

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Electrical Engineering

DESIGN AND IMPLEMENTATION OF PHOTOVOLTAIC WATER PUMPING

SYSTEM

Maiz Hadj Ahmed Mustapha

Master of Electrical Engineering (Industrial Power)

DESIGN AND IMPLEMENTATION OF PHOTOVOLTAIC WATER PUMPING

SYSTEM

MAIZ HADJ AHMED MUSTAPHA

A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Electrical Engineering (Industrial Power)

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this dissertation entitled "Design and Implementation of Photovoltaic Water Pumping System" is the result of my own research except as cited in the references. The dissertation has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:	Martin
Name	:	Maiz Hadj Ahmed Mustapha
Date	:	. 7.0.14 1.3.1.2

APPROVAL

I hereby declare that I have read this dissertation and in my opinion, this dissertation is a sufficient term of the scope and quality of the award of master of electrical engineering (Industrial Power).

: Mampa Sulum : ENGA. PROF. BR. MARIDAN B. SUKAIMAN : 11/3/2014

Supervisor Name

Date

Signature

DEDICATION

Dedicated to my Parents and Family.

ABSTRACT

The solar photovoltaic system is considered as one of the most promising applications for a future sustainable supply power notably in remote areas where the electricity is unavailable or unreliable. Due to the continuous improvement of solar cell technology and the decrease in manufacturing cost, photovoltaic powered water pumps have received considerable attention in the last few years to satisfy the basic need for a large proportion of the world's rural population. This dissertation deals with the modeling and simulation of a photovoltaic water pumping system consisting of PV panel as a generator, power conditioning unit that constitutes of a buck-boost chopper and single phase full bridge inverter to feed a single phase induction motor actuating centrifugal pump. The pump feeds the water tank in order to use it when the sun is not shining. The simulation was carried out through MATLAB/SIMULINK software using the equivalent electric circuit of each component for each subsystem then the overall system consisting of the subsystems shows the feasibility of the entire photovoltaic water pumping system. This research gives an emphasis on power electronic stage, a DC/DC buck boost chopper was designed and realized, showing its efficiency when connecting to the system. This work stresses on system sizing which is important in order to design a successful installation, HOMER software has been used to recognize the system sizing and it shows a high performance in term of sensitivity analysis of a wide range of input which may affect the system's behavior. The system sizing has been achieved reliably and economically through two criteria which are Annual Capacity Shortage (ACS) and Levelized Cost of Energy (LCE), the results could then serve as a starting point for the designing and optimizing of a successful installation. A prototype hardware of water pumping system which can be used for domestic purposes was built and tested, the experimental results were satisfactory.

ABSTRAK

Sistem fotovoltaik suria dianggap sebagai salah satu aplikasi yang sangat berpotensi untuk membekalkan tenaga elektrik secara berterusan pada masa hadapan terutamanya ke kawasan-kawasan terpencil di mana bekalan elektrik adalah sukar untuk didapati. Oleh kerana pembangunan berterusan teknologi sel suria dan penurunan dalam kos pengeluaran, pam air berkuasa suria telah mendapat perhatian yang besar sejak beberapa tahun kebelakangan ini untuk memenuhi keperluan asas bagi sebahagian besar penduduk luar bandar di dunia. Disertasi ini adalah mengenai pemodelan dan simulasi sistem pam air fotovoltaik yang terdiri daripada panel suria sebagai penjana kuasa, unit kuasa penyaman yang terdiri daripada buck-boost chopper dan penyongsang satu fasa tetimbang penuh gelombang untuk membekal satu motor induksi satu fasa pam tersebut. Fungsi pam adalah untuk memenuhi simpanan tangki air untuk digunakan ketika tiada sinaran matahari. Simulasi ini dijalankan dengan perisian matlab / simulink menggunakan litar elektrik yang setara untuk setiap komponen bagi setiap subsistem. Keseluruhan sistem yang terdiri daripada semua subsistem menunjukkan keupayaan keseluruhan sistem pam air fotovoltaik. Prototaip telah dibina dan diuji untuk mengesahkan keputusan simulasi. Penvelidikan ini memberi penekanan kepada peringkat elektronik kuasa, dc / dc buck-boost chopper telah direka dan dipastikan, kecekapannya apabila disambungkan kepada sistem. Keputusan eksperimen adalah memuaskan apabila dibandingkan dengan kajian simulasi. Penyelidikan ini memberi penekanan kepada pensaizan sistem yang adalah sangat penting di dalam merangka sistem tenaga suria. Perisian homer telah digunakan untuk mengenal pasti saiz sistem dan ia menunjukkan prestasi yang tinggi dalam menganalisis pelbagai input yang boleh memberi kesan kepada tingkah laku sistem. Saiz sistem telah dicapai dari segi keberkesanan dan dari segi ekonomi.

ACKNOWLEDGMENTS

All praise is due to Allah, my creator, cherisher, and sustainer; He is the one who granted me the skill and the will to fulfill my research in the best conditions.

I wish to express my deep appreciation and heartfelt gratitude to my supervisor Prof. Dr. Marizan bin Sulaiman. Thank you, Professor, for your valuable academic supervision and sincere motivation throughout my research process.

Deepest gratitude is also due to Dr. Rosli bin Omar, Co-supervisor, for his guiding comments and wise orientations. I have really appreciated and learned from your valuable corrections and academic advising.

I also take this opportunity to offer my special thanks to my lecturers who showed me how to acquire knowledge and transform it into practice. I am thankful to all the department staff for the facilities provided.

Not forgotten my classmates and all researchers students in the Laboratory of energy and power system for sharing their knowledge in completing my research.

To my dear parents, who loved me and sacrificed for me; "My Lord bestow on them they mercy even as they cherished me in childhood" (Qur'an, Al-Isra': 24).

To my beloved wife, my lovely children who were always by my side during my study in Malaysia. Thank you for your endless love, motivation and sincere support you are my inspiration and pride.

I am greatly indebted to my family members, especially my dear brothers and sisters, for their endless love, moral and material support. It is with the help of Allah and your generosity that I reached the graduation point.

🔘 Universiti Teknikal Malaysia Melaka

TABLE OF CONTENTS

DECLARATION

DEDICATION

ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABREVIATIONS	xii
LIST OF SYMBOLS	xiv

CHAPTER 1 II	NTRODUCTION	
1.1 Introd	uction	1
1.2 Literat	ture Review	
1.2.1 Sola	ar Energy	
1.2.1.1	Solar Spectral Distribution	5
1.2.1.2	Solar Constant	6
1.2.1.3	Solar Radiation	6
1.2.1.4	Peak Sun Hour (PSH)	7
1.2.1.5	Measurement of Terrestrial Solar Radiation	
1.2.2 Pote	ential Energetique in Malaysia	
1.2.3 Typ	e of Photovoltaic System	
1.2.3.1	Grid connected System (Utility Interface)	
1.2.3.2	Stand- Alone System (Off Grid System)	14
1.2.4 Pho	tovoltaic Water Pumping System	
1.2.4.1	Introduction	
1.2.4.2	Power Conditioning Stage	
1.2.4.3	Load Stage	
1.2.4.3	3.1 Motor Used in Photovoltaic Water Pumping System:	
1.2.4.3	3,2 Pumps Used in Photovoltaic Water Pumping System:	
1.2.5 Sys	tem Sizing	
	C Universiti Teknikal Malaysia Melaka	

	1.2.5.1 Sizing of PV Water Pumping Based on Method of Worst Month	24
1.3	Motivation for Research	27
1.4	Problem Statement	27
1.5	Objectives of Research	28
1.6	Contributions of Research	29
1.7	Scope of Research	29
1.8	Organization of Dissertation	30

2.1 Introduction	
2.2 HOMER Software Presentation	
2.2.1 How Does HOMER Works	
2.3 Case Study	
2.3.1 Assumption and General Data Input	
2.3.2 Load Estimation	
2.3.3 Case 1 Constant Profile	
2.3.4 Case 2 Variable Profile	
2.4 Summary	

CHAPTER 3 DESIGN AND MODELING OF PV WATER PUMPING SYSTEM .. 46

3.1 Intr	oduction	46
3.2 Syn	optic Scheme of Proposed Model	46
3.3 Mo	deling of Photovoltaic Panel	47
3.3.1 E	Equivalent Circuit	48
3.3.2 E	Equations of PV Panel	48
3.3.3 I	-V Curves	50
3.3.4 S	olar Panel Efficiency	
3.4 Pov	ver Electronics	
3.4.1 E	DC/DC Choppers	
3.4.1.1	Buck Boost Chopper	54
3.4.1.2	2 Design of Buck Boost Chopper	
3.4.1.3	3 PI Controller	60
3.4.1.4	4 ' Tuning PI Parameters	61
3.4.2 S	ingle Phase Full Bridge Inverter	
3.4.2.1	Definition	
3.4.2.2	2 Single Phase Voltage Source Inverter	
3.4.2.3	Single Phase Full Bridge Voltage Source Inverter	
3.4.2.4	4 Pulse Width Modulation in Inverter	
3.4.2.5	5 Pulse Width Modulation Techniques	64
3.4.2.6	5 Sinusoidal Pulse Width Modulation	
	C Universiti Teknikal Malaysia Melaka	

3.4.2.7 Design of LC Low Pass Filter	66
3.5 Single Phase Induction Motor	68
3.5.1 Introduction	68
3.5.2 Speed of Induction Motor	69
3.5.3 Starting of Single Phase Induction Motor	70
3.5.4 Capacitor Start/Capacitor Run Induction Motor	71
3.5.5 Model of Single Phase Induction Motor in DQ Axis Frame	72
3.6 Centrifugal Pump	74
3.6.1 Definition and Description	74
3.6.2 The Principle of Centrifugal Pumps	75
3.6.3 Centrifugal Pump Characteristics	75
3.6.3.1 H-Q Characteristic	75
3.6.3.2 Torque Characteristics	76
3.6.3.3 Power and Efficiency	76
3.6.4 Affinity Law	77
3.7 Summary	79

CHAPTER 4 DISCUSSION OF SIMULATION AND EXPERIMENTAL RESULTS 80

		00
4.1	Introduction	80
4.2	Simulation Studies	80
4.2.	1 Phase 1 Photovoltaic Generator	81
4.2.2	2 Phase 2 Buck-Boost Chopper	83
4.	2.2.1 Ziegler–Nichols Tuning Method	85
4.2.3	3 Phase 3 Single Phase Full Bridge Inverter	88
4.2.4	4 Stage 4 Single phase Induction Motor (Capacitor Stars-Capacitor Run)	91
4.2.5	5 Phase 5 Centrifugal Pump	94
4.2.0	5 Stage 6 Whole System Configuration	96
4.	2.6.1 Case 1 Stable Insolation Level	98
4.	2.6.2 Case 2 Variable Insolation Level	101
4.2.7	7 Discussion	. 103
4.3	Experimental Set-Up	103
4.3.	1 Introduction	103
4.3.2	2 Photovoltaic Water Pumping Prototype Description	103
4.	3.2.1 PV Module	. 104
4.	3.2.2 Buck-Boost Chopper	. 105
4.	3.2.3 Single Phase Inverter	. 107
4.	3.2.4 Motor-Pump	. 108
4.	3.2.5 Battery	. 109
4.3.3	3 Experimental Constraints and Considerations	. 110
4.3.4	4 Hardware Implementation and Testing	. 111
4.3.5	5 Discussion	. 114

C Universiti Teknikal Malaysia Melaka

CHAPTER 5		
5.1	Introduction	
5.2	Summary of Research	
5.3	Achievement of Research Objectives	
5.4	Significance of Research Output	
5.5	Suggestions of Future Works	

REFERENCES	
APPENDIX A	
APPENDIX B	
APPENDIX C	

ą

LIST OF TABLES

TABLETITLE	PAGE
Table 1.1Distribution of solar spectrum by wavelength category	5
Table 3.1 Parameters' effects of PI controller	61
Table 3.2: Switching state	64
Table 4.1 Ziegler-Nichols tuning rules	85
Table 4.2 Basic parameters of single phase induction motor	92
Table 4.3 Pump characteristics	94
Table 4.4 PV panel parameters	104
Table 4.5 Single phase inverter parameters	107
Table 4.6 Water motor-pump characteristics	108
Table 4.7 Solar battery parameters	109
Table 4.8 The water flow amount during the test	112

LIST OF FIGURES

FIGURE	FITLE	PAGE
Figure 1.1: Solar radiation spectrum		6
Figure 1.2: Peak sun hour concept		7
Figure 1.3 Pyrheliometer device		9
Figure 1.4 Pyranometer integrated in PV	array	10
Figure 1.5 Overall energy demand vs elect	tricity growth rate in Malaysia	11
Figure 1.6 Annual average solar radiation	in Malaysia	12
Figure 1.7 Growth of RE power generation	n in Malaysia	13
Figure 1.8 Grid connected system		14
Figure 1.9 Stand-alone PV system with ba	attery storage	15
Figure 1.10 Hybrid stand-alone system		16
Figure 1.11 Contribution of various comp	onents to investment cost of PV system	17
Figure 1.12 Approximate pump selection	based on lift and volume requirement	22
Figure 2.1 Main menu of HOMER softwa	ire	33
Figure 2.2 System configuration in HOM	ER	34
Figure 2.3 PV water pumping system in s	tudy at HOMER environmentt	36
Figure 2.4 Monthly temperature input in t	he site of Melaka	37
Figure 2.5 Daily radiation of the site in M	elaka	38
Figure 2.6 Daily constant profile		39
Figure 2.7 Overall results with sensitive a	nalysis	40
Figure 2.8 PV array capacity vs annual ca	pacity shortage	41
Figure 2.9 Levelized cost of energy vs PV	' array capacity and annual capacity shorta	ige 42
Figure 2.10 Load variable profile		43
Figure 2.11 PV capacity vs annual capacity	y shortage and battery storage	44
Figure 2.12 Levelized cost of energy vs P	V array capacity and annual cost of energy	y 45
Figure 3.1 Synoptic scheme of proposed p	hotovoltaic water pumping system	47
Figure 3.2 Equivalent circuit of solar cell		48
Figure 3.3 I-V curve characteristics		51
Figure 3.4 General block diagr Univers	iti Teknikal Malaysia Melaka	53

Figure 3.5 Buck-boost chopper topology	54
Figure 3.6 Circuit when a switch is closed	55
Figure 3.7 Circuit when a switch is opened	55
Figure 3.8 Waveforms of buck boost chopper	56
Figure 3.9 Algorithm of PI controller	60
Figure 3.10 Basic block of single phase full bridge inverter	63
Figure 3.11 Waveform of single phase full bridge inverter	66
Figure 3.12 Full bridge single phase inverter with filter	67
Figure 3.13 Representation of single phase induction motor	69
Figure 3.14 Typical capacitor start/capacitor run of SPIM	71
Figure 3.15 Torque -speed curves for SPIM	72
Figure 3.16 Centrifugal pump components	75
Figure 4.1 Block diagram of PV generator	81
Figure 4.2 PV output voltage under constant insolation of $1000W/m2$	82
Figure 4.3 PV output voltage under variable insolation level	83
Figure 4.4 Block diagram of buck boost chopper with PI controller	84
Figure 4.5 The step response of PI controller	86
Figure 4.6 Buck boost chopper voltage output at constant insolation of 1000W/m2	87
Figure 4.7 Buck boost chopper output voltage under variable insolation level	88
Figure 4.8 Simulink block of full bridge single phase inverter	89
Figure 4.9 Voltage output of inverter before a filter and transformer	89
Figure 4.10 Single phase inverter with low pass filter and step up transformer	90
Figure 4.11 Filtred AC output voltage of inverter	91
Figure 4.12 Simulink block of single phase induction motor(capacitor start/run)	92
Figure 4.13 Speed response of SPIM (capacitor start/capacitor run)	93
Figure 4.14 Torque of SPIM (capacitor start/capacitor run)	93
Figure 4.15 Simulink block of centrifugal pump	94
Figure 4.16 Water flow rate	95
Figure 4.17 Total dynamic head evolution	96
Figure 4.18 Break horse power evolution	96
Figure 4.19 Whole system configuration in Simulink software	97
Figure 4.20 PV output voltage	98
Figure 4.21 Buck boost chopper output voltage	99
Figure 4.22 Inverter AC output C Universiti Teknikal Malaysia Melaka	100

Figure 4.23 Induction motor speed	100
Figure 4.24 Pump characteristics: water flow rate, height, break horse power	101
Figure 4.25 PV output voltage under variable insolation level	102
Figure 4.26 Buck boost chopper output voltage under variable insolation level	102
Figure 4.27 PV panel	105
Figure 4.28 Equivalent circuit of buck boost chopper	105
Figure 4.29 Schematic diagram of buck boost chopper	106
Figure 4.30 Buck boost chopper hardware	107
Figure 4.31 DC/AC inverter	108
Figure 4.32 Water pump used	109
Figure 4.33 Sealed lead acid battery	110
Figure 4.34 Prototype hardware of photovoltaic water pumping system	111
Figure 4.35 Variation of DC output voltage of battery	113
Figure 4.36 Variation of AC output of inverter during the test	113
Figure 4.37 Average water flow rate variation	114

4

LIST OF ABREVIATIONS

RE	-	Renewable Energy
PV	-	Photovoltaic
PVWPS	-	Photovoltaic Water Pumping System
PSH	-	Peak Sun Hour
AM	-	Air Mass
DC	-	Direct Current
AC	-	Alternative Current
MPPT	-	Maximum Power Point Tracker
PWM	-	Pulse Width Modulation
PMDC	-	Permanent Magnet Direct Current
SPIM	-	Single Phase Induction Motor
PI	-	Proportional Integrator
Mi	-	Modulation Index
HOMER		Hybrid Optimization and Modeling of
		Energy Renewable
Voc	-	Voltage Open Circuit
FiT	-	Feed in Tariff
WMO	-	World Meteorological Organization

C Universiti Teknikal Malaysia Melaka

GUI	-	Graphical User Interface
Isc	-	Current Short Circuit
CMSe		Coronal Mass Ejections

C Universiti Teknikal Malaysia Melaka

.

LIST OF SYMBOLS

η	-	Efficiency
f	-	Frequency
А	-	Area
V	-	Voltage
Ι	-	Current
Р	-	Power
ρ	-	Water density
	-	Wavelength
L	-	Inductance
С	-	Capacitance
Т	-	Period
t	-	Time
Ns	-	Synchronous speed
Н	-	Height
Q	-	Water Flow
g	-	Acceleration of gravity
Tref	-	Reference temperature

C Universiti Teknikal Malaysia Melaka

A	-	Factor of ideality
К	-	Coefficient of Boltzmann
q	-	Charge of electron
ω	-	Rotational speed
Rs	-	Series resistance
Rp	-	Parallel resistance
β	-	Tilt angle
Jm	-	Inertia of the motor
G	-	Solar radiation

CHAPTER 1

INTRODUCTION

1.1 Introduction

The world energy demands are basically met by fossil fuels such as oil, coal and natural gas. The fact that these fossil fuels are in rapid depletion and environmental concerns has given awareness on the generation of renewable energy resources. The energy consumption is steadily increasing and the deregulation of electricity has caused that the amount of installed production capacity of classical high power stations cannot follow the demand. A method to replenish the gap is to make incentives to encourage investing in alternative energy sources known as renewable energy.

Renewable energy is any energy source that is continually replenished, such that derived from wind, solar, geothermal or hydroelectric action and photosynthetic energy stored in biomass. Which produces through its utilization neither noxious waste nor greenhouse effect gas. There is a necessity to explore these renewable energy sources for sustainable growth.

Using renewable energy sources is not only highly beneficial from an energetic point of view but also from an ecological point of view because by utilizing the renewable energy we can save our environment for our future generations. Early Malaysia has stressed on renewable energy and the RE target is 5.5% of Malaysia's total electricity generation mix by 2015 (Bakhtyar et al., 2005). Harnessing these clean energies appears to be a propitious key for improving both the power supply and the life quality of rural villagers.

C Universiti Teknikal Malaysia Melaka

Among these renewable resources, the solar energy has demonstrated its effectiveness and holds great promise as an alternative source of energy in many applications. With today's advancement technology, we are able to capture this radiation and turn it into two principal forms of solar energy which are heating and electricity (Robert and Ghassemi, 2009). Photovoltaic (PV) is an emerging technology, it can be seen as the symbol for future sustainable energy supply system, no other RE sources receive such enormous appreciation by the public. Photovoltaic is the direct transformation of sunlight into electricity at the atomic level.

Nowadays photovoltaic (PV) modules can be used, especially in stand-alone power systems for residential houses, emergency telephones, street lighting, refrigeration, telecommunications and water pumping.

Water is considered as the primary source of life for mankind and one of the most basic requirements for rural development. Water pumping, which requires energy, is a basic need for a large proportion of the world's rural population, the suitability of this technology for covering the daily water needs in these zones had been launched over many pilot projects implemented mostly in South America, Africa and Asia, where it has been estimated that two billion people are affected by water shortages in over forty countries, and 1.1 billion do not have sufficient drinking water (Malki, 2011).

In this dissertation, a photovoltaic water pumping system (PVWPS) is presented. It consists of PV panel, buck-boost chopper, single phase full bridge inverter, single phase induction motor and water tank for storage. This study provides a mathematical model of each component based on its equivalent electrical circuit from where the block diagram has been built using MATLAB/SIMULINK software in order to be transferred into a computer simulation. In addition, an experimental setup of the photovoltaic water pumping system through prototype hardware was performed to show the feasibility of the system.

C Universiti Teknikal Malaysia Melaka

The sizing task takes into account in this work due to its importance because the size of the components of the installation should be balanced and respect certain proportions to guarantee the best investment with an optimized and full use of the PV system and system storage as well. This system sizing is performed through a user friendly software which is HOMER, it performs optimization according to different assumption of input factors to give a wide view about their effect in the system, two criteria have been chosen to achieve technical and economic requirements of a system which are Annual Capacity Shortage (ACS) and Levelized Cost of Energy (LCE).

1.2 Literature Review

1.2.1 Solar Energy

Solar energy characterized by its abundance and free of charge, it exists in most parts of the world, has proven to be an economical source of energy in many applications. It can be a main source of power, indeed its potential is estimated around 178 billion MW which is about 20,000 times the world's demand (Chandrasekaran, 2011).

In appropriate climatic condition the sun's radiation on the earth can reach easily 3000 watts per square meter depending on the location. The sun is replenished and clean source, which produces neither greenhouse effect gas nor noxious waste through its utilization.

(Narbel, 2011) gave an overview about a solar energy technologies and their classification, he claimed that Solar energy technologies can be classified as:

- Passive and active.
- Thermal and photovoltaic.

C) Universiti Teknikal Malaysia Melaka

Passive solar energy technology simply refers to collects the energy without transforming it into other forms. It includes, in instance, maximizing the use of daylight or heat through building design.

Active solar energy technology in the other hand is the harnessing of solar energy to convert it for other applications or stores it. Active solar energy in turn is classified into two categories:

- Solar thermal
- Solar photovoltaic

The sun is a star among many others. Its diameter is 1.39×10^6 Km, almost 50 times that of the earth and a mass of 2×10^{30} Kg with luminosity of 4×10^{26} W, note that the average distance Sun-Earth is estimated to 1.5×10^{11} m. The sun is composed of three components: the core, the radiation and the convection zone and its atmosphere. The core is the source of all sun's energy, it contains the half of the sun's mass. It is composed of 70% hydrogen, 28% helium and 2% of a mixture of 100 elements. This changes over time as every second 700 million tons of hydrogen is converted into helium by thermo- nuclear reaction which is taken place in the core (Robert and Ghassemi, 2009).

The sun emits energy in two major forms:

- A plasma, which is a mixture of ions, electrons, and neutral atoms, is emitted along perturbations in the Sun's magnetic field, and causes solar flares and coronal mass ejections (CMEs).
- Radiation (heat energy) travels at the speed of light and takes about 8 min to reach the earth and has no mass.

The solar spectral distribution of the air has a maximum for a wavelength of about 0.5μ m; the black body temperature at the surface of the sun is about 5780 ° k [pv s].

C) Universiti Teknikal Malaysia Melaka