

Faculty of Electronics and Computer Engineering

THULIUM-DOPED FIBER AS GAIN MEDIUM AND SATURABLE ABSORBER FOR PULSED FIBER LASERS

Muhammad Taufiq bin Ahmad

MSc. in Electronic Engineering

2015

C Universiti Teknikal Malaysia Melaka

THULIUM-DOPED FIBER AS GAIN MEDIUM AND SATURABLE ABSROBER FOR PULSED FIBER LASERS

MUHAMMAD TAUFIQ BIN AHMAD

A thesis submitted

in fulfilment of requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronics and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Thulium-doped Fiber as Gain Medium and Saturable Absorber for Pulsed Fiber Lasers" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature	:	
Name	:	
Date	:	

DEDICATION

To the great mentor, Sulaiman Wadi Harun from University of Malaya

ABSTRACT

The study focuses on developing and demonstrating fiber laser applications using newly developed thulium-doped fiber (TDF). TDF functions as two different devices in this study. Firstly, TDF is use as gain medium to increase gain significantly at 2 µm wavelength. It specifically functions at that region due to pumped thulium ions reaction force an emission at 2 μ m region. The energy transition of ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ can be obtained by pumping TDF with 802 nm and 1552 nm source. Secondly, TDF is use as passive saturable absorber. Passive saturable absorber works to generate self-starting pulse. This happen when TDF absorb lights that going through it until accumulated energy reached saturation level. At saturation level, accumulated energy will discharge and forcing pulse to occur. Instead of TDF, carbon nanotubes (CNT) are also used as saturable absorber in generating pulse. Pulse, or commonly known as ultra-fast pulse are divided into two; Q-switched pulse and mode-locked pulse. Q-switched pulse is a short, high energy pulse from a laser modulating through the intracavity losses and the quality (Q) factor of the ring laser. The microsecond pulse usually occurs in kHz frequency. High pulse energy will force the frequency of the pulse to increase, while the pulses become thinner. Mode-locked pulse is an ultra-short pulses from laser cavity with duration of nanosecond to femtosecond. Due to some circumstances, mode-locked pulse can only appears in a very low power laser cavity. As a result, no stimulated emission will occur since loss is higher than the power. In most cases, mode-locked pulse has a fixed frequency and pulse width depending on the cavity, even the power is changed.

ABSTRAK

Kajian ini tertumpu untuk membangunkan dan mendemonstrasikan aplikasi laser gentian menggunakan gentian berdopkan thulium (TDF) baharu. TDF berfungsi sebagai dua peranti berbeza di dalam kajian ini. Pertamanya, TDF digunakan sebagai medium gandaan bagi meningkatkan gandaan secara mendadak di jarak gelombang 2 µm. Ia berfungsi pada panjang gelombang itu disebabkan oleh ion thulium yang dipam bertindak balas dan menghasilkan sinaran dalam lingkungan 2 μ m. Peralihan tenaga ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ boleh berlaku apabila TDF dipam oleh sumber 802 nm dan 1552 nm. Keduanya, TDF digunakan sebagai penyerap boleh tepu pasif. Penyerap boleh tepu pasif berfungsi bagi menghasilkan denyut mula kendiri. Ini berlaku apabila TDF menyerap cahaya yang melaluinya sehingga tenaga itu berkumpul dan mencapai takat tepu. Pada takat tepu, tenaga yang terkumpul itu akan dinyahcas, memaksa denyut untuk terjadi. Selain TDF, tiub nano karbon (CNT) juga digunakan sebagai penyerap boleh tepu dalam penghasilan denvut. Denvut, atau biasa dikenali sebagai denvut teramat laju terbahagi kepada dua; denyut Q-suis dan denyut mod kekunci. Denyut Q-suis ialah denyut pendek, bertenaga tinggi daripada laser yang bergerak melalui kehilangan dalam kaviti dan kesan faktor kualiti (O) pada gegelung laser. Denyut mikro saat biasanya berlaku dalam frekuensi kHz. Denyut berkuasa tinggi memaksa frekuensi denyut itu meningkat, dalam masa yang sama denyut akan menjadi semakin nipis. Denyut mod kekunci ialah denyut teramat pendek daripada kaviti laser dengan durasi nano saat hingga femto saat. Dalam beberapa keadaan, denyut mod kekunci hanya akan berlaku pada kadar kuasa yang amat rendah pada kaviti laser. Ini menyebabkan tiada sinaran terangsang akibat daripada kehilangan yang tinggi berbanding kuasa. Kebanyakkannya, denyut mod kekunci mempunyai frekuensi dan lebar denyut yang tetap bergantung pada kaviti, walaupun kuasanya diubah.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and Most Merciful. Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. Special appreciation goes to my head supervisor, Assoc. Prof. Dr. Zahriladha bin Zakaria, for his supervision and constant support. Not forgotten, greatest gratitude to my co-supervisor, Mr. Anas bin Abdul Latiff for sharing his experience and knowledge regarding this topic. Not to forget, Ministry of Education, Malaysia (formerly known as Ministry of Higher Education) for the funding through grant no. FRGS(RACE)2012/FKEKK/TK0203 1 F00149 for Univesiti Teknikal Malaysia Melaka.

I would like to express my sincere acknowledgement to my mentor, Prof. Dr. Sulaiman Wadi Harun from Photonic Research Centre, University of Malaya, Kuala Lumpur for giving me opportunity to join his research team. With a very long time experience and outstanding knowledge in this field, I could not imagine a better mentor than him. Special thanks to all research members, Rafis, Kak Ina, Dess, Abang Fauzan, Kak Wati, Kak Arni, Ila, Ninik and Carol for teaching me and give me endless support. And the best, An and Ajib for being my best partner during my time at University of Malaya

Sincere thanks to all postgraduate lab members at FKEKK especially Sam, Ariffin, Khairi, Qalbi, Nikman, Aza, Thoriq, Fizi and Zaki for helping me during my absentee in UTeM.

Last and for all, my deepest gratitude goes to my beloved parents; Ahmad bin Salleh and Zubaidah binti Sarwan and to my siblings for their love, prayers and support mentally and physically. Thank you for anyone who directly and indirectly contributed in this research.

Thank you very much.

TABLE OF CONTENTS

DEI ABS ABS ACI TAH LIS LIS LIS	BLE OF T OF T T OF F T OF A T OF A	ION T	i ii iv vi vi x xi xiv
CHA	APTER		
1.		ODUCTION	1
	1.1	The Evolution of Fiber Laser	1
	1.2	The Demand for Applications	2
	1.3	Objectives	2 4 5
	1.4	Scope of Works	5
	1.5	Thesis Outline	5
2.	LITE	RATURE REVIEW	8
	2.1	Overview of LASER	8
	2.2	2 μm Laser	10
	2.3	Preliminary Ideas of Light Amplification	12
		2.3.1 Transition Cross Section	16
		2.3.2 McCumber Theory	19
	2.4	Basic Concept of Optical Fiber	20
	2.5	Rare-Earth Doped Fibers	29 30
		2.5.1 Thulium-doped fiber laser (TDFL)2.5.2 Erbium-doped fiber laser (EDFL)	30 31
	2.6	Pulsed Fiber Lasers	31
	2.0	2.6.1 Q-switching laser	33
		2.6.2 Mode-locking laser	35
		2.6.3 Important Parameters of Pulsed Laser	38
		2.6.3.1 Pulse Shape	38
		2.6.3.2 Peak power (P_p)	39
		2.6.3.3 Average power (P_{ave})	39
		2.6.3.4 Pulse width (τ_p)	40
		2.6.3.5 Repetition rate (R.R)	40
		2.6.3.6 Energy per pulse (E_p)	40
	27	2.6.3.7 Signal to noise ratio (SNR) Carbon Nanotubes	40
	2.7	2.7.1 Crystallographic Structure	41 42
		2.7.1 Crystanographic Structure 2.7.2 Synthesis of SWCNTs and MWCNTs	42 45
		2.7.2 Synthesis of Swervers and Wwervers 2.7.3 Spectroscopic Properties	45
	2.8	Fiber Laser Components	48
		2.8.1 Wavelength Division Multiplexers (WDMs)	49
		2.8.2 Coupler	49

C Universiti Teknikal Malaysia Melaka

2.8.3	Optical Isolator	50
2.8.4	Laser Diode Pump	51
2.8.5	Fiber Bragg Grating (FBG)	53
Optica	al Test Equipment	55
2.9.1	Optical Spectrum Analyzer (OSA)	56
2.9.2	Power Meter	57
2.9.3	Oscilloscope	58
2.9.4	Photodetector	60
Summ	nary	61
	2.8.4 2.8.5 Optica 2.9.1 2.9.2 2.9.3 2.9.4	 2.8.3 Optical Isolator 2.8.4 Laser Diode Pump 2.8.5 Fiber Bragg Grating (FBG) Optical Test Equipment 2.9.1 Optical Spectrum Analyzer (OSA) 2.9.2 Power Meter 2.9.3 Oscilloscope 2.9.4 Photodetector Summary

3.	Q-SV	VITCHING ON THULIUM-DOPED FIBER LASERS	62
	3.1	Introduction	62
	3.2	Preparation and Characterization of SA	64
	3.3	Experimental Setup for the Proposed Q-switched TDFL	67
	3.4	Optical Spectrum Characteristic	68
	3.5	Temporal Characteristic of the Pulse Train	71
	3.6	Q-switching Behavior Towards Variation of Pump Power	74
	3.7	Summary	78
4.	THU	LIUM-DOPED FIBER AS SATURABLE ABSORBER	79
	4.1	Introduction	79
	4.2	Experimental Setup for the Proposed Mode-locked EDFLs	80
	4.3	Performance of the Mode-locked Nanoseconds EDFLs	81
	4.4	Summary	86
5.	TUN	ABLE THULIUM-DOPED FIBER LASER	87
	5.1	Introduction	87
	5.2	Experimental Setup for Proposed Tunable TDFL	88
	5.3	Performance Analysis of Tunable TDFL	88
	5.4	Summary	96
6.	CON	CLUSION AND FUTURE OUTLOOKS	97
	5.1	Conclusion	97
	5.2	Future outlook	98
RE	FEREN	ICES	101
AP]	PENDI	CES	110

LIST OF TABLES

TAB	BLE TITLE	PAGE
3.1	Comparison between other Q-switching works	78
4.1	Comparison between other Mode-locking works	88

LIST OF FIGURES

FIGU	TITLE TITLE	PAGE
2.1	Three mechanisms of light amplification; (a) absorption,	
	(b) spontaneous emission (random photon), and (c) stimulated emission	on 10
2.2	Energy level diagram	12
2.3	The absorption and emission rates of light transitions in a two-level	
	system	18
2.4	Physical structure of common single-mode optical fiber (SMF)	21
2.5	Light propagation in common single-mode optical fiber (SMF)	21
2.6	Specifications on three types of optical fiber	22
2.7	Example of total internal reflection principle that occurs between two	,
	mediums with different refractive indices	24
2.8	Fiber joint loss factors	26
2.9	Thulium (Tm) element energy level diagram	31
2.10	Erbium (Er) element energy level diagram	32
2.11	Evolution of power and losses in passive mode-locked lasers with fas	t
	SAs	37
2.12	Important terms in pulsed laser	38
2.13	Gaussian and sech ² pulsed shape	39
2.14	Schematic view of a SWCNTs and MWCNTs	41
2.15	The unrolled hexagonal lattice of a nanotube	43
2.16	Molecular models of CNTs exhibiting different chiralities	44

vii C Universiti Teknikal Malaysia Melaka

2.17	800 / 1900 nm wavelength division multiplexer	49
2.18	$2 \ \mu m \ 10 \ dB$ coupler for output extraction	50
2.19	Optical isolator	51
2.20	Laser diode pump on a Thorlabs mount	52
2.21	Bragg resonance for reflection of the incident mode occurs at the	
	wavelength for which the grating pitch along the fiber axis is equal to	
	one-half of the modal wavelength within fiber core	53
2.22	$2 \ \mu m$ wavelength FBG with 99% reflection	55
2.23	Yokogawa optical spectrum analyzer (OSA) with range of	
	1200 – 2400 nm	57
2.24	Melies Griot broadband power meter	58
2.25	LeCroy digital oscilloscope	59
2.26	Thorlabs InGaAs biased detector for 1550 nm region	60
2.27	EOT InGaAs PIN detector for 2000 nm region	61
3.1	Raman spectrum for the MWCNTs-PVA SA film	66
3.2	Transmission spectrum for the homemade MWCNTs-PVA SA film	66
3.3	Configuration of the proposed Q-switched TDFL with 802 nm pump	
	scheme	68
3.4	Configuration of the proposed Q-switched TDFL with 1552 nm pump	
	scheme	68
3.5	Output spectrum with and without the SA for the TDFL configured	
	with 802 nm pump	69
3.6	Output spectrum with and without the SA for the TDFL configured	
	with 1552 nm pump	70
3.7	Typical pulse train of the TDFL configured with 802 nm pump	71

3.8	Single pulse envelop of the TDFL configured with 802 nm pump	72
3.9	Typical pulse train of the TDFL configured with 1552 nm pump	73
3.10	Single pulse envelop of the TDFL configured with 1552 nm pump	73
3.11	Repetition rate and pulse width against pump power with 802 nm pump	74
3.12	Repetition rate and pulse width against pump power with 1552 nm pump	o 75
3.13	Output power and pulse energy against pump power with 802 nm pump	76
3.14	Output power and pulse energy against pump power with 1552 nm pump	o 77
4.1	The schematic diagram of the proposed mode-locked EDFL	81
4.2	Typical pulse train for the mode-locked fiber laser with TDF SA	82
4.3	Enlarged single pulse envelop of the mode-locked laser	83
4.4	Output spectrum of the stretched pulse mode-locked EDFL	84
4.5	RF spectrum of mode-locked laser	85
5.1	The schematic diagram of the proposed tunable TDFL	88
5.2	ASE spectra from the forward pumped TDF at various fiber lengths	89
5.3	Output spectrum of the proposed TDFL at 1552 nm pump power of	
	950 mW	90
5.4	Enlarge output spectra at three different lengths	91
5.5	Output spectrum of the proposed laser at pump power of 426 mW	92
5.6	The ASE spectrum from the forward pumped TDF at pump power of	
	500 mW	92
5.7	Lasing characteristic of the TDFL at three different TDF lengths	93
5.8	Output spectra of the TDFL at various tuning wavelengths	94
5.9	Laser characteristics of the TDFL at various tuning wavelengths	95

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Power characteristic for 802 nm pump	111
В	Power characteristic for 1552 nm pump	112
С	Power characteristic for 980 nm pump	114

LIST OF ABBREVIATIONS

μ	-	micro
ASE	-	amplified spontaneous emission
c	-	centi
CO_2	-	carbon dioxide
CNT	-	carbon nanotubes
СРА	-	chirped pulse amplification
CW	-	continuous wave
dB	-	decibel
DIAL	-	differential absorption LIDAR
EDF	-	erbium-doped fiber
EDFL	-	EDF laser
EM	-	electromagenetic
Er	-	erbium
Er ³⁺	-	high concentration Er
EYDF	-	erbium ytterbium co-doped fiber
EYDFL	-	EYDF laser
FWHM	-	full-width at half maximum
G	-	giga
GVD	-	group velocity dispersion
g	-	gram
Hz	-	hertz

J	-	joule
k	-	kilo
1	-	liter
LIDAR	-	light detection and ranging
М	-	mega
m	-	meter
	-	mili
mol	-	mole
MWCNT	-	multi-walled CNT
n	-	nano
Nd:YAG	-	neodymium-doped yttrium aluminium garnet
Nd:YVO ₄	-	neodymium-doped yttrium orthovanadate
NOLM	-	nonlinear optical loop mirrors
NPR	-	nonlinear polarization rotation
OSA	-	optical spectrum analyser
OSNR	-	optical SNR
PC	-	polarization controller
PVA	-	polyvinyl alcholol
Q	-	quality
RBM	-	radial breathing mode
RF	-	radio frequency
rpm	-	rotation per minute
S	-	second
SA	-	saturable absorber
SDS	-	sodium dodecyl sulphate

SNR	-	signal to noise ratio
SPM	-	self-phase modulation
SWCNT	-	single-walled CNT
SESAM	-	semiconductor saturable absorber
TDF	-	thulium-doped fiber
TDFL	-	TDF laser
Tm	-	thulium
Tm ³⁺	-	high concentration Tm
V	-	volt
W	-	watt
WDM	-	wavelength division multiplexer

LIST OF PUBLICATIONS

Journals

Ahmad, M. T., Latiff, A. A., Zakaria, Z., Zen, D. I. M., Saidin, N., Haris, H., Ahmad, H. & Harun, S. W. (2014). Q-switched thulium-doped fiber laser operating at 1920 nm region with multiwalled carbon nanotubes embedded in polyvinyl alcohol. Microwave and Optical Technology Letters, 56(12), 2817-2819.

Saidin, N., Zen, D. I., Ahmad, F., Haris, H., **Ahmad, M. T.**, Latiff, A. A., Ahmad. H., Dimyati, K., & Harun, S. W. (2014). Q-switched thulium-doped fibre laser operating at 1900 nm using multi-walled carbon nanotubes saturable absorber. The Journal of Engineering, 1(1).

Paul, M. C., Dhar, A., Das, A., Latiff, A. A., Ahmad, M. T., & Harun, S. W. (2015).Development of Nano-engineered Thulium-doped Fiber Laser with Low Threshold PumpPower of Tunable Operating Wavelength. Photonics Journal, IEEE, 7(1), 1-8

Ahmad, M. T., Latiff, A. A., Shamsudin, H., Zakaria, Z., Ahmad, H., & Harun, S. W. (2014). Wavelength-tuneable thulium-doped fiber laser based on fiber Bragg grating stretching. Microwave and Optical Technology Letters, (submitted)

Conference

Ahmad, M. T., Latiff, A. A., Zakaria, Z., & Harun, S. W. (2014). Q-Switched Ultrafast TDFL Using MWCNTs-SA at 2 μm Region. International Journal of Computer and Communication Engineering, Vol. 3, No. 6, 446-449.

Ahmad, M. T., Latiff, A. A., Zakaria, Z., Jusoh, Z., Ahmad, H., & Harun, S. W. (2014). Amplification and Lasing Characteristics of Thulium Ytterbium Co-doped Fiber. Laser Technology and Optic Symposium 2014, Johor Bharu.

Harun, S. W., Latiff, A. A., Ahmad, M. T., Paul, M. C., Dhar, A., Das, S. & Ahmad, H.(2015). Lasing Performances of Nano-engineered Thulium-doped Fiber. InternationalConference on Materials for Advanced Technologies 2015, Singapore. (submitted)

Local Patent

Harun, S. W., Ahmad, F., Ahmad, H., Ahmad, M. T., Latiff, A. A., Saidin, N. & Haris, H.
(2015). Q-switched thulium-doped fibre laser with multi-walled carbon nanotubes
saturable absorber. University of Malaya Centre of Innovation and Commercialization
(UMCIC), Ref No. 603/904, IP No. 2015700623, 27/02/2015

CHAPTER 1

INTRODUCTION

1.1 The Evolution of Fiber Laser

A promising alternative to the conventional solid-state laser systems is the fiber laser due to several advantages such as compact size, high electrical efficiency, superior beam quality and reliability, great output power, lower maintenance, ownership cost, mobility and ruggedness. It was firstly invented by Elias Snitzer in 1963 and the first commercial fiber laser devices appeared on the market in the late 1980s (Snitzer, 1963). These lasers used single-mode diode pumping, emitted a few tens of mW, and attracted users because of their large gains and the feasibility of single-mode continuous-wave (CW) lasing for many transitions of rare-earth ions which is not achievable in the more-usual crystal-laser version. Fiber lasers use a specialized optical fiber doped with rare earth elements such as ytterbium, erbium and thulium as the gain medium. These rare earth highly quantum efficiency, and a wide absorption spectrum which finally yield to develop high power fiber laser (Koechner, 2006) for many applications such as industry, communication, military, and etc. The most well-known application of fiber-laser technology is in 1550 nm erbium-doped fiber amplifiers (EDFAs).

Fiber laser evolution continued with the discovery of one of the rare earth material known as ytterbium. When this element is doped with fiber laser, in the 1 μ m band it serve as a highly efficient gain medium that can offer high power conversion efficiencies and

larger power levels than erbium-doped fiber lasers (EDFLs). Therefore, ytterbium-doped fiber amplifier can provide high power fiber laser that is now used extensively in industrial, medical, military and high quality imaging applications (Limpert et al., 2002, Jeong et al., 2004, Paschotta et al., 1997, Limpert et al., 2004). Recently a great deal of researches on 2-micron laser have been conducted in both solid-state laser and fiber laser field because of its wide applications in medicine, remote sensing, light detection and ranging (LIDAR), range finder, and molecular spectroscopy (Pang et al., 2014, Petros et al., 2014, Westermeier et al., 2014). The 2 micron fiber laser can be achieved using a thulium-doped fiber as the gain medium. The strong absorption by water and the weak absorption by human tissues at 2 μ m also nominate it as an ideal wavelength for biological and medical applications including laser angioplasty in the coronary arteries, ophthalmic procedures, arthroscopy, laparoscopic cholecystectomy and refractive surgeries.

1.2 The Demand for Applications

Recently a great deal of researches on 2 micron laser have been conducted in both solid-state laser and fiber laser field because of its wide applications in medicine, remote sensing, LIDAR, range finder, and molecular spectroscopy (Damanhuri et al., 2013, Tao et al., 2013). The strong absorption by water and the weak absorption by human tissues at 2 µm also nominate it as an ideal wavelength for biological and medical applications including laser angioplasty in the coronary arteries, ophthalmic procedures, arthroscopy, laparoscopic cholecystectomy and refractive surgeries. In addition, other features of 2 µm laser such as the lower atmospheric absorption, smaller scattering and "eye-safe" property make the wavelength desirable for material processing, ranging, low altitude wind shear and remote sensing, which includes Doppler LIDAR wind sensing and water vapor

profiling by differential absorption LIDAR (DIAL). Such wavelength is also an ideal pump source for mid-infrared optical material.

Likewise, the interest on pulsed fiber lasers is also increasing in recent years for various applications. The pulsed fiber lasers are normally realized based on two approaches; Q-switching and mode locking. Both lasers can be constructed by using various techniques such as passive saturable absorber (SA). SA is an important component in fiber laser especially for generating ultra-short pulse train. It operates by generating a certain optical loss for low intensity light and reduce the loss significantly for high intensity to pass through (Wang et al., 2008).

Q-switching and mode locking ultrafast lasers can be realized using either active or passive techniques. Passive fiber lasers are usually achieved using nonlinear polarization rotation (NPR) (Anyi et al., 2013), semiconductor saturable absorbers (SESAMs) (Luo et al., 2011) and single-walled carbon nanotubes (SWCNTs) (Ismail et al., 2012). Although these approaches are well established, NPR induced lasers tend to be environmentally unstable and do not provide self-starting pulsed operation while SESAMs based lasers have limited operating band. Lasers produced with the use of SWCNTs saturable absorber are known to have ultra-fast recovery time and wide absorption bandwidth. A new member of carbon nanotubes family called multi-walled carbon nanotubes (MWCNTs) (Jusoh et al., 2014, Ahmad et al., 2014) have also captured much attention for nonlinear optics applications as an alternative to SWCNTs. They possess similar characteristics to the SWCNTs but have lower production cost, which is 50% - 80% cheaper than the SWCNT material (Ahmad et al., 2014). Compared to SWCNTs, the MWCNTs have higher mechanical strength, photon absorption per nanotube and better thermal stability due to its higher mass density (Tiu et al., 2014, Ahmed et al., 2015).

The 2 µm laser can be realized using a thulium-doped fiber as the gain medium. The TDF laser (TDFL) was firstly discovered by Hanna et al. in 1988 with a 797 nm dye laser as the pump source (Hanna et al., 1988). Meanwhile, the first 2 µm Q-switched TDFL was carried out in 1990 by acousto-optic modulator (Esterowitz and Stoneman, 1990). The pulsed laser has many potential applications such as in pumping 2-4 µm and medical applications (Scholle et al., 2010). The Q-switched TDFL can be realized by either active or passive techniques. The active Q-switching is based on an active loss modulation with a Q-switcher and thus its pulse repetition rate can be externally controlled. Normally, active Q-switches are mechanical Q-switches, electro-optical Q-switches and acousto-optic Qswitches. Besides that, as an alternative to the active Q-switched laser, the passively Qswitched laser gives low cost, reliable operation without high voltages. In this dissertation, Q-switched 2 micron fiber laser is proposed using low cost MWCNTs based passive saturable absorber. The TDF is also used as a SA for generating nanosecond mode-locked pulse train in erbium-doped fiber laser (EDFL) cavity. Finally, the TDF is once again use as a gain medium in order to design tunable TDFL operating at 2 µm region using stretched fiber Bragg gratings (FBGs).

1.3 Objectives

This work aims to explore the usage of TDF as gain medium and saturable absorber for pulsed fiber lasers. This study embarks on the following objectives:

- To propose and demonstrate a Q-switched TDFL operating in 2 μm region using a homemade MWCNTs based passive SA as a Q-switcher.
- ii. To demonstrate a mode locked EDFLs using TDF as saturable absorber.
- iii. To demonstrate a tunable TDFL based on Fiber Bragg grating stretching