

# **Faculty of Manufacturing Engineering**

### ELECTROSYNTHESISED NITe<sub>2</sub> THIN FILMS FOR PHOTOELECTROCHEMICAL (PEC) CELL

Mohd Zaidan bin Abdul Aziz

Master of Science in Manufacturing Engineering

2014

### ELECTROSYNTHESIS AND CHARACTERIZATIONS OF NiTe<sub>2</sub> THIN FILMS FOR PHOTOELECTROCHEMICAL (PEC) CELL

### MOHD ZAIDAN BIN ABDUL AZIZ

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Manufacturing Engineering

**Faculty of Manufacturing Engineering** 

### UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

### DECLARATION

I declare that this thesis entitled "Electrosynthesis and Characterizations of  $NiTe_2$  Thin Films for Photoelectrochemical (PEC) Cell" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

| Signature | : |  |
|-----------|---|--|
| Name      | : |  |
| Date      | : |  |

### APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

| Signature       | : |
|-----------------|---|
| Supervisor Name | : |
| Date            | : |



## DEDICATION

To my beloved family, teachers, lecturers and friends.

#### ABSTRACT

This project emphasises the synthesis of the stoichiometric nickel telluride, NiTe<sub>2</sub> thin films as the solar or photoelectrochemical (PEC) cells absorbent. Nickel telluride thin film in the form of transition metal chalcogenide,  $MX_2$  (M = transition metal, X = chalcogenide [S, Se, Te]) offers promising properties in such application. Electrodeposition has been chosen to deposit the film onto the substrate due to its advantages such as possibility of large scale deposition, minimum waste of components, easy monitoring of deposition process and large area deposition. Using this technique, nickel telluride thin films were cathodically deposited onto indium tin oxide (ITO) glass substrates. By changing the deposition parameters such as deposition potential, additive concentration and deposition time throughout the film synthesis, high quality films having good adhesion, smooth surface and uniform distribution were acquired. It was found that the optimal films parameters are in the presence of 0.1 M triethanolamine (TEA), 20 min deposition time and -1.0 V potential based on a few electrodeposition experiments. Structural characterisation through X-ray diffraction studies revealed the presence of hexagonal structure of nickel telluride, NiTe<sub>2</sub> thin film with lattice parameters a = b = 0.3843 nm and c = 0.5265 nm. Scanning electron micrographs exposed that the films was pinhole-free, compact and smooth, showing a granular structure having almost spherical shape with well-defined grains. On the other hand, the film composition was confirmed to present both nickel and tellurium complying the correct stoichiometry by using Energy-dispersive X-ray (EDX). The optical absorption analysis employed by Shimadzu 1700 UV-Vis Spectrophotometer has confirmed that the energy bandgaps of NiTe<sub>2</sub> thin film lie within the semiconductor range (1 - 1.2 eV) with indirect nature. The positive Mott-Schottky plots indicates that NiTe<sub>2</sub> thin film is negatively charged (n-type conductivity), having more electrons  $(e^{-})$  than holes  $(h^{+})$ . The derivation of semiconductor parameters like doping density, N<sub>D</sub>, built in voltage, V<sub>b</sub> (band bending) and flat band potential, V<sub>fb</sub> obtained from semiconductor studies play significant part in determining the conversion efficiency of photoelectrochemical (PEC) cell. The results attained from these characterisations have verified the compatibility of NiTe<sub>2</sub> as solar cell green alternative materials.

i

#### ABSTRAK

'Elektro-sintesis dan Pencirian Filem Nipis NiTe<sub>2</sub> untuk Sel Fotoelektrokimia'. Projek ini menekankan sintesis filem nipis nikel telurida, NiTe<sub>2</sub> yang stoikiometri sebagai bahan penverap sel fotoelekrokimia atau sel solar. Filem nipis nikel telurida dalam bentuk logam peralihan kalkogenida,  $MX_2$  (M = logam peralihan, X = kalkogenida [S, Se, Te]) menawarkan ciri-ciri yang meyakinkan dalam aplikasi tersebut. Elektroenapan telah dipilih untuk mendepositkan filem ke atas substrat kerana kelebihannya seperti kemungkinan pemendapan berskala besar, pembaziran komponen yang minimum, pemantauan proses pemendapan yang mudah dan kawasan pemendapan yang luas. Dengan menggunakan teknik ini, filem nipis nikel telurida telah didepositkan secara katodik ke atas kaca substrat yang bersalut indium timah oksida. Dengan mengubah parameter pemendapan seperti voltan pemendapan, konsentrasi bahan tambahan dan masa pemendapan di sepanjang proses sintesis filem, filem-filem yang berkualiti tinggi yang mempunyai kelekatan yang baik, permukaan licin dan penyebaran yang sekata telah diperoleh. Didapati bahawa parameter filem yang dipilih telah diperoleh melalui kehadiran 0.1 M Triethanolamine (TEA), masa pemendapan 20 minit dan voltan -1.0 V berdasarkan beberapa eksperimen elektroenapan. Kajian struktur melalui belauan sinar-X mendedahkan kehadiran struktur heksagon filem nipis nikel telurida, NiTe<sub>2</sub> dengan parameter kekisi a = b = 0.3843 nm and c = 0.5265 nm. Mikroskop pengimbasan elektron (SEM) mendedahkan bahawa filem adalah bebas daripada liang halus, padat dan rata, menunjukkan struktur bergranul yang mempunyai bentuk hampir sfera dengan butiran yang jelas. Selain itu, komposisi filem disahkan bagi memaparkan kedua-dua nikel dan telurium yang mematuhi stoikiometri yang betul dengan menggunakan Serakan-Tenaga Sinar-X (EDX). Analisis penyerapan optik dijalankan menggunakan Shimadzu 1700 UV-Vis Spektrofotometer telah mengesahkan bahawa jurang jalur tenaga filem nipis NiTe<sub>2</sub> terletak di dalam lingkungan semikonduktor (1 - 1.12 eV) dengan sifat tidak langsung. Plot Mott Schottky yang positif menunjukkan bahawa filem nipis NiTe<sub>2</sub> bercas negatif (konduktiviti jenis-n), mempunyai lebih banyak elektron ( $e^{-}$ ) daripada lubang ( $h^{+}$ ). Pemerolehan semikonduktor parameter seperti ketumpatan pendopan,  $N_D$ , voltan terbina dalam,  $V_b$  dan pinggir jalur valens,  $V_{fb}$  yang diperoleh dari kajian semikonduktor memainkan peranan penting dalam menentukan kecekapan penukaran sel fotoelekrokimia. Keputusan yang dicapai daripada pencirian ini telah mengesahkan keserasian NiTe<sub>2</sub> sebagai bahan alternatif hijau sel solar.

### ACKNOWLEDGEMENTS

First and foremost, I would like to express my heartiest gratitude to Almighty God for bringing me up, giving me opportunity to further study. To my beloved family, thanks for the continuous support from you. Also, I would like to thank my supervisor, Associate Professor Dr. T. Joseph Sahaya Anand for his countless guidance and advice that give me vigorous spirit to finish my Master's degree on time.

To the Fundamental Research Grant Scheme (FRGS), Ministry of Energy, Green Technology and Water (KeTTHA) and Zamalah Scholarship, millions of thanks for sponsoring me in terms of facilities and allowance. Particularly, I would like to express my deepest gratitude to library staffs and laboratory technicians for their assistance and efforts in the entire lab and analysis works. Lastly, special thanks to all my peers and everyone who had been contributed to the crucial parts of realization of this project.

### **TABLE OF CONTENTS**

|     |                    |                                                              | PAGE                                  |
|-----|--------------------|--------------------------------------------------------------|---------------------------------------|
| DE  | CLARA              | TION                                                         |                                       |
| API | PROVA              | L                                                            |                                       |
| DE  | DICATI             | ION                                                          |                                       |
| AB  | STRAC              | T                                                            | i                                     |
|     | STRAC              | •                                                            | ii                                    |
|     | VNOW               | I EDCEMENTS                                                  |                                       |
| AU. |                    |                                                              | · · · · · · · · · · · · · · · · · · · |
|     | BLE UI             |                                                              | IV<br>                                |
| LIS | T OF I             | ABLES                                                        | vn                                    |
| LIS | T OF F             | IGURES                                                       | İX                                    |
| LIS | T OF A             | BBREVIATIONS, SYMBOLS AND NOMENCLATURES                      | xiii                                  |
| LIS | T OF A             | PPENDICES                                                    | xvii                                  |
| LIS | T OF P             | UBLICATIONS                                                  | xviii                                 |
| CH  | APTER              |                                                              |                                       |
| 1.  | INTE               | RODUCTION                                                    | 1                                     |
|     | 1.1                | Research Background                                          | 1                                     |
|     | 1.2                | Problem Statement                                            | 3                                     |
|     | 1.3                | Objectives                                                   | 4                                     |
|     | 1.4                | Scope                                                        | 4                                     |
|     | 1.5                | Chapters Outline                                             | 5                                     |
| 2.  | LITF               | ERATURE REVIEW                                               | 6                                     |
|     | 2.0                | Introduction                                                 | 6                                     |
|     | 2.0                | Thin Film                                                    | 6                                     |
|     | 2.1                | Ontical Absorption in Somiconductor                          | 07                                    |
|     | 2.2                | 2.2.1 Deten Absorption Coefficient                           | /                                     |
|     | <b>1</b> 2         | 2.2.1 Fliotoli Absolption Coefficient                        | 9                                     |
|     | 2.3                |                                                              | 11                                    |
|     |                    | 2.3.1 The ph Junction Solar Cell                             | 12                                    |
|     |                    | 2.3.2 Conversion Efficiency and Solar Concentration          | 13                                    |
|     |                    | 2.3.3 The Heterojunction Solar Cell                          | 14                                    |
|     | 2.4                | Silicon Solar Cell                                           | 15                                    |
|     |                    | 2.4.1 Crystalline Silicon Solar Cells                        | 16                                    |
|     |                    | 2.4.2 Amorphous Silicon Solar Cells                          | 16                                    |
|     | 2.5                | Transition Metal Chalcogenide (TMC) Thin Film Solar Cells    | 18                                    |
|     |                    | 2.5.1 $CuGaSe_2$ (CGS)                                       | 19                                    |
|     |                    | 2.5.2 Copper Indium Gallium Selenide (CIGS)                  | 19                                    |
|     |                    | 2.5.3 Antimony Selenide, $Sb_2Se_3$                          | 19                                    |
|     |                    | 2.5.4 Telluride Thin Film Solar Cells                        | 20                                    |
|     |                    | 2.5.4.1 Cadmium Telluride, CdTe                              | 21                                    |
|     |                    | 2.5.4.2 Lead Telluride, PbTe                                 | 21                                    |
|     | 2.6                | Kinetic and Growth Mechanism of NiTe <sub>2</sub> Thin Films | 22                                    |
|     | 2.7                | Photoelectrochemical (PEC) Cell                              | 23                                    |
|     | 2.7                | Dye-sensitized Solar Cell (DSSC)                             | $\frac{25}{24}$                       |
|     | 2.0                | Organic Solar Cell                                           | 2- <del>1</del><br>25                 |
|     | $\frac{2.7}{2.10}$ | Quantum Dot Solar Cells (ODSC)                               | 25<br>76                              |
|     | 2.10<br>2.11       | Polymor Solar Coll                                           | 20<br>07                              |
|     | 2.11               | Folymen Solar Cell<br>Salar Cell Enhricotion Techniques      | 21                                    |
|     | 2.12               | 2 12 1 Dispersional Dama iti T                               | 28                                    |
|     |                    | 2.12.1 Physical Deposition Lechiques                         | 28                                    |

2.12.1 Physical Deposition Tecniques

|    |            | 2.12.1.1 Pulsed Laser Deposition (PLD)                                                                                             | 29       |
|----|------------|------------------------------------------------------------------------------------------------------------------------------------|----------|
|    |            | 2.12.1.2 Physical vapour deposition (PVD)                                                                                          | 30       |
|    |            | 2.12.1.3 Evaporation                                                                                                               | 30       |
|    |            | 2.12.1.4 Sputtering                                                                                                                | 32       |
|    |            | 2.12.1.5 Plasma Reaction                                                                                                           | 33       |
|    |            | 2.12.2 Chemical Deposition Techniques                                                                                              | 33       |
|    |            | 2.12.2.1 Anodisation                                                                                                               | 33       |
|    |            | 2.12.2.2 Vapour Phase Growth                                                                                                       | 34       |
|    |            | 2.12.2.3 Electroplating                                                                                                            | 34       |
|    |            | 2.12.2.4 Electrodeposition                                                                                                         | 35       |
|    |            | 2.12.2.5 Chemical Reduction Plating (Electroless                                                                                   | 35       |
|    |            | Plating)                                                                                                                           |          |
|    |            | 2.12.2.6 Solution Deposition                                                                                                       | 36       |
|    |            | 2.12.2.7 Chemical bath deposition (CBD)                                                                                            | 37       |
|    | 2.13       | Indium Tin Oxide-coated glass substrate                                                                                            | 38       |
|    | 2.14       | Additives Used on Thin Film Solar Cells                                                                                            | 38       |
|    |            | 2.14.1 Triethanolamine (TEA)                                                                                                       | 38       |
|    |            | 2.14.2 Ethylenediaminetetraacetic acid (EDTA)                                                                                      | 39       |
|    |            | 2.14.3 Ethylenediamine (EDA)                                                                                                       | 39       |
|    |            | 2.14.4 Tartaric acid                                                                                                               | 39       |
|    | 2.15       | Semiconductor Parameters                                                                                                           | 40       |
|    |            | 2.15.1 Built in Voltage, V <sub>b</sub> (Band Bending)                                                                             | 40       |
|    |            | 2.15.2 Flatband Potential, V <sub>fb</sub>                                                                                         | 40       |
|    |            | 2.15.3 P-Type and N-Type Semiconductor                                                                                             | 41       |
| 3. | RES        | EARCH METHODOLOGY                                                                                                                  | 42       |
|    | 3.1        | Electrolytes and Substrates Preparation                                                                                            | 42       |
|    | 3.2        | Cyclic Voltammetry (CV) and Electrodeposition Experiments                                                                          | 43       |
|    | 3.3        | Thin Film Thickness Measurement by Gravimetric Weight                                                                              | 45       |
|    | 2 /        | Haat Treatmont of Niekel Telluride Thin Films                                                                                      | 16       |
|    | 3.4        | Structural Studies by YRD                                                                                                          | 40       |
|    | 3.5        | Morphological and Compositional Analyses by SEM and EDY                                                                            | 47       |
|    | 3.0        | Optical Studies by LIV Vis Spectrophotometer                                                                                       | 49<br>50 |
|    | 3.8        | Semiconducting Parameters by Mott-Schottky Plots                                                                                   | 52       |
|    | DEC        |                                                                                                                                    |          |
| 4. | KES<br>4 1 | UL 15 AND DISCUSSION                                                                                                               | 33       |
|    | 4.1        | Cyclic voltammetry and Electrodeposition of N11e <sub>2</sub> 1 nin Films $V_{invest}$ Observation of N11e <sub>2</sub> Thin Films | 50       |
|    | 4.2        | This Film Thiskness Massurement                                                                                                    | 28<br>62 |
|    | 4.3        | 1 nin Film Thickness Measurement<br>4.2.1 Thin Eilm Thickness by Crowinsstrie Weight Difference                                    | 62<br>62 |
|    |            | 4.5.1 Thin Film Thickness by Gravimetric weight Difference<br>Method                                                               | 62       |
|    |            | 4.3.2 Thin Film Thickness by SEM                                                                                                   | 67       |
|    | 4.4        | Structural Studies by XRD                                                                                                          | 69       |
|    |            | 4.4.1 Structural Studies at Different Deposition Potentials                                                                        | 69       |
|    |            | 4.4.2 Structural Studies at Different Deposition Times                                                                             | 75       |
|    |            | 4.4.3 Structural Studies of Annealed Films                                                                                         | 76       |
|    | 4.5        | Surface Morphological Studies by SEM                                                                                               | 78       |
|    |            | 4.5.1 Surface Morphological Studies at Different Deposition Potentials                                                             | 78       |
|    |            |                                                                                                                                    |          |

|     |       | 4.5.2 Surface Morphological Studies at Different Deposition    | n 82 |
|-----|-------|----------------------------------------------------------------|------|
|     |       | Times                                                          |      |
|     |       | 4.5.3 Surface Morphological Studies of Annealed Films          | 85   |
|     | 4.6   | Compositional Studies                                          | 86   |
|     |       | 4.6.1 Compositional Studies at Different Deposition Potentials | 86   |
|     |       | 4.6.2 Compositional Studies at Different Deposition Times      | 90   |
|     | 4.7   | Optical Studies by UV-Vis Spectrophotometer                    | 93   |
|     | 4.8   | Semiconducting Parameters by Mott-Schottky Plots               | 98   |
| 5.  | CON   | CLUSION                                                        | 102  |
|     | 5.1   | Conclusion                                                     | 102  |
|     | 5.2   | Recommendations                                                | 103  |
| REF | EREN  | CES                                                            | 104  |
| APP | ENDIC | ES                                                             | 114  |

## LIST OF TABLES

| TABLE | TITLE                                                                                                                              | PAGE |
|-------|------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.1   | A comparison of main properties of p-type and n-type semiconductors                                                                | 41   |
| 3.1   | The electrolytes prepared based on three different conditions                                                                      | 42   |
| 4.1   | The selected deposition potential, deposition time and additive concentration with respect to electrolyte concentration            | 58   |
| 4.2   | Thin film thickness corresponding to different deposition potentials at 30 minutes deposition time                                 | 63   |
| 4.3   | Film thickness distribution corresponding to different deposition time at selected deposition potential                            | 64   |
| 4.4   | Thin film thickness distribution corresponding to different TEA concentrations at induction time and selected deposition potential | 65   |
| 4.5   | Thickness distribution of annealed films corresponding to annealing temperature                                                    | 66   |
| 4.6   | The comparison between $Ni_3Te_2$ (no additive, 30 min) experimental 'd' values and its JCPDS data                                 | 71   |
| 4.7   | The comparison between $Ni_3Te_{2.07}$ (film with 0.053 M EDTA, 30 min) experimental 'd' values and its JCPDS data                 | 72   |
| 4.8   | The comparison between NiTe <sub>2</sub> (film with 0.1 M TEA, 30 min) experimental 'd' values and its JCPDS data                  | 73   |
| 4.9   | The comparison between nickel telluride (0.1 M TEA, -1.0 V) experimental 'd' values and its JCPDS data                             | 75   |
| 4.10  | The comparison between annealed nickel telluride (0.1 M TEA, -<br>1.0 V, 20 min) experimental 'd' values and its JCPDS data        | 77   |
| 4.11  | The weight percentage of the elements in the thin film corresponding to different electrolyte conditions and deposition            | 87   |

potentials

| 4.12 | The weight percentage of thin film in TEA (1.0 V)                 | 91  |
|------|-------------------------------------------------------------------|-----|
| 4.13 | Semiconductor parameters of NiTe <sub>2</sub> (0.1 M TEA, 30 min) | 99  |
|      | corresponding to different deposition potentials.                 |     |
| 4.14 | Semiconductor parameters of NiTe <sub>2</sub> (0.1M TEA, -1.0 V)  | 101 |
|      | corresponding to different deposition times                       |     |
| 4.15 | The capacitance readings at different deposition potentials (0.1  | 125 |
|      | M TEA, 30 min)                                                    |     |
| 4.16 | The capacitance readings at different deposition times (0.1 M     | 125 |
|      | TEA, -1.0 V)                                                      |     |

### LIST OF FIGURES

| FIGURE | TITLE                                                                                                                                                              |    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.1    | An example of semiconductor (a) direct (b) indirect bandgap nature                                                                                                 | 8  |
| 2.2    | Optically generated electron-hole pair formation in a semiconductor                                                                                                | 9  |
| 2.3    | Absorption coefficient as a function of wavelength for several semiconductors                                                                                      | 10 |
| 2.4    | Light spectrum versus wavelength and energy, including relative response of the human eye                                                                          | 11 |
| 2.5    | A pn junction solar cell with resistive load                                                                                                                       | 13 |
| 2.6    | (a) Simplified schematic of a tandem solar cell (b) energy-band diagram of the tandem solar cell                                                                   | 15 |
| 2.7    | The (a) cross section, (b) energy-band diagram at thermal equilibrium and (c) energy-band diagram under photon illumination of an amorphous silicon PIN solar cell | 18 |
| 2.8    | Photoelectrochemical cell and its energy diagram                                                                                                                   | 24 |
| 2.9    | Electron transfer mechanism in a dye-sensitized solar cell (DSSC)                                                                                                  | 25 |
| 2.10   | Three quantum dot solar cell (QDSC) structures: (a) Schottky cell, (b) Depleted heterojunction cell and (c) CQD-sensitized cell                                    | 27 |
| 2.11   | Layer structure of a conventional polymer solar cell                                                                                                               | 28 |
| 2.12   | Schematic of the pulsed laser deposition process                                                                                                                   | 30 |
| 2.13   | Relative deposition rate for gold as a function of source temperature                                                                                              | 32 |
| 2.14   | Schematic diagram of hot wall evaporation system                                                                                                                   | 32 |
| 2.15   | The ejection of neutral atoms from the surface, accompanied by                                                                                                     | 33 |

|     | the ejection of free electrons                                            |    |
|-----|---------------------------------------------------------------------------|----|
| 3.1 | The setup of cyclic voltammetry and electrodeposition of $NiTe_2$         | 45 |
|     | thin films                                                                |    |
| 3.2 | (a) The furnace and (b) Thin film samples placed inside the               | 47 |
|     | furnace for heat treatment                                                |    |
| 3.3 | PAN analytical XPERT PROMPT PW 3040/60 diffractometer                     | 48 |
| 3.4 | Zeiss EVO 50 Scanning Electron Microscope (SEM) integrated                | 49 |
|     | with Energy Dispersive X-ray Spectroscopy (EDX)                           |    |
| 3.5 | (a) Shimadzu 1700 UV-Vis spectrophotometer (b) The reference              | 50 |
|     | and sample compartments                                                   |    |
| 3.6 | The Experimental setup of NiTe <sub>2</sub> for semiconducting parameters | 52 |
| 3.7 | The actual setup for capacitance data acquisition corresponding           | 53 |
|     | to different potentials.                                                  |    |
| 4.1 | Cyclic voltammogram of the electrolyte (a) in the absence of              | 56 |
|     | additive, (b) in the presence of EDTA and (c) in the presence of          |    |
|     | TEA                                                                       |    |
| 4.2 | Nickel telluride thin films (no additive, 30 min) at (a) -0.9, (b) -      | 60 |
|     | 1.0 and (c) -1.1 V, (0.052 M EDTA, 30 min) at (d) -0.9, (e) -1.0          |    |
|     | and (f) -1.1 V and (0.1 M TEA, 30 min) at (g) -0.9, (h) -1.0 and          |    |
|     | (i) -1.1 V deposition potentials                                          |    |
| 4.3 | Nickel telluride thin films (10 min, -1.0 V) at (a) 0.05, (b) 0.10,       | 61 |
|     | (c) 0.15 and (d) 0.20 M TEA                                               |    |
| 4.4 | Nickel telluride thin films (0.1 M TEA, -1.0 V) at (a) 10, (b) 15,        | 61 |
|     | (c) 20, (d) 25 and (e) 30 minutes deposition times                        |    |
| 4.5 | Nickel telluride thin films (0.1 M TEA, 20 min, -1.0 V): (a) as-          | 62 |
|     | deposited; annealed at (b) 200, (c) 300 and (d) 400 °C, 1 h               |    |
| 4.6 | Thin film thicknesses with respect to different deposition                | 64 |
|     | potentials at 30 minutes deposition time                                  |    |
| 4.7 | Thin film thicknesses at selected deposition potential                    | 65 |
|     | corresponding to different deposition times                               |    |
| 4.8 | Thin film thicknesses at different TEA concentrations (-1.0 V, 10         | 66 |
|     | min)                                                                      |    |
| 4.9 | NiTe <sub>2</sub> thin film (0.1 M TEA, -1.0 V, 20 min) thicknesses       | 67 |

|      | corresponding to annealing temperatures                                                                                                           |    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.10 | SEM image of thin film thickness (no additive, 20 min, -1.0 V)                                                                                    | 68 |
| 4.11 | SEM image of thin film thickness (0.1 M TEA, 20 min, -1.0 V)                                                                                      | 69 |
| 4.12 | X-ray diffraction pattern of as-deposited $Ni_3Te_2$ thin film (no additive)                                                                      | 72 |
| 4.13 | X-ray diffraction pattern of as-deposited thin film in the presence of EDTA                                                                       | 73 |
| 4.14 | X-ray diffraction pattern of as-deposited thin film in the presence of TEA                                                                        | 74 |
| 4.15 | X-ray diffractograms of nickel telluride (0.1 M TEA, -1.0 V) corresponding to different deposition times                                          | 76 |
| 4.16 | X-ray diffractograms of annealed nickel telluride films (0.1 M TEA, -1.0 V, 20 min) corresponding to 200 - 400 °C annealing temperature           | 77 |
| 4.17 | Surface morphology of nickel telluride thin films (no additive) at (a) -0.9, (b) -1.0 and (c) -1.1 V deposition potentials                        | 79 |
| 4.18 | Surface morphology of nickel telluride thin films (0.053 M EDTA) at (a) -0.9, (b) -1.0 and (c) -1.1 V deposition potentials                       | 80 |
| 4.19 | Surface morphology of nickel telluride thin films (0.10 M TEA) at (a) -0.9, (b) -1.0 and (c) -1.1 V deposition potentials                         | 81 |
| 4.20 | Surface morphologies of nickel telluride thin film (0.1 M TEA, -<br>1.0 V) at (a) 10 min (b) 20 min (c) 25 min and (d) 30 min<br>deposition times | 84 |
| 4.21 | Surface morphology of annealed nickel telluride thin films (0.10 M TEA, 20 min, -1.1 V) at (a) 200, (b) 300 and (c) 400 °C/h                      | 85 |
| 4.22 | The composition of thin film in the absence of additive at (a) - $0.9$ , (b) -1.0 and (c) -1.1 V.                                                 | 88 |
| 4.23 | The composition of thin film in the presence of EDTA at (a) -0.9, (b) -1.0 and (c) -1.1 V.                                                        | 89 |
| 4.24 | The composition of thin film in the presence of TEA at (a) -0.9, (b) -1.0 and (c) -1.1 V.                                                         | 90 |
| 4.25 | The composition of thin film in the presence of TEA at (a) 10 min and (b) 10 min (annealed 300 °C/h).                                             | 92 |

| 4.26 | The composition of thin film in TEA (20 min, 1.0 V)                           | 93  |
|------|-------------------------------------------------------------------------------|-----|
| 4.27 | The plot of $(ahv)^2$ versus $hv$ of nickel telluride (no additive) at        | 94  |
|      | different deposition potentials                                               |     |
| 4.28 | The plot of $(\alpha hv)^2$ versus hv of nickel telluride thin films (0.053)  | 94  |
|      | M EDTA) at different deposition potentials                                    |     |
| 4.29 | The plot of $(\alpha hv)^2$ versus $hv$ of nickel telluride thin films (0.1 M | 95  |
|      | TEA) at different deposition potentials                                       |     |
| 4.30 | The plot of $(\alpha hv)^2$ versus $hv$ of nickel telluride thin films (0.1 M | 96  |
|      | TEA, -1.0 V) at different deposition times                                    |     |
| 4.31 | The plot of $(\alpha hv)^2$ versus $hv$ of annealed nickel telluride thin     | 97  |
|      | films at $200 - 400$ °C per hour                                              |     |
| 4.32 | Mott-Schottky plots of nickel telluride thin films (0.1 M TEA, 30             | 99  |
|      | min deposition time) with respect to different potentials                     |     |
| 4.33 | Mott-schottky plots of nickel telluride thin films (0.1 M TEA, -              | 100 |
|      | 1.0 V) corresponding to different deposition times                            |     |
|      |                                                                               |     |

# LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURES

| α                               | - | Absorbance                                                         |
|---------------------------------|---|--------------------------------------------------------------------|
| Ag                              | - | Silver                                                             |
| Ag <sub>2</sub> Te              | - | Silver telluride                                                   |
| AgCl                            | - | Silver chloride                                                    |
| a-Si:H                          | - | Hydrogenated amorphous silicon                                     |
| $eta_{1/2}$                     |   | Broadening of diffraction line measured at the half of its maximum |
|                                 | - | intensity                                                          |
| Bi <sub>2</sub> Te <sub>3</sub> | - | Bismuth telluride                                                  |
| С                               | - | Speed of light                                                     |
| CBD                             | - | Chemical bath deposition                                           |
| CdS                             | - | Cadmium sulphide                                                   |
| CdTe                            | - | Cadmium telluride                                                  |
| CGS                             | - | Copper gallium selenide                                            |
| CIGS                            | - | Copper indium gallium selenide                                     |
| cm                              | - | Centimetre                                                         |
| СоТе                            | - | Cobalt telluride                                                   |
| CSS                             | - | Closed space sublimation                                           |
| Cu                              | - | Copper                                                             |
| CV                              | - | Cyclic voltammetry                                                 |
| CVD                             | - | Chemical vapour deposition                                         |
| DC                              | - | Direct current                                                     |
| $D_p$                           | - | Crystallite size                                                   |
| DSSC                            | - | Dye-sensitized solar cell                                          |
| Е                               | - | Photon energy                                                      |
| Е                               | - | Dielectric constant                                                |
| E <sub>o</sub>                  | - | Dielectric constant of free space                                  |

| EDA                            | - | Ethylenediamine                                 |
|--------------------------------|---|-------------------------------------------------|
| EDTA                           | - | Ethylenediaminetetraacetic acid                 |
| EDX                            | - | Energy dispersive X-ray                         |
| $E_g$                          | - | Bandgap                                         |
| e-h                            | - | Electron-hole                                   |
| eV                             | - | Electron volt                                   |
| g                              | - | Gram                                            |
| Ga                             | - | Gallium                                         |
| GaAs                           | - | Gallium arsenide                                |
| GaInP                          | - | Gallium indium phosphide                        |
| GaN                            | - | Gallium nitride                                 |
| GaP                            | - | Gallium phosphide                               |
| Ge                             | - | Germanium                                       |
| h                              | - | Planck's constant                               |
| $\mathrm{H}_{2}\mathrm{O}_{2}$ | - | Hydrogen peroxide                               |
| HCl                            | - | Hydrochloric acid                               |
| $Hg_{1-x}Cd_{x}Te$             | - | Mercury cadmium telluride                       |
| Hz                             | - | Hertz                                           |
| Ι                              | - | Current                                         |
| $I_F$                          | - | Forward-bias current                            |
| $I_L$                          | - | Photocurrent                                    |
| In                             | - | Indium                                          |
| InGaAs                         | - | Indium gallium arsenide                         |
| InP                            | - | Indium Phosphide                                |
| $I_{sc}$                       | - | Maximum possible current                        |
| ITO                            | - | Indium tin oxide                                |
| JCPDS                          | - | Joint Committee on Powder Diffraction Standards |
| k <sub>B</sub>                 | - | Boltzmann's constant                            |
| KCl                            | - | Potassium chloride                              |
| LCR                            | - | Inductance, Capacitance, Resistance             |
| LED                            | - | Light-emitting diodes                           |
| $m_{e}^{*}$                    | - | Effective electron mass in the conduction band  |
| μF                             | - | Microfarad                                      |

| μm                                   | - | Micrometer                                 |
|--------------------------------------|---|--------------------------------------------|
| MOCVD                                | - | Metal organic vapour chemical deposition   |
| MoO <sub>3</sub>                     | - | Molybdenum oxide                           |
| NaOH                                 | - | Sodium hydroxide                           |
| $N_c$                                | - | Density states in conduction band          |
| $N_D$                                | - | Doping density                             |
| nF                                   | - | Nanofarad                                  |
| NiSO <sub>4</sub> .6H <sub>2</sub> O | - | Nickel sulphate hexahydrate                |
| NiTe <sub>2</sub>                    | - | Nickel telluride                           |
| OPV                                  | - | Organic photovoltaics                      |
| P3HT                                 | - | Poly(3-hexythiophene                       |
| Pb                                   | - | Lead                                       |
| PbTe                                 | - | Lead telluride                             |
| PCBM                                 | - | [6,6]-phenyl C61-butyric acid methylester  |
| PEC                                  | - | Photoelectrochemical                       |
| PECVD                                | - | Plasma enhanced chemical vapour deposition |
| PEDOT                                | - | Poly(3,4-ethylenedioxythiophene)           |
| PET                                  | - | Polyethylene terephtalate                  |
| $P_{in}$                             | - | Power input                                |
| PIN                                  | - | Doped pn-junction                          |
| PLD                                  | - | Pulsed laser deposition technique          |
| PSS                                  | - | Poly(styrenesulfonate)                     |
| PV                                   | - | Photovoltaic                               |
| PVC                                  | - | Polyvinyl chloride                         |
| QDSC                                 | - | Quantum dot solar cells                    |
| RF                                   | - | Radio frequency                            |
| S                                    | - | Sulphur                                    |
| S                                    | - | Second                                     |
| $Sb_2S_3$                            | - | Antimony sulphide                          |
| Sb <sub>2</sub> Se <sub>3</sub>      | - | Antimony selenide                          |
| SbCl <sub>3</sub>                    | - | Antimony chloride                          |
| SCE                                  | - | Saturated calomel electrode                |
| Se                                   | - | Selenium                                   |

| SEM              | - | Scanning electron microscope            |
|------------------|---|-----------------------------------------|
| SHE              | - | Standard hydrogen electrode             |
| Si               | - | Silicon                                 |
| SiC              | - | Silicon carbide                         |
| SiO              | - | Silicon monoxide                        |
| SnO              | - | Tin oxide                               |
| Т                | - | Temperature                             |
| $Ta_2O_5$        | - | Tantalum oxide                          |
| TCO              | - | Transparent conducting oxide            |
| Te               | - | Tellurium                               |
| TEA              | - | Triethanolamine                         |
| TeO <sub>2</sub> | - | Tellurium dioxide                       |
| TiO <sub>2</sub> | - | Titanium dioxide                        |
| TMC              | - | Transition metal chalcogenides          |
| UV-Vis           | - | Ultra violet-visible                    |
| v                | - | Frequency                               |
| V                | - | Potential/Voltage                       |
| $V_2O_5$         | - | Vanadium oxide                          |
| $V_b$            | - | Built-in voltage                        |
| $V_{F,redox}$    | - | Redox potential                         |
| $V_{fb}$         | - | Flatband potential                      |
| $V_m$            | - | Voltage that produces the maximum power |
| $V_{oc}$         | - | Maximum possible voltage                |
| wt%              | - | Weight percentage                       |
| XRD              | - | X-ray diffraction                       |
| ZnS              | - | Zinc sulphide                           |
| λ                | - | Wavelength                              |
| $\theta$         | - | Angle of diffraction                    |
| °C               | - | Degree Celcius                          |
| Ω                | - | Ohm                                     |

### LIST OF APPENDICES

### APPENDIX

### TITLE

### PAGE

| Α | JCPDS, ICDD, Card No. 00-008-0004                                     | 112 |
|---|-----------------------------------------------------------------------|-----|
| В | JCPDS, ICDD, Card No. 00-019-0845                                     | 114 |
| С | JCPDS, ICDD, Card No. 00-019-0847                                     | 116 |
| D | JCPDS, ICDD, Card No. 00-039-1058                                     | 118 |
| Е | JCPDS, ICDD, Card No. 01-089-2679                                     | 121 |
| F | The capacitance readings at different deposition potentials and times | 124 |

### LIST OF PUBLICATIONS

Anand, T.J.S., Zaidan, M., and Shariza, S., 2013. Effect of Additives on Optical Measurements of NiSe<sub>2</sub> Thin Films. *Procedia Engineering*, 53, pp. 555-561. (Malaysian Technical Universities Conference on Engineering and Technology [MUCET 2012]).

Anand, T.J.S., Rajes, K.M., and Zaidan, M., 2013. Electrosynthesized NiS<sub>2</sub> Thin Films and Their Optical and Semiconductor Studies. *Reports in Electrochemistry*, 3, pp. 25-29.

Anand, T.J.S. and Zaidan, M., 2014. Electro systemesised NiTe<sub>2</sub> Thin Films with The Influence of Additives, *Advanced Materials Research*, 925, pp. 159-163. (Joint International Conference on Nanoscience, Engineering and Management [BOND21])

Anand, T.J.S., Zaidan, M, Azam, M.A. and Buang, Z., 2014. Structural studies of NiTe<sub>2</sub> thin films with the influence of amino additives, *International Journal of Mechanical and Materials Engineering*, 9 (18), pp. 1-7.

### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Research Background

Concerning the environmental sustainability, the energy supplies from renewable sources such as solar, thermal, wind, hydro, biofuels and geothermal have been every nation's energy strategy (Twidell and Weir, 2006). The interaction of light and semiconductors has been studied for a long time, including the photoelectric effect, which proved that light acted as a particle in many cases (Poortmans and Arkhipov, 2006). Solar cell is one of the semiconductor devices that can be designed and fabricated to detect and generate optical signals. Solar cells and photodetectors convert optical power into electrical power whereas light-emitting diodes (LED) and laser diodes convert electrical power into optical power. The characteristics of solar cells and photodetectors are a function of optical energy that is absorbed in the semiconductor, generating the excess electron-hole pairs, producing photocurrents. Solar cells have gained tremendous importance in the area of renewable energy sources.

Thin film is a material created from the beginning by the random nucleation and growth processes of individually condensing/reacting atomic/ionic/molecular species on a substrate. Its structural, chemical, metallurgical and physical properties are energetically dependent on a large number of deposition parameters and may be thickness dependent as well. Thin films may encompass a considerable thickness range, differing from a few nanometres to tens of micrometres (Poortmans and Arkhipov, 2006). Apart from the widespread use of polycrystalline silicon solar cell, thin film technology has been