

Faculty of Electrical Engineering

SENSORLESS SPEED DRIVES OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING MODEL REFERENCE ADAPTIVE CONTROL

Raihana binti Mustafa

Master of Science in Electrical Engineering

2015

SENSORLESS SPEED DRIVES OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING MODEL REFERENCE ADAPTIVE CONTROL

RAIHANA BINTI MUSTAFA

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

DECLARATION

I declared that this thesis entitle "Sensorless Speed Drives Of Permanent Magnet Synchronous Motor using Model Reference Adaptive Control" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Raihana Binti Mustafa
Date	•	

APPROVAL

I hereby declared that I have read this thesis and in my opinion this thesis is sufficient in
terms of scope and quality for the award of Master of Electrical Engineering (Power
Electronics and Drives).

Signature	:	
Supervisor Name	:	Associates Professor Dr. Zulkifilie Bin Ibrahim
Date	•	

DEDICATION

To my beloved father, mother, my little sister and family

ABSTRACT

In high performance drives, speed and torque controls of permanent magnet synchronous motors are usually attained by the application of position and speed sensors. However, speed and position sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of the motor. Therefore, many studies have been carried out and reported to eliminate the speed and position sensors such as back electromotive force, signal injection, and others. However, these techniques have the drawbacks such as sensitive to machine parameter and others. The research focuses on investigation an evaluation of the sensorless speed control of surface mounted permanent magnet synchronous motor (SMPMSM) drives controlled by PI speed controller based on MRAC combined with V-I model and reactive power model. A Model Reference Adaptive Control (MRAC) has been chosen in this research based on its simplicity, good stability, and requires less computation. The SMPMSM is controlled using the principle of rotor flux orientation. Current control is performed in rotor reference frame based on SVPWM. The drives is simulated using SIMULINK/ MATLAB and the hardware implementation is based on dSPACE (DS1103). PI speed and current controllers are at first designed and the controller parameters are manually tuned to obtain steady state stability. A detailed investigation of the varies operating points; different speed command, forward-reverse speed operation, inertia variation and different speed command profiles. overshoot/undershoot, settling time, and rise time of the speed response are used to evaluate the controller and speed estimation methods. The simulation and experimental with MRAC combined with V-I model speed estimation method results have proved that the drives is robust to the inertia variation, load rejection properties, speed variation and different initial speed profiles. Finally, the experimental investigation in MRAC combined with V-I model speed estimation method is performed in order to confirm the theoretical findings.

ABSTRAK

Didalam pemacu berprestasi tinggi, kelajuan dan kawalan daya kilas motor segerak magnet kekal kebiasaannya digandingkan dengan aplikasi sensor posisi dan kelajuan. Walau bagaimanapun, sensor tersebut memerlukan ruang pemasangan tambahan, malah ia mengurangkan kecekapan dalam persekitaran yang tidak mesra disamping meningkatkan kos motor. Oleh itu, banyak kajian telah dijalankan dan dilaporkan bagi tidak menggunakan sensor kelajuan dan posisi seperti kaedah daya gerak elektrik undur (BEMF), suntikan isyarat, dan lain-lain. Walau bagaimanapun, teknik ini mempunyai kelemahan seperti sensitif kepada parameter mesin dan lain-lain. Kajian ini memberi tumpuan kepada siasatan penilaian kawalan kelajuan tanpa sensor kelajuan bagi pemacu motor segerak yang permukaannya dipasang dengan magnet kekal (SMPMSM) yang dikawal oleh pengawal kelajuan PI gabungan kawalan adaptasi model rujukan (MRAC) model V-I dan model kuasa reaktif. MRAC telah dipilih dalam kajian ini berdasarkan strukturnya yang mudah, kestabilan yang baik, dan kurang memerlukan pengiraan. SMPMSM dikawal menggunakan prinsip orientasi fluk rotor. Pengawal arus dilakukan di dalam bingkai rujukan rotor berdasarkan SVPWM. Pemacu ini disimulasi menggunakan SIMULINK / MATLAB dan perlaksanaan perkakas adalah berdasarkan dSPACE (DS1103). Pengawal PI bagi kelajuan dan arus direkabentuk terlebih dahulu dan parameter pengawal diubah suai secara manual bagi mencapai keadaan kestabilan yang mantap. Penyiasatan yang terperinci dijalankan pada titik operasi yang berbeza; arahan kelajuan yang berbeza, operasi kelajuan ke hadapan-belakang, perubahan inersia dan profil arahan kelajuan yang berbeza. Lajak/lajak bawah, masa pengenapan, dan masa naik digunakan untuk menilai pengawal dan kelajuan melalui kaedah anggaran kelajuan. Simulasi dan keputusan eksperimen dengan penggunaan MRAC yang digabungkan dengan V-I model melalui kaedah anggaran kelajuan telah terbukti dengan keteguhan terhadap perubahan inersia, gangguan beban, perubahan kelajuan dan profil pendahuluan kelajuan yang berbeza. Kesimpulannya, kajian dan eksperimen dengan penggunaan MRAC yang digabungkan dengan V-I model melalui kaedah anggaran kelajuan telah dilakukan bagi mengesahkan penemuan teori tersebut.

ACKNOWLEDGEMENTS

All praise to Allah S.W.T., the creator and sustainer of the universe and blessing and peace be upon our prophet and leader, Prophet Muhammad SAW. First of all, I would like to thank and acknowledge my advisors, Associate Professor Dr. Zulkifilie Bin Ibrahim and Mrs. Jurifa Binti Mat Lazi. Their valuable guidance, help, patience, input, advice and support meant which proved to be invaluable as to the completion of this research project.

I acknowledge many thanks to my beloved laboratory friends, Mrs. Nurazlin Bt. Mohd Yaakop, Mrs. Siti Noormiza Bt. Mat Isa, Mr. Ahmad Shukri B. Abu Hasim, Mr. Md Hairul Nizam B. Talib and Mr. Nik Munaji B. Nik Mahadi. for their encouragement, opinion, assistance, and patience throughout this research project. In addition, million thanks for their helping hands in technical set up for hardware implementation which I have benefited a lot. I also would to express my gratitude to my laboratory technician, Mr. Sahril B. Bahar for his assist on my hardware experimental setup.

I would like to express gratitude to Universiti Teknikal Malaysia Melaka (UTeM) for giving me an opportunity to pursue my study. I would like to dedicate my special mention and acknowledgment to my beloved parents, Mustafa B. Ahmad and Noraini Bt. Aziz, my beloved sister, Raihayu Bt. Mustafa, my beloved best friend, Kamilah Bt. Jaffar, and Mr. Alfan B. Ahmad who have been (and still are) giving constant support and encouragement during my study.

Finally, but not least I also would like to thank all those helping and supporting me directly and indirectly during my project.

TABLE OF CONTENT

			PAGE			
DEC	CLAR	RATION				
APF	PROV	'AL				
DEI	DICA	TION				
ABS	STRA	CT	i			
ABS	STRA	K	ii			
ACI	KNOV	WLEDGEMENTS	iii			
		OF CONTENT	iv			
LIS	T OF	TABLES	vii			
		FIGURES	viii			
		PRINCIPAL NOTATION	xiv			
		SUPERSCRIPT	xvii			
		APPENDICES	xviii			
LIS	T OF	ABBREVIATIONS	xix			
CH	APTE	CR C				
1.		RODUCTION	1			
	1.1	Research Background	1			
	1.2	Research Motivation	3			
	1.3	Problem Statement	3			
	1.4	Research Objectives	4			
	1.5	Research Methodology	5			
	1.6	Research Scope	8			
	1.7	Research Contribution	8			
	1.8	Thesis Overview	9			
2.	LIT	ERATURE REVIEW	11			
	2.1	Introduction	11			
	2.2	High Performance Electric Drives	11			
		2.2.1 High Performance Drives Speed Control	13			
	2.3	High Performance Drives Hardware Implementation	17			
	2.4	Sensorless Speed Control Estimator	18			
		2.4.1 State Observer based Method	20			
		2.4.2 Back-Electromotive-Force (EMF) based Method	21			
		2.4.3 Signal Injection based Method	22			
		2.4.4 Model Reference Adaptive Control based Method	24			
		2.4.5 Other Methods	25			
	2.5	Summary	26			
3.	MO	MODELING OF SENSORLESS SPEED CONTROL PMSM DRIVES				
	3.1	Introduction	29			
	3.2	Field Oriented Control (FOC)	29			
	3.3	Rotor Reference Frame Theory	30			
		3.3.1 Clarke and Park Transformation	31			
		3.3.2 Inverse Park and Clarke Transformation	33			
	3.4	Modeling of PMSM	35			

		3.4.1 Voltage Equation	36
		3.4.2 Equivalent Circuits	37
		3.4.3 Power Equivalence	38
		3.4.4 Electromagnetic Torque Equation	38
		3.4.5 Speed Control of PMSM in Rotor Reference Frame	40
	3.5	Modeling of Vector Controlled PMSM Drives	42
	3.6	Sensorless Speed Control of SMPMSM Drives	45
	3.7	Inverters and control systems	46
		3.7.1 Power Devices	46
		3.7.2 DC input Source	47
		3.7.3 Voltage Source Three-phase Inverter	47
	3.8	Pulse Width Modulation (PWM)	50
		3.8.1 Space Vector PWM	50
	3.9	Controller Design	60
		3.9.1 Speed and Current Controller	60
	3.10	<u> </u>	63
		3.10.1 MRAC based V-I model Speed Estimation	64
		3.10.2 MRAC based Reactive Power model Speed Estimation	70
	3.11	1	75
4.	SIM	ULATION AND EXPERIMENTAL INVESTIGATION	76
	4.1	Introduction	76
	4.2	Simulation Procedure	76
	4.3	MRAC with V-I Model Speed Estimation Simulation Study	77
		4.3.1 Forward and Reverse Operations	77
		4.3.2 Load Disturbances	82
		4.3.3 Step Reduction in Speed Command	85
		4.3.4 Change of Initial Speed Command	89
		4.3.5 Variations of Motor Inertia	93
	4.4	MRAC with Reactive Power Model Speed Estimation Simulation Study	97
		4.4.1 Forward and Reverse Operations	97
		4.4.2 Load Disturbances	100
		4.4.3 Step Reduction in Speed Command	103
		4.4.4 Change of Initial Speed Command	107
		4.4.5 Variations of Motor Inertia	109
	4.5	Experimental Investigation	112
	4.6	Software Implementation	113
		4.6.1 MATLAB/SIMULINK Model	113
		4.6.2 ControlDesk	115
	4.7	Hardware Implementation	116
		4.7.1 Digital Signal Processor (DSP)	116
		4.7.2 Opto-Coupler	118
		4.7.3 Three Phase Inverter	118
		4.7.4 Permanent Magnet Synchronous Motor	118
		4.7.5 Current Sensor	118
	4.8	Experiment Procedure	119
	4.9	Experimental Results	120
		4.9.1 Response at No Load Condition	120
		4 9 1 1 Forward and Reverse Operations	120

		4.	.9.1.2	Speed Acceleration and Deceleration Operation	125
		4.	.9.1.3	Speed Response for Standstill Speed Operation	129
		4.	.9.1.4	Change of Speed Command	132
		4.9.2 R	espons	se for Under Loaded Condition	135
		4.	.9.2.1	Forward and Reverse Speed Operations	135
		4.	9.2.2	Load Rejection Transient	136
	4.10	Simulation	n and E	Experimental Comparison	138
	4.11	Summary			143
5.	CON	CLUSION	Ī		146
	5.1	Conclusion	n		146
	5.2	Suggestion	ns for I	Future Research	149
RE	FERE!	NCES			150
AP	PEND!	ICES			163

LIST OF TABLES

FABLE	TITLE	PAGE
2.1	Summary of Sensorless Methods	26
3.1	Summary of Clarke and Park Transformation	33
3.2	Summary of Inverse Park and Clarke Transformation	34
3.3	Switching Functions of VSI	48
3.4	Inverter Switching States	52
3.5	Switching Time Calculation at Each Sector	58

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Flowchart of Research Methodology	7
3.1	Basic of Clarke Transformation	32
3.2	Basic of Park Transformation	33
3.3	Basic of Inverse Park Transformation	34
3.4	Basic of Inverse Clarke Transformation	34
3.5	Stator current in d-q rotating reference frame and its relationship	35
3.6	Surface Mounted Permanent Magnet Synchronous Motor Structure	36
3.7	Dynamic Stator q-axis and d-axis Equivalent Circuit	37
3.8	Equivalent Circuits from Steady State Equations	37
3.9	Basic Diagram of Vector Controlled for PMSM Drives implemented	42
	in Rotor Reference Frame	
3.10	Configuration of Speed Control in Vector Controlled PMSM Drives	44
3.11	Block Diagram of Sensorless PMSM Drives System	45
3.12	Three phase Voltage Source Inverter	48
3.13	Basic Switching Vectors and Sectors	52
3.14	Voltage Space Vector and its components	54
3.15	Reference vector as a combination of adjacent vectors at sector 1	56
3.16	Three phase Voltage Source Inverter	57

3.17	Space Vector PWM switching patterns for the first two sectors	57
3.18	Comparison Space Vector PWM and Sinusoidal PWM	59
3.19	Basic Block Diagram of a PI Speed Controller	61
3.20	Basic MRAC structure	63
3.21	Block Diagram of MRAC based V- I Model Speed Estimation	66
3.22	Configuration of the overall vector controlled PMSM drives based	67
	on MRAC V- I Model Speed Estimation	
3.23	Hardware implementation of the overall vector controlled PMSM	68
	drives based on MRAC V- I Model Speed Estimation	
3.24	Block Diagram of MRAC based Power Reactive Model Speed	70
	Estimation	
3.25	Configuration of the overall vector controlled PMSM drives based	73
	on MRAC Power Reactive Model Speed Estimation	
4.1	Forward and reverse speed responses with step speed command	79
4.2	Forward and reverse speed responses with ramp speed command	79
4.3	Reverse and forward speed responses with step speed command	81
4.4	Reverse and forward speed responses with ramp speed command	81
4.5	Forward operation rated torque load application with step speed	83
	command	
4.6	Forward operation rated torque load application with ramp speed	83
	command	
4.7	Reverse operation rated torque load application with step speed	85
	command	
4.8	Reverse operation rated torque load application with ramp speed	85

command

4.9	Speed response from rated to 1600rpm with step speed command	86
4.10	Speed response from rated to 1600rpm with ramp speed command	86
4.11	Changes of speed response command from 1600rpm to 0.5 times	88
	rated (800rpm) with step speed command	
4.12	Changes of speed response command from 1600rpm to 0.5 times	88
	rated (800rpm) with ramp speed command	
4.13	Changes of speed response command from 800rpm to 0.5 times	89
	rated (400rpm) with step speed command	
4.14	Changes of speed response command from 800rpm to 0.5 times	89
	rated (400rpm) with ramp speed command	
4.15	Speed responses at medium initial step speed command	91
4.16	Speed responses at medium initial ramp speed command	91
4.17	Speed responses at low initial step speed command	93
4.18	Speed responses at low initial ramp speed command	93
4.19	Step speed command responses for twofold inertia application	94
4.20	Ramp speed command responses for twofold inertia application	94
4.21	Speed responses for fourfold inertia application with step speed	96
	command	
4.22	Speed responses for fourfold inertia application with ramp speed	96
	command	
4.23	Forward and reverse speed responses with step speed command	98
4.24	Forward and reverse speed responses with ramp speed command	98
4 25	Reverse and forward speed responses with step speed command	100

4.26	Reverse and forward speed responses with ramp speed command	100
4.27	Forward speed response to rated torque load application	102
4.28	Reverse speed response to rated torque load application	103
4.29	Changes of speed command from rated to 0.8 times rated (1600rpm)	104
	with step speed command	
4.30	Changes of speed command from rated to 0.8 times rated (1600rpm)	104
	with ramp speed command	
4.31	Changes of speed command from 1600rpm to 0.5 times rated	106
	(800rpm) with step speed command	
4.32	Changes of speed command from 1600rpm to 0.5 times rated	106
	(800rpm) with ramp speed command	
4.33	Changes of speed command from 800rpm to 0.5 times rated	107
	(400rpm) with step speed command	
4.34	Changes of speed command from 800rpm to 0.5 times rated	107
	(400rpm) with ramp speed command	
4.35	Speed responses at medium initial step speed command	109
4.36	Speed responses at low initial step speed command	109
4.37	Speed responses of drives system for twofold inertia application	111
4.38	Speed responses of drives system for fourfold inertia application	111
4.39	PMSM motor drives system based on experimental investigation	112
4.40	Block diagram of vector control for sensorless speed PMSM drives	113
4.41	Block Diagram of interfacing Sensorless PMSM Drives	114
4.42	The ControlDesk Layout	115
4.43	The Hardware Configuration	116

4.44	The Illustration of Basic Setup dSPACE DSP (DS1103)	117
4.45	Experimental results for forward and reverse operation	122
4.46	Experimental results for forward and reverse operation	123
4.47	Speed responses of sensorless drives system at medium speed	124
	command	
4.48	Speed responses of sensorless drives system at low speed command	125
4.49	Experimental results for speed acceleration	126
4.50	Experimental results for speed deceleration	127
4.51	Experimental results for increased and decreased step speed	128
	command	
4.52	Experimental results for reversal and forward step speed command	129
4.53	Experimental results for standstill speed to step speed command	130
4.54	Experimental results for increased step speed command	131
4.55	Speed responses of sensorless PMSM drives system	132
4.56	Experimental results for speed reversal in medium speed	133
4.57	Experimental results for zero speed operation	134
4.58	Speed response at medium initial speed command for forward and	135
	reverse speed with load disturbance	
4.59	Speed response at low initial speed command for forward and	136
	reverse speed with load disturbance	
4.60	Experimental results for load disturbance	137
4.61	Experimental results for load disturbance	138
4.62	Simulation result for forward and reverse speed responses of	139
	sensorless PMSM drives system at various speed command	

4.63	Experimental result for forward and reverse speed responses of	
	sensorless PMSM drives system at various speed command	
4.64	Simulation result for reversal and forward step speed command	140
4.65	Experimental result for reversal and forward step speed command	140
4.66	Simulation result for increased step speed command	140
4.67	Experimental result for increased step speed command	140
4.68	Simulation results for zero speed operation	141
4.69	Experimental results for zero speed operation	141
4.70	Simulation result for medium initial speed command for forward and	142
	reverse speed with load disturbance	
4.71	Experimental result for medium initial speed command for forward	142
	and reverse speed with load disturbance	

LIST OF PRINCIPAL NOTATION

 V_d - d-axis stator voltages

 V_{q} - q-axis stator voltages

i_d - d-axis stator currents

i_q - q-axis stator currents

 V_{α} - α -axis stator voltages

 V_{β} - β -axis stator voltages

 i_{α} - α -axis stator currents

 i_{β} - β -axis stator currents

L_d - d-axis stator currents

 L_{q} - q-axis stator currents

 $\theta_{\rm r}$ - rotor electrical position

 $\omega_{\rm e}$ - rotor electrical angular velocity

 Ψ_m - flux linkage

 Ψ_d - d-axis stator flux linkages

 Ψ_q - q-axis stator flux linkages

R_s - stator winding resistance

 $\omega_{\rm r}$ - rotor electrical speed

 ω_{m} - rotor mechanical speed

P - pole pairs

 V_{ab}, V_{bc}, V_{ca} - line voltages

 V_{dc} - DC supply voltage

f - fundamental frequency

 au_i - integral time constant

 $U_{(t)}$ - control output

 K_p - proportional gain

 K_i - integral gain

e(t) - tracking error

 ρ - d/dt

J - total mechanical inertia

B - total damping coefficient

 ε - estimation error

i_{abc} - phase currents

 V_{abc} - phase voltages

V_{ref} - Reference voltage

 $T_{em} \qquad \quad \text{-} \qquad \quad Torque \; electromagnetic}$

PC - Computer

 T_L - Load torque

 $I_s \qquad \quad \text{-} \qquad \text{Supply current}$

P_{in} - Instanteneous power

 T_s - Settling time

P - Proportional

PI - Proportional-Integral

PID - Proportional-Integral-Derivative

PD - Proportional-Derivative

LIST OF SUPERSCRIPT

'*' - Commanded value

LIST OF APPENDICES

APPENDICES	TITLE	PAGE
A	Flow Chart of Research Activities	163
В	Motor Parameters	164
C	Simulink Model in Simulation	166
D	Simulink Model in Experiment	171
E	Layout of ControlDesk	173
F	Publications	174
G	Hardware Datasheets	175

LIST OF ABBREVIATIONS

AC - Alternate Current

AI - Artificial Intelligence

ANN - Artificial Neural Networks

ADC - Analog-to-Digital Control

DAC - Digital-to-Analog Control

DC - Direct Current

DSP - Digital Signal Processor

DTC - Direct Torque Control

EKF - Extended Kalman Filter

ELO - Extended Luenburger Observer

EMF - Electromagnetic Force

FPGA - Field Programmable Gate Array

FLC - Fuzzy Logic Control

IGBT - Insulted Gate Bipolar Transistors

IPMSM - Interior Permanent Magnet Synchronous Motor

I/O - Input/Output

LPF - Low Pass Filter

MRAC - Model Reference Adaptive Control

MOSFET - Metal Oxide Semiconductors Field Effect Transistors

PMSM - Permanent Magnet Synchronous Motor

xix