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ABSTRACT 

 

 

Glass fibre reinforced plastics (GFRP) composite materials are in increasingly high 

demand, particularly in marine industries for reduced weight. This is due to their superior 

structural characteristics (in fatigue and static conditions) as well as light weight. 

Anisotropic and heterogeneous features of these materials, however, have posed serious 

challenges in machining of GFRP. Hence, a new machining technology needs to be 

investigated. Laser is a non-contact process which is identified as being satisfactory for this 

research project. A major quality challenge in terms of the laser cutting quality of these 

materials includes dimensional accuracy. Various laser parameters and cutting techniques 

are investigated in this study to minimise these defects. In order to improve the cutting 

quality and dimensional accuracy, design parameters and responses were correlated, 

modelled, analysed, optimized and experimentally validated to meet the requirements of 

marine engineering sponsored industry. The objective of this research work is to study the 

different aspects of GFRP composite cutting using CO2 laser and to establish the 

relationship between the kerf width, taper and roundness with the process parameters like 

laser power, cutting speed, gas pressure, frequency and duty cycle. The experimental plans 

were conducted according to the design of experiment (DOE) to accommodate a full range 

of experimental analysis. Identification of the important parameter effects presented using 

analysis of variance (ANOVA) technique combined with graphical representation provides 

a clearer picture of the whole laser profiling phenomenon. The results show that, the 

interaction between lower level laser power (2600 Watt), higher level cutting speed (1200 

mm/min), higher level gas pressure (8 Bar), medium level frequency (1825 Hz) and 

medium level duty cycle (96 %) gives better cutting performance towards three responses. 

Finally, the predictive mathematical model that was established to predict the responses 

were also validated and are found to be promising in resolving the cut quality issues of 

industrial GFRP laminates with the error value 16.12 % for kerf width, 18.60 % for taper 

and 16.28 % for roundness. It was demonstrated that, the response surface methodology 

(RSM) has played a valuable role to identify the interaction factors of design parameters in 

attaining industrial desired cut quality response. 
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ABSTRAK 

 

 

Permintaan untuk “glass fibre reinforced plastics” (GFRP) adalah semakin meningkat, 

terutama di industri marin untuk mengurangkan berat. Ini adalah disebabkan ciri-ciri 

struktur yang kukuh (dalam keadaan lesu and statik) serta ringan. Walaupun bahan ini 

mempunyai ciri-ciri anisotropik and heterogen, tetapi menimbulkan cabaran serius dalam 

permesinan GFRP. Maka teknologi permesinan yang baru hendaklah disiasat. Laser 

merupakan satu proses tanpa sentuh telah dikenalpasti untuk projek ini. Ketepatan dimensi 

merupakan cabaran utama dalam kualiti pemotongan laser. Pelbagai pembolehubah laser 

and teknik pemotongan disiasat dalam kajian ini untuk mengurangkan kecacatan. 

Pembolehubah laser dan tindakbalas dihubungkait, dimodel, dianalisis, dioptimum dan 

disahkan menerusi eksperimen untuk memperbaiki kualiti pemotongan dan ketepatan 

dimensi bagi memenuhi keperluan industri marin. Objektif penyelidikan ini adalah untuk 

mengkaji aspek pemotongan GFRP komposit dengan menggunakan CO2 laser dan 

menunjukkan interaksi diantara “kerf width”, “taper” and “roundness” dengan 

pembolehubah seperti kuasa laser, kelajuan pemotongan, tekanan gas, frekuensi dan “duty 

cycle”. Eksperimen dikendalikan dengan mengunakan teknik “design of experiments” 

(DOE) bagi manampung keseluruhan analisis kajian. Kesan pembolehubah yang 

signifikan dikenalpastikan dengan menggunakan teknik “analysis of variance” (ANOVA) 

bersama dengan persembahan graf bagi memberikan gambaran yang jelas keseluruhan 

fenomena. Keputusan menunjukkan bahawa interaksi antara kuasa laser (2600 Watt) pada 

tahap rendah, kelajuan pemotongan (1200 mm/min) pada tahap tinggi, tekanan gas (8 

Bar) pada tahap tinggi, frekuensi (1825 Hz) pada tahap sederhana dan “duty cycle” (96 

%) pada tahap sederhana dapat memberi pretasi pemotongan yang baik. Akhirnya, 

formula matematik untuk ramalan yang dihasilkan telah disahkan dan didapati mampu 

menyelesaikan isu kualiti potongan lamina GFRP dengan nilai ralat 16.12 % bagi “kerf 

width”, 18.60 % bagi “taper” dan 16.28 % bagi “roundness”. Ia ditunjukkan bahawa, 

“response surface methodology” (RSM) telah memainkan peranan yang penting dalam 

mengenal pasti faktor interaksi pembolehubah dalam mencapai kualiti yang baik seperti 

kehendak industri.    
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter describes the background of the research and explains briefly the problem 

statements, objectives and scope of this research. This chapter also includes the 

organization of the thesis report. 

 

1.1 Background 

  The use of fibre reinforced composite materials in marine and aerospace industries 

has grown considerably in recent years because of their unique properties such as high 

specific stiffness and strength, high damping, good corrosive resistance and low thermal 

expansion (Matthews and Rawling, 1999). Generally machining of composites is very 

different in comparison to other materials. This is due to the inhomogeneous and 

anisotropic properties of these structures. The machining challenges are particularly 

experienced in the case of composites because of high difference between mechanical and 

thermal properties of the constituents. 

 In terms of structural application, the joining of composite laminates to other 

material structures using bolted joints is unavoidable. Besides, the performance of the 

product is mainly dependant on surface quality and dimensional accuracy of the machined 

hole. Although composites components are produced to near-net shape, further machining 

process is often needed to fulfil the requirements related to tolerances of assembly needs. 
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The material anisotropy resulting from fibre reinforcement considerably influences the 

quality of the machined hole. Hence, precise machining needs to be performed to ensure 

the dimensional stability and interface quality. 

 In fact, composite materials are being used more widely in the construction of 

marine structures than ever before. Figure 1.1 shows the P38 craft and the part name called 

blender is used as function of storage purpose for the weapons which installed into sides of 

the cockpit. Used in various parts of a patrol craft, the result is a far lighter boat that can 

achieve a higher rate of speed than the same type of boat constructed of aluminium or steel. 

In additionally, the lighter weight keeps fuel costs down and that a significant savings for a 

boat that may hold hundreds or even thousands of gallons of fuel. 

 

 

 

(a) P38 High Speed Craft (Anonymous, 2014a) 

 

 

(a) Blender 

Figure 1.1 P38 Craft and Blender Position 
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1.2 Problem Statement 

 Machining glass fibre reinforced plastics (GFRP) has always represented a big 

challenge due to their anisotropic and heterogeneous behaviour. The process of machining 

GFRP has been identified difficult in the needs to avoid creating fibre pull-out, 

delamination, and poor surface quality may affect part performance. Additionally, an 

inability to meet dimensional tolerances may require secondary rework, or even part 

rejections. Similarly, UES International Sdn. Bhd. also faces numerous challenges to 

produce the GFRP without going through secondary process which not only requires 

additional cost, but also a high variation in dimensional accuracy. There were a lots of 

problems such as fibre pull-out, delamination, etc., when the GFRP was processed using 

twist drills and these weaken the entire structure in real life applications as shown in Figure 

1.2. On the other hand, Abrasive waterjet (AWJ) also has been tried to avoid this problem, 

but ended up with localised stress concentration which causes mechanical destruction to 

the GFRP that weakens hole surrounding as illustrated in Figure 1.3. To certain extend, 

they have also tried laser cutting but in a very traditional approach which ended-up in 

unsatisfactory results. Knowing where, laser processing is highly potential to provide good 

solution in hole making of GFRP, a scientific approach is to be formulated to investigate 

systematically with elements involving modelling, optimization, and validation in order to 

provide the industry with high cut quality outcome.  
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Figure 1.2 Results from Conventional Drilling 

 

 

Figure 1.3 Results from Abrasive Waterjet 

 

1.3 Research Objectives 

 The objectives of this industrial based research work are to: 

a) Investigate the correlation of laser processing parameters and GFRP 

materials. 

b) Model, analyse and optimize the laser processing parameters by using 

response surface methodology (RSM). 

c) Experimentally validate the model of processing GFRP.  

Delamination 

Fibre Pull-out 

Chipping 

Damage Area 

Damage Area 
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1.4 Research Scope 

 This research work relies within the scope of below stated condition:  

a) The machine used was LVD Helius 2513 Laser Cutting Machine.  

b) Five selected design parameters were cutting speed, duty cycle, gas 

pressure, frequency and laser power.  

c) The GFRP work material thickness was 4 mm. 

d) Commercially available Design Expert 7.0 software was used for the 

purpose of data analysis and modelling. 

e) The quality responses that measured were the kerf width, taper and 

roundness. 

 

1.5 Thesis Organization 

 This thesis is organized into five chapters. Chapter one introduces the research 

background which includes the problem statement, objectives and scopes. Chapter two 

reviews the literature related to laser machining, composite materials, machining of 

composites, modelling and cut quality characteristics. Chapter three describes the 

methodological aspects which includes materials selection, processing, observation, 

analysis, modelling and validation. Chapter four presents the results and discussion of the 

experiment, while final chapter provides conclusions, and recommendation for future 

research. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

This chapter deals with literature review related to laser machining, composite materials, 

common machining of composites, cutting quality characteristic and modelling by RSM. 

All the information in this chapter was used as a reference and guidance to complete this 

research. 

 

2.1 Laser Machining 

Lasers are capable of generating high power laser beams with high beam quality 

which are suitable for cutting, drilling, welding and other applications. The carbon dioxide 

(CO2) and neodymium – doped yttrium aluminium garnet (Nd:YAG) laser are the two laser 

technologies have been the workhorse in multiple material processing applications for 

several decades. Laser-active medium in a CO2 laser is a combination of CO2, nitrogen 

(N2) and helium (He) gases, where CO2 is the laser-active molecule where CO2 laser emits 

the infrared laser radiation with a wavelength of 10.6 ȝm and possess overall efficiencies 

of approximately 10 to 13 % claims Charschan (1993). 

Ion (2005) has written that the stimulation of the laser-active medium is 

accomplished by electrical discharge in the gas. During the stimulation process, the 

nitrogen molecules transfer energy from the electron impact to the CO2 molecules. The 

transition from energetically excited CO2 molecules (upper vibration level) to a lower 
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energy level (lower vibration level) is accompanied by photon release thus leading to the 

emission of a laser beam. The CO2 molecules return to the ground state by colliding with 

the helium atoms which comprise a major share of the gas mixture, and the CO2 molecules 

in the ground state are then available for another cycle. 

The CO2 laser and Nd:YAG laser which reach an output power range of 2 to 20 kW 

respectively will then be available for cutting applications (Anonymous, 2014b). In 

general, there are two approaches for the hole making process, namely, laser drilling and 

laser cutting.  

 

2.1.1 Laser Drilling 

In laser drilling applications, a focused laser beam is used as a heat source that 

increases temperature rapidly to the melting and evaporation temperature of the substrate 

material. The erosion front at the bottom of the drilled hole propagates in the direction of 

the line source in order to remove the material (Chryssolouris, 1991). The advantages of 

laser drilling include the ability to drill holes in difficult-to-machine materials such as 

super-alloys, ceramics, and composites without high tool wear rate and is normally 

associated with conventional machining of these materials (Voisey and Clyne, 2004). In 

general, there are three approaches to laser drilling, namely, single pulse, percussion, and 

trepanning as shown in Figure 2.1 (Verhoeven, 2004). 

 

 

Figure 2.1 Different Approaches of Drilling (Steen and Mazumder, 2010) 
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