

Faculty of Manufacturing Engineering

SYNTHESIS AND PHYSICO-MECHANICAL ANALYSIS OF GRAPHENE NANOPLATELETS (GNPs) FILLED NATURAL RUBBER/ETHYLENE PROPYLENE DIENE MONOMER (NR/EPDM) FOR VIBRATION RESISTANCE

Juliana Bte Yaakub

Master of Science in Manufacturing Engineering

2015

C Universiti Teknikal Malaysia Melaka

SYNTHESIS AND PHYSICO-MECHANICAL ANALYSIS OF GRAPHENE NANOPLATELETS (GNPs) FILLED NATURAL RUBBER/ETHYLENE PROPYLENE DIENE MONOMER (NR/EPDM) FOR VIBRATION RESISTANCE

JULIANA BTE YAAKUB

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Synthesis and Physico-Mechanical Analysis of Graphene Nanoplatelets (GNPs) filled Natural Rubber/Ethylene Propylene Diene Monomer (NR/EPDM) for Vibration Resistance" is the results of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	Juliana Bte Yaakub
Date	. 27 th October 2014

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature	:
Supervisor Name	Dr. Noraiham Binti Mohamad
Date	

ABSTRACT

In recent years, polymer nanocomposites have attracted great interest due to their remarkable improvements in materials properties when compared with virgin polymer or conventional micro and macro-composites. This research is an effort to explore the potential of graphene nanoplatelets (GNPs) filled natural rubber/ethylene-propylene-diene rubber (NR/EPDM) as mount rubber based on their physico-mechanical and vibration damping properties. At stage 1, the effects of compatibilizer and processing parameters on the properties of NR/EPDM (70: 30 phr) blends were studied. The blends were prepared by melt compounding using Haake Internal Mixer. Using Response Surface Methodology (RSM) of two-level full factorial, the effects of epoxidized natural rubber, ENR-50 contents (-1:5 phr; +1:10 phr), mixing temperature (-1:50 °C; +1:110 °C), rotor speed (-1:40 rpm; +1: 80 rpm) and mixing time (-1:5 min; +1:9 min) in NR/EPDM blends were evaluated. Cure characteristics and tensile properties were selected as the responses. The coefficient of determination, R2 values above 0.90 were accurate to represent the actual system. The findings were further supported by swelling behaviour, thermal and morphological characteristics. At stage 2, a facile method for surface treatment of GNPs was demonstrated. In stage 3 and 4, the effects of unfunctionalized and functionalized GNPs loading (0, 0.25, 0.50, 1, 3 and 5 wt%) on cure characteristics, physico-mechanical, structural, vibration, thermal properties of the composites as well as on their morphologies were studied. The studies were carried out through Monsanto rheometer analysis, tensile test, swelling test, X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), vibration test, dynamic mechanical analysis (DMA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. The GNPs show good compatibility with NR/EPDM matrix due to their improvement observed in cure characteristics, tensile properties and crosslink density compared with unfilled vulcanized NR/EPDM. It was in line with the observation on structural and chemical properties of GNPs dispersed in NR/EPDM matrix. XRD and FTIR pattern have provided sufficient explanation regarding the state of dispersion of GNPs filled NR/EPDM matrix. The morphology of the unfunctionalized and functionalized GNPs in the NR/EPDM matrix revealed uniform distribution of GNPs up to 3 wt% loading, whereas, GNPs agglomerates were observed at 5 wt%. The vibration test via free vibration test had proven the potential of GNPs filled NR/EPDM as mount rubber in which their amplitude decays faster than the vulcanized NR/EPDM. The storage modulus, loss modulus and tan δ showed good agreement with the vibrational damping behaviours. TEM analysis revealed the existence of intercalated and exfoliated structure of GNPs which resulted in improved vibration damping characteristics and mechanical properties. In overall, GNPs filled NR/EPDM are capable to absorb vibrational energy particularly for a mount rubber.

ABSTRAK

Dalam tahun-tahun kebelakangan ini, nanokomposit polimer telah menarik minat yang besar kerana peningkatan yang luar biasa dalam sifat bahan tersebut berbanding polimer dara atau komposit konvensional makro maupun mikro. Kajian ini merupakan satu usaha untuk meneroka potensi adunan getah asli/ etilena-propilena-diena getah (NR/EPDM) yang diisi grafin nano platelet (GNPs) sebagai getah pemegang enjin berdasarkan sifat fiziko-mekanikal dan ciri-ciri redaman getaran mereka. Pada peringkat 1 penyelidikan, kesan penserasi dan parameter pemprosesan terhadap NR/EPDM (70:30 bahagian per seratus getah) dikaji. Adunan dilaksanakan melalui kaedah penyebatian lebur menggunakan pencampur dalaman Haake. Menggunakan faktoran aras dua Metodologi Permukaan Sambutan (RSM), kesan kehadiran getah asli terpoksida, ENR-50 (-1:5 phr; +1:10 phr), suhu pencampuran (-1:50°C; +1:110°C), kelajuan pemutar (-1:40 rpm; 1:80rpm), dan masa pencampuran (-1:5min; +1:9min) dalam adunan NR/EPDM telah dinilai. Ciri matang dan sifat tegangan telah dipilih sebagai tindak balas. Nilai pekali penentuan, R2 yang melebihi 0.90 adalah tepat untuk mewakili sistem sebenar. Penemuan ini kemudiannya telah disokong oleh kelakuan pembengkakan, ciri terma dan morfologi. Dalam peringkat 2, kaedah mudah telah dibangunkan untuk memberi rawatan permukaan pada permukaan GNPs. Dalam peringkat 3 dan 4, kesan pembebanan pengisi GNPs yang difungsikan dan tidak difungsikan (0, 0.25, 0.50, 1, 3 dan 5 wt%) terhadap ciri matang, sifat fiziko-mekanikal, struktur, getaran, terma dan morfologi dikaji. Kajian tersebut dijalankan melalui analisis meter alir Monsanto, ujian tegangan, ujian getaran, ujian pembengkakan, pembelauan sinar-X (XRD), penjelmaan Fourier infra-merah (FTIR), analisis mekanik dinamik (DMA), kemikroskopan elektron imbasan (SEM) dan kemikroskopan transmisi elektron (TEM). Pengisi GNPs menunjukkan keserasian yang baik dengan matrik NR/EPDM ekoran peningkatan ciri matang, sifat tegangan dan rintangan pembengkakan berbanding NR/EPDM tanpa pengisi. Corak ujian XRD dan FTIR telah menyediakan penjelasan yang mencukupi mengenai keadaan serakan GNPs dalam matriks NR/EPDM. Morfologi GNPs yang difungsikan dan tidak difungsikan didalam matrik NR/EPDM mempamerkan taburan pengisi seragam sehingga 3 wt% GNPs, manakala penggumpalan diperhatikan pada bebanan pengisi sebanyak 5 wt%. Sementara itu, ujian getaran telah membuktikan bahawa NR/EPDM yang diisi GNPs memberi kesan positif kepada sifat redaman getaran yang mana amplitud getaran merudum lebih cepat daripada NR/EPDM tanpa pengisi. Modulus penyimpanan, modulus kehilangan dan tan δ menunjukkan keputusan yang berhubung baik dengan ujian redaman getaran. TEM analisis mendedahkan wujudnya struktur interkalasi dan eksfoliasi daripada GNPs yang menyebabkan penambahbaikan ciri-ciri getaran redaman dan sifat-sifat mekanik. Keseluruhannya, NR/EPDM yang diisi GNPs berupaya menyerap tenaga berkaitan dengan getaran terutamanya untuk getah pemegang enjin.

ACKNOWLEDGMENT

Bismillahirrahmanirrahim,

In the name of Allah, the Most Merciful and the Most Gracious. Alhamdulillah, all praises to the Almighty Allah S.W.T for His blessing which have given me patience and undying strength throughout this research until its successful completion. I also pay my gratitude to the Almighty for enabling me to complete this research report within due course of time.

I express my gratitude to my supervisor Dr. Noraiham Binti Mohamad for her constant guidance, insightful comments and encouragement during my period of study. I wish to express my deep sense of gratitude to my co-supervisor, Mr Mohammad Iqbal Bin Shueb and not to forget Prof Qumrul Ahsan, Dr Lau Tok Lee, and Mr Mohd Azli Bin Salim for their valuable tips and pertinent pieces of advice. I would also like to extend my deepest appreciation to all the staff in Faculty of Manufacturing Engineering UTeM and Malaysian Nuclear Agency for their co-operation and help.

To all my beloved friends, thank you so much for your support and encouragement. Last but not least, I would like to express my indebtedness and heartfelt thank you to my beloved parents for their blessings, love, dream and sacrifice throughout my life. I acknowledge the sincerity of my family who consistently encouraged me to carry on my studies until today. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to attain my goals. To everyone who has directly or indirectly contributed to this project, only Almighty Allah S.W.T can repay your kindness and may Allah S.W.T bless you all. Amin.

Thank you very much.

TABLE OF CONTENTS

DEC DEI ABS ABS ACH TAB LIS LIS LIS LIS	CLARA DICATI STRAC STRAK KNOWI BLE OF BLE OF F OF TA F OF TA F OF UI F OF UI	TION ON Γ LEDGEMENTS CONTENTS ABLES IGURES BBREVIATIONS NITS UBLICATIONS	i iii iv vii ix xiii xv xvi
CHA	APTER		
1.	INTI	RODUCTION	1
	1.1	Introduction	1
	1.2	Problem Statement	4
	1.3	Objectives	7
	1.4	Scope of Study	7
	1.5	Thesis Overview	8
	1.6	Thesis Motivation	9
2.	LITI	ERATURE REVIEW	11
	2.1	Polymer Nanocomposites	11
	2.2	Elastomers	13
		2.2.1 Natural Rubber (NR)	14
		2.2.1.1 NR Properties	15
		2.2.1.2 NR Applications	16
		2.2.2 Ethylene-Propylene-Diene Monomer (EPDM) Rubber	17
		2.2.2.1 EPDM Properties	18
	2.2	2.2.2.2 EPDM Applications	18
	2.3	Previous Studies on the Development of NR/EPDM Blends	19
	2.4	Miscipling of Polymer Blends	21
	2.5	Nanofillars (Painforcement)	23 24
	2.0	Granhana nanonlatalata (GNBa)	24 20
	2.1	2.7.1 Advantages of GNP in Eabricating Composites	20
		2.7.1 Advantages of Give in Fabricating Composites	31
		2.7.2 Effect of Illtrasonication Treatment	33
	28	Surface Treatment of Granhene Nanonlatelets (GNPs)	33
	2.0	2.8.1 Covalent Functionalization of Graphene	34
		2.8.2 Noncovalent Functionalization of Graphene	35
	2.9	Preparation of Rubber Nanocomposites	37
	••	2.9.1 Solution Mixing	38
		2.9.2 In-situ Polymerization	39
		2.9.3 Melt Blending	40

iv

	2.10	Sulphur Vulcanization 41		
	2.11	Stages of Vulcanization 4		
	2.12	Vibration Damping Properties of Nanoparticle Reinforced		
		Rubber	46	
	2.13	Optimization	48	
		2.13.1 Response Surface Methodology (RSM)	49	
		2.13.2 Application of RSM in Process Optimization	50	
3.	MET	HODOLOGY	52	
	3.1	Introduction	52	
	3.2	Flow Chart of Methodology	53	
	3.3	Raw Materials	54	
		3.3.1 Natural Rubber (NR) SMR 20	54	
		3.3.2 Ethylene Propylene Diene Monomer (EPDM)	55	
		3.3.3 Epoxidized Natural Rubber (ENR-50)	56	
		3.3.4 Vulcanization Agent (Sulphur System)	57	
		3.3.5 Accelerators	58	
		3.3.4 Anti-oxidant Agent	59	
	3.4	Raw Material for Noncovalently Functionalized GNPs with		
		Chitosan	60	
		3.4.1 Graphene Nanoplatelets (GNPs)	61	
		3.4.2 Chitosan	62	
		3.4.3 Types of solvents	63	
	3.5	Testing and Analysis Techniques	64	
		3.5.1 Cure Characteristics	64	
		3.5.2 Tensile Test	65	
		3.5.3 Structural Analysis	66	
		3.5.3.1 Swelling Measurement	66	
		3.5.3.2 Fourier Transform Infrared Spectroscopy (FTIR)	68	
		3.5.3.3 X-ray Diffraction (XRD)	69	
		3.5.4 Thermal Analysis	71	
		3.5.4.1 Differential Scanning Calorimetry (DSC)	71	
		3.5.4.2 Dynamic Mechanical Analysis (DMA)	72	
		3.5.5 Morphological Analysis	72	
		3.5.5.1 Scanning Electron Microscope (SEM)	72	
		3 5 5 2 Transmission Electron Microscope (TEM)	73	
	3.6	Stage 1: Determination of the Effect of ENR-50 and	, -	
		Processing Parameters on the Properties of NR/EPDM		
		Blends using RSM	74	
		3.6.1 Sample Preparation and Analysis of NR/EPDM Blends	77	
	37	Stage 2: Facile Method for Surface Modification of GNPs	80	
	017	3.7.1 Dispersion study of GNP by dispersing the GNP in	00	
		Various Solvents	82	
		3.7.2 Functionalized GNPs with chitosan	82	
	38	Stage 3: Preparation and Analysis of NR/FPDM Filled GNPs	82	
	39	Stage 4: Determination of Vibrational Damning Properties	84	
	5.7	3.9.1 Determination and Selection of Samples using Response	01	
		Surface Methodology (RSM)	84	
		Surres monodology (Kom)	т	

		3.9.2	Acceleror	meter (Free Vibration Test) - Logarithmic	
		202	Decremen	nt Method	86
		3.9.3	Measurem	nents of Vibration Damping Properties	88
4.	RES	ULTS A	ND DISCU	USSIONS	90
	4.1	Stage	1: Producti	ion of the Optimum Formulation of	
		NR/EI	'DM Blend	ls	90
		4.1.1	Modelling	g Summary	91
		4.1.2	of the Ble	n between Variables for Cure Characteristics ends	92
		4.1.3	Interaction the Blend	n between Variables for Tensile Properties of	96
		4.1.4	Experime	ental Analysis on NR/EPDM blends	100
			4.1.4.1 \$	Swelling Behavior	100
			4.1.4.2	Differential Scanning Calorimetry (DSC) Analysis	101
		~	4.1.4.3	Scanning Electron Microscopy (SEM) Analysis	103
	4.2	Stage	2: Facile M	lethod for Surface Treatment of	105
		GNPs-	Chitosan	f Dimension of the second Francisco of a 105	105
		4.2.1	Selection	of Dispersant through Experimental Study 105	
		4.2.2	GNPs by	Chitosan	110
		423	Proposed	Reaction Mechanism	113
	43	Stage	3. Characte	erization studies on NR/EPDM filled	115
	1.5	graphe	ene compos	sites	114
		4.3.1	Curing Cl	haracteristics	114
		4.3.2	Tensile St	trength (Ts)	118
		4.3.3	Modulus	at 100% (M_{100}) and 300% (M_{300}) Elongation	120
		4.3.4	Elongatio	on at break (E _b)	122
		4.3.5	Swelling	Measurement	124
		4.3.6	Structural	l Analysis	126
			4.3.6.1	Fourier Transform Infrared Spectroscopy	
				(FTIR) Analysis	126
			4.3.6.2	X-Ray Diffraction (XRD) Analysis	129
	4 4	4.3.7	Scanning	Electron Microscopy (SEM) Analysis	134
	4.4	Stage	4: Determin	nation of Vibrational Damping Properties	13/
		4.4.1	Determina	Surface Mathedology	127
		112	Vibration	Test (Free Vibration Mode- Logarithmic	137
		4.4.2	Decremer	nt Method)	137
		443	Dynamic	Mechanical (DMA) Analysis	142
		4.4.4	Transmiss	sion Electron Microscopy (TEM)	146
5.	CON	CLUSI	ON AND F	RECOMMENDATIONS	148
	5.1	Conch	usion		148
	5.3	Recon	nmendation	ns for Future Work	152
	REF	ERENC	ES		154

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Typical property ranges of EPDM	18
2.2	Applications for EPDM	19
2.3	Impact of filler parameters on the properties of filled rubber	
	material	26
2.4	Properties of GNPs and CNTs	31
2.5	Level of sulphur and the ratio of accelerator to sulphur	44
2.6	List of published studies on polymer using RSM	51
3.1	Properties of NR SMR 20	54
3.2	Properties of EPDM	55
3.3	Properties of ENR-50	56
3.4	Properties of sulphur system	57
3.5	Properties of accelerator	58
3.6	Properties of 6PPD anti-oxidant agent	59
3.7	Classification of raw material	60
3.8	General properties of graphene nanoplatelets KNG-150	61
3.9	General properties of chitosan	62
3.10	General properties different types of solvents	63
3.11	Levels of variables	74
3.12	2 ⁴ Factorial design matrix used for the screening factors	75
3.13	Experimental matrix and the output response table	76
3.14	Typical formulations	77
3.15	Compounding formulation used in NR/EPDM filled with	
	unfunctionalized and functionalized GNPs	83
3.16	Factors and the constraints on the responses for the selection of	
	the worst, middle and best samples	85

4.1	Regression equations for different responses	93
4.2	Comparisons of experimental and predicted tensile strength values	
	of NR/EPDM blends	99
4.3	DSC results obtained for neat rubbers with their blends	102
4.4	The observation of the 2 hour of sonication time	106
4.5	FTIR spectra evaluation for non-covalent treatment of GNPs	110
4.6	Log decrement values and damping ratios of GNPs filled	
	NR/EPDM nanocomposites	141

viii

LIST OF FIGURES

TABLE	TITLE	PAGE
2.1	Schematic of elastomeric networks under tensile deformation	13
2.2	Chemical formula of natural rubber	14
2.3	Ozone cracking on side wall of tire	16
2.4	Various applications of NR	16
2.5	Chemical structure of ethylene-propylene diene rubber (EPDM)	17
2.6	Interface between miscible and immiscible of polymer blends	22
2.7	General schematic of epoxidation on NR latex	23
2.8	Payne effect of filled rubber	27
2.9	Stress softening of filled rubber also known as Mullins Effect	27
2.10	Layered graphite tightly bonded in hexagonal rings	28
2.11	Schematic illustration of GNP production	29
2.12	Mechanism of ultrasonication	32
2.13	Chemical modification of graphene	34
2.14	Schematic of grafting-to and grafting-from approaches	35
2.15	Schematic representation of non-covalent functionalization of	
	GO through surfactants, polyelectrolytes, polymers and DNA	37
2.16	Solvent casting methods for the preparation of GNPs-polymer	39
2.17	The mechanism of FGS incorporation into polymer for melt	
	blend technique	41
2.18	Reaction of sulphur vulcanization	42
2.19	Different crosslink structures:(a) monosulfidic, (b) disulfidic,	
	(c) polysulfidic, when $x = 3-6$, (d) pendant sulphide, (e) cyclic	
	monosulphide, (f) cyclic disulphide	43
2.20	Rheometer curve	45
2.21	Elements of a vibratory system	47
2.22	Summary of RSM analysis flow	49

3.1	Flowchart of the overall experiment	53
3.2	Masticated NR	54
3.3	Masticated EPDM	55
3.4	Masticated ENR-50	56
3.5	(a) Stearic scid (b) Zinc oxide and (c) Sulphur	57
3.6	(a) Perkacit MBTS (b) Perkacit TMTD	58
3.7	6PPD anti-oxidant agent	59
3.8	Commercialize graphene nanoplatelets KNG-150	61
3.9	Chitosan	62
3.10	(a) Dumbbell die cutter (b) Dumbbell-shaped samples size for BS	
	6747	65
3.11	Universal testing machine (Toyoseiki Strograph)	66
3.12	Photograph of swelling measurements of NR/EPDM filled	
	GNPs samples	67
3.13	(a) Fourier transform infrared (FTIR-6100 JASCO) (b) thin film	
	of sample for ATR-FTIR	69
3.14	Schematic illustration of an X-ray diffraction setup	69
3.15	Schematic illustration of diffraction according to Bragg's law	70
3.16	Panalytical X'Pert PRO diffractometer machine	71
3.17	Differential scanning calorimetric (DSC)	72
3.18	Transmission electron microscopy (TEM)	73
3.19	Haake rheomix OS internal mixer machine	78
3.20	NR/EPDM blends product from internal mixer	78
3.21	The compounding sample placed in the mold	79
3.22	(a) GT 7014 - A hot press machine and (b) Example of vulcanized	
	sample	80
3.23	(a) Ultra-sonication setup (b) Sonicator dispersing GNPs	81
3.24	Logarithmic decrement method (free vibration of a damped single	
	degree of freedom system)	87
3.25	Shape and dimensions of test specimen for the measurement of	
	the vibration damping properties	88
3.26	Test set-ups for free vibration test	89
4.1	Response surface plot showing variation in (a) scorch time	
	(ts ₂); (b) cure time (t ₉₀); (c) maximum torque (M_H) and	

	(d) torque difference $(M_H - M_L)$	95
4.2	Response surface plot showing variation in (a) tensile strength	
	(Ts); (b) modulus at 100% elongation (M_{100}), (c) modulus at	
	300% elongation (M_{300}) and (d) elongation at break (E_B)	97
4.3	The swelling percentage and crosslink density of the	
	NR/EPDM blends	100
4.4	DSC thermograms of neat rubbers with R0, R15 and R10	103
4.5	SEM micrographs showing tensile fracture surface of	
	NR/EPDM blends at 70/30 blend ratio: (a) R0 (b) R15	
	(c) R10 at 300X magnifications	104
4.6	TEM image of the graphene dispersed with different solvents:	
	(a) ethanol and (b) toluene	109
4.7	FTIR spectra of chitosan, GNP, GNP functionalized chitosan	112
4.8	Noncovalent functionalization of GNPs through amide linkage	
	with the chitosan	113
4.9	Effect of unfunctionalized and unfunctionalized GNPs loading on	
	the scorch time (ts ₂) of NR/EPDM nanocomposites	115
4.10	Effect of unfunctionalized and functionalized GNPs loading on	
	the cure time (t ₉₀) of NR/EPDM nanocomposites	115
4.11	Effect of unfunctionalized and functionalized GNPs loading on	
	the maximum torque (M_H) of NR/EPDM nanocomposites	116
4.12	Effect of unfunctionalized and functionalized GNPs loading on	
	the torque difference (M_H-M_L) of NR/EPDM nanocomposites	117
4.13	Effect of unfunctionalized and functionalized GNPs loading on	
	the tensile strength (Ts) of NR/EPDM nanocomposites	119
4.14	Effect of unfunctionalized and functionalized GNPs loading on	
	modulus at 100% elongation (M_{100}) of NR/EPDM	
	nanocomposites	120
4.15	Effect of unfunctionalized and functionalized GNPs loading on	
	modulus at 300% elongation (M ₃₀₀) of NR/EPDM	
	nanocomposites	121
4.16	Effect of unfunctionalized and functionalized GNPs loading on	
	the elongation at break (Eb) of NR/EPDM nanocomposites	122

4.17	Schematics of tensile fractured mechanism of (a) neat	
	NR/EPDM; (b) a NR/EPDM nanocomposite at lower GNPs	
	loading; and (c) a NR/EPDM nanocomposite at a higher GNPs	
	loading (overloading)	123
4.18	Effect of GNPs loading on the swelling behaviour of NR/EPDM	
	blends filled unfunctionalized and functionalized GNPs	125
4.19	ATR/IR spectra of vulcanized NR/EPDM blends and NR/EPDM	
	filled unfunctionalized GNPs nanocomposites	127
4.20	ATR/IR spectra of vulcanized NR/EPDM blends and NR/EPDM	
	filled functionalized GNPs nanocomposites	128
4.21	Raw material characterization: XRD pattern analysis of	
	commercial Graphene Nanoplatelets KNG -150 (K NANO)	130
4.22	XRD patterns of unfunctionalized GNPs filled NR/EPDM blends	131
4.23	XRD patterns of functionalized GNPs filled NR/EPDM blends	133
4.24	SEM micrographs of the tensile fracture surfaces of the	
	vulcanized NR/EPDM blends of 0 wt% GNPs	134
4.25	SEM micrographs of the tensile fracture surfaces of the	
	nanocomposites: (a)(b)(c) unfunctionalized GNPs filled	
	NR/EPDM; (d)(e)(f) functionalized GNPs filled NR/EPDM at	
	500x magnification	136
4.26	Free decay curves of GNPs filled NR/EPDM nanocomposites	
	containing (a) vulcanized NR/EPDM; (b) 5wt % functionalized	
	GNPs; (c) 1wt % unfunctionalized GNPs; (d) 5wt %	
	unfunctionalized GNPs and (e) 3wt % unfunctionalized GNPs	139
4.27	Storage modulus as a function of temperature	143
4.28	Loss modulus as a function of temperature	144
4.29	Tan delta as a function of temperature	145
4.30	TEM micrograph of NR/EPDM nanocomposites (a)-(b) 3 wt% of	
	unfunctionalized GNPs (R5); (c)-(d) 5 wt% of functionalized	
	GNPs (R2) at different magnification	147

LIST OF ABBREVIATIONS

ANOVA	-	Analysis of variance
ASTM	-	American standard testing method
BS	-	British standard
С	-	Carbon
СН	-	Hydrocarbon
CNTs	-	Carbon nanotubes
СООН	-	Carboxylic group
CV	-	Conventional vulcanization
DSC	-	Differential scanning calorimetry
E _B	-	Elongation at break
ENR	-	Epoxidized natural rubber
ENR-50	-	Natural rubber having 50% of epoxidation
EPDM	-	Ethylene propylene diene monomer
DMTA	-	Dynamic mechanical thermal analysis
e.g	-	Example
ENB	-	Ethylidene norbornene
et. at.	-	and others
etc	-	Et cetera
i.e	-	In example
FTIR	-	Fourier transform infrared spectroscopy
GNPs	-	Graphene nanoplatelets
GO	-	Graphene oxide
LGM	-	Lembaga getah Malaysia
MAH	-	Maleic anhydride
Mc	-	Molecular weight between crosslink
MBTS	-	2,20-dithiobis (benzothiazole)
M _H	-	Maximum torque

xiii

M_L	-	Minimum torque
$M_{\rm H}\text{-}M_{\rm L}$	-	Torque difference
M ₁₀₀	-	Modulus at 100% elongation
M ₃₀₀	-	Modulus at 300% elongation
MWNT	-	Multi-walled carbon nanotube
NR	-	Natural rubber
NVH	-	Noise, vibration and harshness
ОН	-	Hydroxyl group
Phr	-	Parts per hundred rubber
PNCs	-	Polymer nanocomposites
Qm	-	Weight increase of the NR/EPDM blends in toluene
R2	-	Constant of determination
R&D	-	Research and development
RSM	-	Response surface methodology
SEM	-	Scanning electron microscopy
SWNT	-	Single-walled carbon nanotube
Tg	-	Glass transition temperature
Ts	-	Tensile strength
T_2	-	Scorch time
T ₉₀	-	Cure time
Tm	-	Melting temperature
TMTD	-	Tetramethylthiuram disulfide
TEM	-	Transmission electron microscopy
TOR	-	Trans-polyoctenylene rubber
UTM	-	Universal testing machine
Vc	-	Crosslink density
Vr	-	Volume fraction of the swollen rubber
Vs	-	Molar volume of the solvent (toluene)
XRD	-	X-ray diffraction
W_0	-	Initial mass of samples before the immersion in toluene
W_1	-	Mass of samples after the swelling
Wt%	-	Weight percent
6PPD	-	dN-(1,3-Dimethylbutyl)-N'-phenyl-p phenylenediamine

xiv

LIST OF UNITS

°C	-	Celsius
m/s	-	Meter per second
%	-	Percentage
min	-	Minute
kg	-	Kilogram
mm	-	Millimeter
μm	-	Micrometer
S	-	Second
nm	-	Nanometer
g	-	Gram
Hz	-	Hertz

LIST OF PUBLICATIONS

- Noraiham Mohamad, Juliana Yaakub, Jeefferie Abd Razak, Mohd Yuhazri Yaakob, Mohammed Iqbal Shueb, Andanastuti Muchtar, "Effects of Epoxidized Natural Rubber (ENR-50) and Processing Parameters on the Properties of NR/EPDM Blends via Response Surface Methodology", 2014, Publication in Journal of Applied Polymer Science, Wiley.
- Juliana Yaakub, Noraiham Mohamad, Jeefferie Abd Razak, Kok-Tee Lau, Mohd Edeerozey Abd Manaf, Mohammed Iqbal Shueb, "Stable Dispersion of Graphene Nanoplatelets (GNPs) in Different Types of Solvents and Facile Method for Surface Modification GNPs with Chitosan", 2014, Publication in Applied Mechanics and Materials.
- Juliana Yaakub, Noraiham Mohamad, Jeefferie Abd Razak, Zanariah Jano, Mohammed Iqbal Shueb, "Cure Characteristics, Swelling Behavior and Morphology of Graphene Nanoplatelets (GNPs) Filled NR/EPDM Composites", 2014, Publication in American-Eurasian Journal of Sustainable Agriculture (AEJSA).
- 4. Jeefferie Abd Razak, Sahrim Haji Ahmad, Chantara Thevy Ratnam, Juliana Yaakub, Mohd asyadi'Azam Mohd Abid, Muhammad Zaimi Zainal Abidin, Mohd Edeerozey Abd Manaf and Noraiham Mohamad, "Facile surface modification of graphene nanoplatelets (GNPs) using ATPS-dehydration (GNPs-ATPS) and non-covalent polyetherimide adsorption (GNPs-PEI) method", 2014, Publication in Applied Mechanics and Materials.
- 5. Jeefferie Abd Razak, Sahrim Haji Ahmad, Chantara Thevy Ratnam, Mazlin Aida Mahamood, Juliana Yaakub and Noraiham Mohamad, "Graphene Nanoplatelets Filled NR/EPDM Rubber Blend: Effects of GNPs Loading on Blend Processability, Mechanical Properties and Fracture Morphology", 2014, International Symposium on Advanced Polymeric Materials 2014 (ISAPM 2014) under the auspices of 9th International Materials Technology Conference 7 Exhibition IMTCE2014.

xvi

- 6. Jeefferie Abd Razak, Sahrim Haji Ahmad, Chantara Thevy Ratnam, Mazlin Aida Mahamood, Juliana Yaakub, Noraiham Mohamad, "NR/EPDM elastomeric rubber blend miscibility evaluation by two-level fractional factorial design of experiment", The 2014 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. Vol. 1614. pp. 82-89. Publication in AIP Publishing.
- Jeefferie Abd Razak, Sahrim Haji Ahmad, Chantara Thevy Ratnam, Mohammed Iqbal Shueb, Mazlin Aida Mahamood, Juliana Yaakub, Siti Rahmah Shamsuri and Noraiham Mohamad, "The Effects of Covalent Treated Graphene Nanoplatelets Surface Modification to Cure Characteristic, Mechanical, Physical and Morphological Properties of NR/EPDM Rubber Blend Nanocomposites", 2014, Advances in Environmental Biology 8(8) special 2014, pp: 3289-3298.
- Jeefferie Abd Razak, Sahrim Haji Ahmad, Chantara Thevy Ratnam, Mazlin Aida Mahamood, Juliana Yaakub and Noraiham Mohamad, "Graphene Nanoplatelets Filled NR/EPDM Rubber Blend: Effects of GNPs Loading on Blend Processability, Mechanical Properties and Fracture Morphology" – Accepted to be published in Polymer Research Journal (Accepted for Publication 21/7/2014).
- 9. Noraiham Mohamad, Mazlin Aida Mahamood, Jeeferie Abd Razak, Mohd Asyadi Azam, Juliana Yaakub, Mohammed Iqbal Shueb, "Functionalization of Ethylene-Propylene Copolymer (EPM) by Melt Grafting of Maleic Anhydride (MAH) using High Shear Internal Mixer", 2014, Publication in Materials Research Innovations, Maneyonline.

xvii

International Conferences

1. ICPRC 2014

Juliana Yaakub, Noraiham Mohamad, Jeefferie Abd Razak , Zanariah Jano , Mohammed Iqbal Shueb, "Cure Characteristics, Swelling Behaviour and Morphological Properties of Graphene Nanoplatelets (GNPs) Filled NR/EPDM Composites", International Conference on Plastics, Rubber and Composites (ICPRC 2014), Langkawi, Malaysia, 20-21 June 2014 (Oral presentation).

2. iDECON 2014

Juliana Yaakub, Noraiham Mohamad, Jeefferie Abd Razak, Kok-Tee Lau, Mohd Edeerozey Abd Manaf, Mohammed Iqbal Shueb, "Stable Dispersion of Graphene Nanoplatelets (GNPs) in Different Types of Solvents and Facile Method for Surface Modification GNPs with Chitosan" International Conference on Design and Concurrent Engineering (iDECON 2014), Avillion Legacy Hotel, Melaka, Malaysia, 22 - 23 Sept. 2014 (Oral presentation).

xviii

CHAPTER 1

INTRODUCTION

1.1 Introduction

Polymer nanocomposites are at the forefront of advanced materials applications, where the incorporation of dispersed nanofillers into a polymer matrix provides materials with tailored and controlled properties without compromising the processing ease of the host polymer (Balazs et al., 2006; Winey et al., 2007; Chatterjee et al., 2013). Extensive studies have shown that even at a very low level of nanofiller loading, the material offers significant improvement in mechanical strength and stiffness which are not inherent in pure polymers or conventional composites (Rafiee et al., 2009; Zaman et al., 2011; Araby et al., 2013). To date, however, scarce attention has been given on the vibration damping potential of rubber nanocomposites despite being a significant area as they affect the safety as well as overall system performance and reliability of the materials (Liao et al., 1994; Khan et al., 2011). Therefore, it is necessary to study the vibration damping characteristics with a goal to develop polymer nanocomposites that not only show excellent mechanical properties but also possess good in vibration damping capability.

Vibration is a repetitive motion of objects in alternately opposite directions from its position of equilibrium when that equilibrium has been disturbed (Jones, 2001). A variety of machinery, structures and dynamic systems are prone to vibratory motions. The undesirable vibrations in a structural system can lead to unpleasant motions, noise and dynamic stress that can lead to increase fatigue life of the structural components which

inevitably cost industries in maintenance, repair, and replacement (Gu et al., 2014). Thus, vibration damping has become a priority research area in a number of industries including car, aerospace, and sports equipment manufacturing; from point of view of both fundamental research and practical requirements in the field of suppressing vibration and noise.

Engine mounts rubbers are commonly used to provide vibration attenuation in isolating the vibration source (Ooi et al., 2010). They play an important role in the efficient functioning of automobile systems. Generally, these engine mounts have great effects on the noise and vibration harshness (NVH) characteristics in automobiles (Svaricek et al., 2004). Deficiency of engine mounting vehicles could lead to excessive engine vibrations and eventual damage to the gear box components (Yu et al., 1999). In addition, without the engine mount rubber, the passengers and the driver of the vehicle might be uncomfortable due to the vibration from the engine and road excitations (Darsivan and Martono, 2006). Hence, a study of dynamic damping measurement of the engine mount rubber is important in order to provide the information of dynamic damping characteristic under real operation condition as it act as a damper to damp the vibration and noise created by the engine.

Natural rubber (NR) is a unique and versatile material that has been used successfully in various engineering applications for 150 years and remains the important elastomer especially for springs and mountings components (Sethu, 2009). It is frequently applied in shock and vibration isolators applications due to its excellent damping properties and it occupies high resilience, high tensile, fatigue resistance, tear properties and low cost (Schaefer, 2002). Besides that, NR is the elastomer of choice for the majority of applications requiring high resilience and level of cyclic flexing. However, NR exhibit poor resistance to heat and ozone that makes it not suitable for numerous applications that