidin Abd Aziz, Mohd Nor Husain, Mohamad Ariffin Mutalib, "A Parametric Study on Dual-Band Meander Line Monopole Antenna", IEEE International Conference on RFID Technologies and Applications, Johor Bahru, Johor, 4-5 September 2013.
- Zahriladha Zakaria, Nur Aishah Zainuddin, Mohamad Zoinol Abidin Abd Aziz, Mohd Nor Husain, Mohamad Ariffin Mutalib, "Investigation of Meander Slots to Microstrip patch Antenna", IEEE International Conference on RFID Technologies and Applications, Johor Bahru, Johor, 4 -5 September 2013.

xvi

AWARDS

2014

Bronze Medal – Analysis of Receiving Antenna Structures with High Efficiency Rectifying Circuit for Radio Frequency (RF) Energy Harvesting System, Malaysia Technology Expo (MTE), Putra World Trade Centre (PWTC), Kuala Lumpur, 20th - 22th February 2014.

2013

Silver Medal – Design of Antenna with Rectifying Circuit for RF Energy Harvesting, UTeMEX Expo Penyelidikan dan Inovasi 2013, Universiti Teknikal Malaysia Melaka (UTeM), 12th December 2013.

xvii

CHAPTER 1

INTRODUCTION

1.0 Research Background

Energy is a basic necessity for sustaining human life, which pervades each and every one of our activities. In the very early days, muscle power was rendered from human and animals to drive simple implements and machines, which could only run for a limited time and had limitations on their continuous availability. Nevertheless, the greatest transition took place when we learnt to generate energy by transforming one state of energy, possibly latent, to another. After that, vast possibilities opened up where energy could be obtained, stored, and transferred across large distances. Figure 1.1 shows the string of energy demands in worldwide at present.

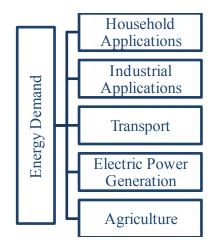


Figure 1.1: Recent Energy Demands for Daily Usage

Besides, as an essential keystone in furthering the reach of technology, it is becoming difficult to meet the insatiable need of energy today. According to International Energy Agency (IEA) (2014), the increasing energy demands have put a strain on the current energy sources. Thus, there is an incessant effort to identify new sources of energy that may partially satisfy the energy demands and conserve our finite natural resources for the years to come.

Renewable energy sources provide an alternative to conventional natural sources, of which there are limited supplies. Renewable energy can be broadly defined as a kind of energy that is generated from natural sources, which is not typically depleted, such as sunlight, wind, rain, heat, and RF signal, among others. Renewable energy is derived from natural processes that are replenished constantly. Some additional features of renewable energy sources that make them an attractive alternative to the classical natural sources are:

- Renewable energy sources are often accessible without geographical and national barriers, although certain regions may be more conducive to their large-scale use.
- Renewable energy sources are generally not harmful, which adversely affect the environment. Hence, they are green technologies and are safe to use.
- These sources are unlimited in the near term, which get used up faster every day. They are generally free to harness, although specialized equipment may be needed for high conversion efficiency.

One of the methods that have been proven to efficiently produce alternative renewable energy is by harvesting or scavenging it from ambient. Energy harvesting can be defined as a process of extracting wasted energy from the surrounding of a system, and then, converting it to usable energy.