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ABSTRACT 

 

 

Aluminum alloy 7075 is a useful industrial material thanks to its high strength to weight 
ratio. However, it is susceptible to corrosion due to numerous constituent particles with 
various electrochemical potentials the combination of which leads to susceptibility to 
corrosion. This issue was solved by using overage treatment with the penalty of 10-15% of 
peak strength. Previous research found that retrogression and re-aging (RRA) heat 
treatment improves corrosion resistance while maintaining the strength of the alloy. In this 
research, the retrogression process was studied to a greater extend with oil as the heating 
medium in relation to the standard retrogression. The tensile specimens are peak aged 
before retrogressed at 165oC, 185oC, and 205oC for 10 and 30 minutes in oil and standard 
furnace followed by re-aging at 120oC for 24 hours. Next, the specimens were put through 
tensile test, hardness test, Tafel DC corrosion test, and microstructure characterization by 
using Scanning Electron Microscope (SEM). The result of the analysis showed the 
mechanical properties of the alloy to decrease with increasing retrogression temperature 
and time for both oil and standard retrogression due to the increase in incoherent ɳ phase 
volume fraction as observed under the SEM analysis. In comparison between oil and 
standard retrogression, oil retrogression out-performed standard retrogression at 165 °C for 
10 minutes with better corrosion resistance at corrosion current density of 6.64 µA/cm2 and 
tensile strength of 632.73 MPa.  
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ABSTRAK 

 

 

Aluminium aloi 7075 adalah bahan industri yang sangat berguna atas sebab nisbah 
kekuatan kepada berat badan yang tinggi. Walau bagaimanapun, ia mudah terdedah 
kepada kakisan kerana banyak zarah juzuk yang mempunyai pelbagai potensi elektrokimia 
dan kombinasinya mengakibatkan kecenderungan kepada hakisan. Isu ini telah 
diselesaikan dengan menggunakan rawatan haba T73 dengan penalti sebanyak 10-15% 
daripada kekuatan puncak. Kajian sebelum ini telah menemui rawatan haba kemunduran 
dan penuaan semula akan meningkatkan rintangan kakisan di sampingnya masih 
mengekalkan kekuatan aloi. Dalam kajian ini, proses kemunduran telah dikaji dengan 
peringkat selanjutnya dengan menggunakan minyak sebagai medium pemanasan yang 
berhubung dengan kemunduran biasa. Spesimen dirawat dengan rawatan T6 dan 
kemudiannya dimundur pada 165 °C, 185 °C, dan 205 °C selama 10 minit dan 30 minit 
dalam minyak dan relau diikuti oleh penuaan semula pada 120 °C selama 24 jam. 
Seterusnya, spesimen dikaji dengan ujian tegangan, ujian kekerasan, ujian kakisan Tafel 
DC, dan pencirian mikrostruktur dengan menggunakan mikroskop imbasan elektron. 
Keputusan analisis telah menunjukkan sifat-sifat mekanik aloi akan berkurang dengan 
peningkatan suhu kemunduran dan masa bagi kedua-dua kemunduran minyak dan 
kemunduran biasa yang disebabkan oleh peningkatan pecahan isipadu fasa ɳ yang tidak 
keruan sebagaimana yang diperhatikan di bawah analisis mikroskop imbasan elektron. 
Berbanding di antara kemunduran minyak dan kemunduran biasa, kemunduran minyak 
mengatasi prestasi kemunduran biasa pada 165 °C selama 10 minit dengan rintangan 
kakisan yang lebih baik pada kakisan ketumpatan arus 6.64μA/cm2 dan kekuatan tegangan 
632.73 MPa.  
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1 Background 

Aluminum is a light weight and soft metal in the pure state. With the addition of 

alloying element such as titanium, copper, zinc, carbon, or chromium, its properties will 

change and produce an aluminum alloy in various series from 1xxx to 9xxx. Among these 

alloys, the 7xxx series alloy, in which the major addition is zinc (Zn) possesses good 

mechanical properties. Aluminum alloy 7075 with the addition of zinc, copper, and 

magnesium has the top mechanical strength in the 7xxx series alloys.  

In the aerospace and automotive industries, aluminum alloy 7075 is widely used 

due to its high strength to weight ratio (Sun et al., 2009). Its benefits include weight 

reduction while maintaining the strength of the alloy. Moreover, the strength of the alloy 

can be improved by precipitation hardening from heat treatment (George and Scott, 2003).  

Aluminum alloy contains elements such as zinc, magnesium, and copper that 

exceeds the equilibrium of solid solubility. These elements are soluble to solid solution 

when it is heating up to just below the eutectic temperature for a period in which 

equilibrium is achieved. This process is generally known as solution heat treatment (SHT). 

When the elements are solute into the solid solution, it leaves behind the vacant lattice site, 

called “vacancies”. To retain it, rapid quenching must be used because the material’s 

temperature has to be dropped rapidly to room temperature. The result will be a 

supersaturated solid solution at room temperature. This phase is called natural aging, it is 

non equilibrium at room temperature and will continuously reverse the effect to achieve 
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equilibrium in room temperature. The soluble elements will precipitate out of the 

supersaturated solid solution to form the transition and equilibrium phases. Evidence 

shows that the yield strength of a solution heat treated aluminum alloy 7075 sample has 

increased from 150 MPa to 465 MPa after 25 years at room temperature (Hatch, 1984). 

Natural aging is a very slow process, and therefore, artificial aging was introduced 

to the aluminum alloy to accelerate the precipitation hardening process. This is done by 

exposing the material to the temperature range of precipitation heat treatment for a 

sufficient period to promote growth of precipitates into a specific size or volume. This 

process is generally called T6, which controls precipitation of fine particles to develop the 

mechanical properties of the alloy. However, this heat treated material is highly susceptible 

to stress corrosion cracking (SCC) and corrosion (Zupanc and Grum, 2010).  

To prevent SCC, a two-step aging process was introduced to aluminum alloys 

called T73, which is able to enhance the SCC resistance of the material. The heating 

process was started with under aging and followed by over aging. However, with this 

treatment, there is a sacrifice of 10% to 15% of strength due to coarse ɳ phase precipitation 

growth in the microstructure (Qu and Yang, 2000). 

From previous research (Cina, 1974), it has been reported that retrogression and re-

aging (RRA) heat treatment is able to improve the resistance to SCC and minimize the loss 

of strength of the aged alloy. This heat treatment is an intermediate heat treatment that 

alters the properties of the aged alloy (T6), so that it will maintain the high strength of the 

T6 temper, but also will gain the SCC resistance of the T73 temper.  

The focus of this research is on the retrogression step by using oil and air as the 

heating medium. Oil retrogression means that the material is retrogressed in hot oil, and, 

retrogression in air refers to the standard retrogression process in a furnace. In comparison, 

oil has a better heating rate than air, which can promote faster growth rate for the 
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precipitation. The resulting samples are compared in mechanical properties, SCC 

susceptibility, and microstructure alteration.  

 

1.2 Problem Statement 

Aluminum alloy 7075 is seldom used for marine applications, due to its 

susceptibility to general corrosion. It is widely used in aviation applications, due to its high 

strength over weight ratio. Peak strength of this material is achieved through artificial 

aging, or so called T6 temper. However, this treatment results in low corrosion resistance. 

In contrast, T73 is a two-step heat treatment that is introduced to this material to improve 

the corrosion resistance. However, this treatment reduced the strength of the material by 10% 

to 15% (Qu and Yang, 2000). 

Retrogression and re-aging (RRA), an additional two step heat treatment process for 

the T6 temper, was first introduced by Cina (1974). This treatment is able to increase 

corrosion resistance and yet retain the mechanical strength of the alloy. (Xiao et al., 2011), 

(Reda et al., 2008).  

For example, Reda et al., (2008) vary retrogression temperature and time to 160 °C 

for 250 minutes, 180 °C for 34 minutes, and 200 °C for 8 minutes, with three different pre-

aging temperatures (100 °C, 120 °C, and 140 °C). From their research, they found that 

retrogression of aluminum alloy 7075 at 160 °C for 250 minutes with 120 °C pre-aging 

temperature exhibited the lowest corrosion rate (0.021 mm/year), and highest strength 

(672.89 MPa) sample. Other than temperature and time, the heating rate plays an important 

role in the phase transformation and precipitation growth. Li et al., (2010) claim that a high 

retrogression heating rate at 190 °C will yield lower mechanical properties, due to the 

promotion of ɳ phase precipitation and the re-dissolving of a large number of Guinier-

Preston (GP) zone and ɳ’ phase, which are smaller than critical size. However, their study 
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does not cover lower retrogression temperature ranges such as 165 °C, or using a different 

heating medium. In this research, the effect of heating rate will be analyzed by comparing 

the standard retrogression method to retrogression in oil immersion.  

 

1.3 Objectives  

i. To compare and evaluate the oil retrogression with the conventional retrogression 

method.  

ii. To evaluate the mechanical properties of aluminum alloy 7075 when treated with 

different retrogression parameters.  

iii. To investigate the corrosion properties of aluminum alloy 7075 when treated with 

different retrogression parameters in 3.5 weight % (wt%)  sodium chloride solution. 

 

1.4 Scope 

This research covers heat treatment process, mechanical testing, corrosion testing, 

and microstructure evaluation. The sample used is in the round tension shape, in 

accordance with ASTM E08, which was pre-fabricated by the supplier. No fabrication 

process was covered in the scope of this research. The heat treatment process includes the 

SHT, quenching in ice water, artificial aging, under aging, over aging, standard 

retrogression, oil retrogression, and re-aging. Mechanical testing covers the tensile test and 

hardness test. Microstructure evaluation is conducted by using an optical microscope and a 

SEM. Sample preparation is accomplished by using grinding and two-step polishing, 

followed by an etching process by using Keller’s etching reagent. The corrosion test only 

covers the Tafel DC corrosion test in 3.5 wt% sodium chloride solution by using the 

Gamry Euro Cell kit.  
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1.5 Contribution 

This dissertation contributes to the area of heat treatment of aluminum alloy 7075. 

Specifically, it introduces a comparison of oil retrogression to standard retrogression 

processes to achieve a higher phase transformation through greater heat transfer from the 

heating medium to the alloy. Oil retrogression results in better performances of mechanical 

properties, and corrosion resistance at lower retrogression temperature ranges as compared 

to standard retrogression. A paper was submitted and accepted in the “Journal of Applied 

Mechanic and Materials, Vol. 165 (2012)” with the title of “Effect of Retrogression 

Medium to the Mechanical Properties of Aluminum Alloy 7075”. 
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CHAPTER 2 

 

2. LITERATURE REVIEW 

 

2.1 Aluminum  

 Pure aluminum (more than 99.99 wt%) was first obtained in 1920 by using Hoopes 

electrolytic process (Hatch, 1984). The density of aluminum is only 2.7 g/cm3, which is 

lighter than most other metals such as steel (7.83 g/cm3), copper (8.93 g/cm3), or brass 

(8.53 g/cm3) (ASM, 1990). Typically, it has excellent corrosion resistance, non-

ferromagnetic properties, and electrical and thermal conductivity, which makes it very 

important in the industrial application (ASM, 1990).  

 

2.2 Aluminum Alloys 

Aluminum alloys are composed of aluminum and of one or more other elements 

such as silicon, zinc, magnesium, beryllium, germanium, copper, and manganese. Different 

elements can be segregated according to their characteristic properties. For example, zinc 

and copper are special alloying elements for high strength properties.  Zinc, magnesium, 

silicon and iron are primary alloying elements for strength, ductility, and toughness. 

Titanium, boron, zirconium, chromium, nickel, bismuth, and lead are additional elements 

for special properties [(Storen and Oslo, 1994) and (George and Scott, 2003)].  

Aluminum alloys are divided into two categories, which are wrought and casting 

composition, based on the primary mechanism of property development. Each alloy was 

classified by nomenclatures and divided into families for simplification by the Aluminum 

Association system, which is the most recognized system in the United State of America 
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(USA). For wrought alloy, the four digits numerical designation system used is shown in 

Table 2.1. For casting composition, a three digits numerical designation system followed 

by a decimal value was used as shown in Table 2.2. 

 
Table 2.1: Wrought aluminum alloy series (ASM, 1990) 

 
Series Description 

1xxx  Controlled unalloyed (pure) compositions 

2xxx  Alloys in which copper is the principal alloying element, though other elements, 
notably magnesium, may be specified 

3xxx  Alloys in which manganese is the principal alloying element 

4xxx  Alloys in which silicon is the principal alloying element 

5xxx  Alloys in which magnesium is the principal alloying element 

6xxx  Alloys in which magnesium and silicon are principal alloying elements 

7xxx  Alloys in which zinc is the principal alloying element, but other elements such as 
copper, magnesium, chromium, and zirconium may be specified 

8xxx  Alloys including tin and some lithium compositions characterizing miscellaneous 
compositions 

9xxx Reserved for future use 
 

Table 2.2: Casting aluminum alloy series (ASM, 1990) 
 

Series Description 

1xx.x  Controlled unalloyed (pure) compositions, especially for rotor manufacture 

2xx.x  Alloys in which copper is the principal alloying element, but other alloying 
elements may be specified 

3xx.x  Alloys in which silicon is the principal alloying element, but other alloying 
elements such as copper and magnesium are specified 

4xx.x  Alloys in which silicon is the principal alloying element 

5xx.x  Alloys in which magnesium is the principal alloying element 

6xx.x  Unused 

7xx.x  Alloys in which zinc is the principal alloying element, but other alloying elements 
such as copper 

8xx.x  Alloys in which tin is the principal alloying element 

9xx.x Unused 
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2.2.1 Aluminum-Zinc 

The pioneering aluminum alloys to be developed for commercial use were 

aluminum-zinc binary alloys, despite having been since replaced majorly by aluminum-

silicon and aluminum-copper alloys. The primary use of aluminum-zinc alloys is to 

prevent electrolytic corrosion. There is a possibility that these alloys could have other 

commercial applications owing to their super plasticity, exhibited near the aluminum-zinc 

eutectic. Copper and magnesium are used with zinc in production of wrought aluminum 

product (George and Scott, 2003). 

Combining zinc with aluminum at 380 °C results in a eutectic type system. In the 

eutectic reaction, a liquid with 94.9 wt% zinc reacts forming an aluminum solid solution 

with 82.8 wt% zinc and a zinc solid solution with 1.1 wt% aluminum (George and Scott, 

2003). 

 
 

Figure 2.1: Aluminum-zinc phase diagram (Zhu, 2003) 
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