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ABSTRACT 
 
 
 
 
 
 
The study focuses on developing and demonstrating fiber laser applications using newly 
developed thulium-doped fiber (TDF). TDF functions as two different devices in this 
study. Firstly, TDF is use as gain medium to increase gain significantly at 2 µm 
wavelength. It specifically functions at that region due to pumped thulium ions reaction 
force an emission at 2 µm region. The energy transition of 3F4→3H6 can be obtained by 
pumping TDF with 802 nm and 1552 nm source. Secondly, TDF is use as passive saturable 
absorber. Passive saturable absorber works to generate self-starting pulse. This happen 
when TDF absorb lights that going through it until accumulated energy reached saturation 
level. At saturation level, accumulated energy will discharge and forcing pulse to occur. 
Instead of TDF, carbon nanotubes (CNT) are also used as saturable absorber in generating 
pulse. Pulse, or commonly known as ultra-fast pulse are divided into two; Q-switched 
pulse and mode-locked pulse. Q-switched pulse is a short, high energy pulse from a laser 
modulating through the intracavity losses and the quality (Q) factor of the ring laser. The 
microsecond pulse usually occurs in kHz frequency. High pulse energy will force the 
frequency of the pulse to increase, while the pulses become thinner. Mode-locked pulse is 
an ultra-short pulses from laser cavity with duration of nanosecond to femtosecond. Due to 
some circumstances, mode-locked pulse can only appears in a very low power laser cavity. 
As a result, no stimulated emission will occur since loss is higher than the power. In most 
cases, mode-locked pulse has a fixed frequency and pulse width depending on the cavity, 
even the power is changed.  

 



 

 
 
 
 
 
 
 
 
 

ABSTRAK 
 
 
 
 
 
 
Kajian ini tertumpu untuk membangunkan dan mendemonstrasikan aplikasi laser gentian 
menggunakan gentian berdopkan thulium (TDF) baharu. TDF berfungsi sebagai dua 
peranti berbeza di dalam kajian ini. Pertamanya, TDF digunakan sebagai medium 
gandaan bagi meningkatkan gandaan secara mendadak di jarak gelombang 2 µm. Ia 
berfungsi pada panjang gelombang itu disebabkan oleh ion thulium yang dipam bertindak 
balas dan menghasilkan sinaran dalam lingkungan 2 µm. Peralihan tenaga 3F4→3H6 
boleh berlaku apabila TDF dipam oleh sumber 802 nm dan 1552 nm. Keduanya, TDF 
digunakan sebagai penyerap boleh tepu pasif. Penyerap boleh tepu pasif berfungsi bagi 
menghasilkan denyut mula kendiri. Ini berlaku apabila TDF menyerap cahaya yang 
melaluinya sehingga tenaga itu berkumpul dan mencapai takat tepu. Pada takat tepu, 
tenaga yang terkumpul itu akan dinyahcas, memaksa denyut untuk terjadi. Selain TDF, 
tiub nano karbon (CNT) juga digunakan sebagai penyerap boleh tepu dalam penghasilan 
denyut. Denyut, atau biasa dikenali sebagai denyut teramat laju terbahagi kepada dua; 
denyut Q-suis dan denyut mod kekunci. Denyut Q-suis ialah denyut pendek, bertenaga 
tinggi daripada laser yang bergerak melalui kehilangan dalam kaviti dan kesan faktor 
kualiti (Q) pada gegelung laser. Denyut mikro saat biasanya berlaku dalam frekuensi kHz. 
Denyut berkuasa tinggi memaksa frekuensi denyut itu meningkat, dalam masa yang sama 
denyut akan menjadi semakin nipis. Denyut mod kekunci ialah denyut teramat pendek 
daripada kaviti laser dengan durasi nano saat hingga femto saat. Dalam beberapa 
keadaan, denyut mod kekunci hanya akan berlaku pada kadar kuasa yang amat rendah 
pada kaviti laser. Ini menyebabkan tiada sinaran terangsang akibat daripada kehilangan 
yang tinggi berbanding kuasa. Kebanyakkannya, denyut mod kekunci mempunyai frekuensi 
dan lebar denyut yang tetap bergantung pada kaviti, walaupun kuasanya diubah. 
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  CHAPTER 1

INTRODUCTION 

1.1  The Evolution of Fiber Laser 

 A promising alternative to the conventional solid-state laser systems is the fiber 

laser due to several advantages such as compact size, high electrical efficiency, superior 

beam quality and reliability, great output power, lower maintenance, ownership cost, 

mobility and ruggedness. It was firstly invented by Elias Snitzer in 1963 and the first 

commercial fiber laser devices appeared on the market in the late 1980s (Snitzer, 1963). 

These lasers used single-mode diode pumping, emitted a few tens of mW, and attracted 

users because of their large gains and the feasibility of single-mode continuous-wave (CW) 

lasing for many transitions of rare-earth ions which is not achievable in the more-usual 

crystal-laser version. Fiber lasers use a specialized optical fiber doped with rare earth 

elements such as ytterbium, erbium and thulium as the gain medium. These rare earth 

elements have many advantages such as simple energy levels, long life time at high level, 

highly quantum efficiency, and a wide absorption spectrum which finally yield to develop 

high power fiber laser (Koechner, 2006) for many applications such as industry, 

communication, military, and etc. The most well-known application of fiber-laser 

technology is in 1550 nm erbium-doped fiber amplifiers (EDFAs). 

 Fiber laser evolution continued with the discovery of one of the rare earth material 

known as ytterbium. When this element is doped with fiber laser, in the 1 µm band it serve 

as a highly efficient gain medium that can offer high power conversion efficiencies and 



larger power levels than erbium-doped fiber lasers (EDFLs). Therefore, ytterbium-doped 

fiber amplifier can provide high power fiber laser that is now used extensively in 

industrial, medical, military and high quality imaging applications (Limpert et al., 2002, 

Jeong et al., 2004, Paschotta et al., 1997, Limpert et al., 2004). Recently a great deal of 

researches on 2-micron laser have been conducted in both solid-state laser and fiber laser 

field because of its wide applications in medicine, remote sensing, light detection and 

ranging (LIDAR), range finder, and molecular spectroscopy (Pang et al., 2014, Petros et 

al., 2014, Westermeier et al., 2014). The 2 micron fiber laser can be achieved using a 

thulium-doped fiber as the gain medium. The strong absorption by water and the weak 

absorption by human tissues at 2 µm also nominate it as an ideal wavelength for biological 

and medical applications including laser angioplasty in the coronary arteries, ophthalmic 

procedures, arthroscopy, laparoscopic cholecystectomy and refractive surgeries.  

1.2 The Demand for Applications 

Recently a great deal of researches on 2 micron laser have been conducted in both 

solid-state laser and fiber laser field because of its wide applications in medicine, remote 

sensing, LIDAR, range finder, and molecular spectroscopy (Damanhuri et al., 2013, Tao et 

al., 2013). The strong absorption by water and the weak absorption by human tissues at 2 

μm also nominate it as an ideal wavelength for biological and medical applications 

including laser angioplasty in the coronary arteries, ophthalmic procedures, arthroscopy, 

laparoscopic cholecystectomy and refractive surgeries. In addition, other features of 2 μm 

laser such as the lower atmospheric absorption, smaller scattering and “eye-safe” property 

make the wavelength desirable for material processing, ranging, low altitude wind shear 

and remote sensing, which includes Doppler LIDAR wind sensing and water vapor 
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profiling by differential absorption LIDAR (DIAL). Such wavelength is also an ideal pump 

source for mid-infrared optical material. 

Likewise, the interest on pulsed fiber lasers is also increasing in recent years for 

various applications. The pulsed fiber lasers are normally realized based on two 

approaches; Q-switching and mode locking. Both lasers can be constructed by using 

various techniques such as passive saturable absorber (SA). SA is an important component 

in fiber laser especially for generating ultra-short pulse train. It operates by generating a 

certain optical loss for low intensity light and reduce the loss significantly for high 

intensity to pass through (Wang et al., 2008).  

Q-switching and mode locking ultrafast lasers can be realized using either active or 

passive techniques. Passive fiber lasers are usually achieved using nonlinear polarization 

rotation (NPR) (Anyi et al., 2013), semiconductor saturable absorbers (SESAMs) (Luo et 

al., 2011) and single-walled carbon nanotubes (SWCNTs) (Ismail et al., 2012). Although 

these approaches are well established, NPR induced lasers tend to be environmentally 

unstable and do not provide self-starting pulsed operation while SESAMs based lasers 

have limited operating band. Lasers produced with the use of SWCNTs saturable absorber 

are known to have ultra-fast recovery time and wide absorption bandwidth. A new member 

of carbon nanotubes family called multi-walled carbon nanotubes (MWCNTs) (Jusoh et 

al., 2014, Ahmad et al., 2014) have also captured much attention for nonlinear optics 

applications as an alternative to SWCNTs. They possess similar characteristics to the 

SWCNTs but have lower production cost, which is 50% - 80% cheaper than the SWCNT 

material (Ahmad et al., 2014). Compared to SWCNTs, the MWCNTs have higher 

mechanical strength, photon absorption per nanotube and better thermal stability due to its 

higher mass density (Tiu et al., 2014, Ahmed et al., 2015). 
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The 2 µm laser can be realized using a thulium-doped fiber as the gain medium. 

The TDF laser (TDFL) was firstly discovered by Hanna et al. in 1988 with a 797 nm dye 

laser as the pump source (Hanna et al., 1988). Meanwhile, the first 2 µm Q-switched TDFL 

was carried out in 1990 by acousto-optic modulator (Esterowitz and Stoneman, 1990). The 

pulsed laser has many potential applications such as in pumping 2-4 µm and medical 

applications (Scholle et al., 2010). The Q-switched TDFL can be realized by either active 

or passive techniques.  The active Q-switching is based on an active loss modulation with a 

Q-switcher and thus its pulse repetition rate can be externally controlled. Normally, active 

Q-switches are mechanical Q-switches, electro-optical Q-switches and acousto-optic Q-

switches. Besides that, as an alternative to the active Q-switched laser, the passively Q-

switched laser gives low cost, reliable operation without high voltages. In this dissertation, 

Q-switched 2 micron fiber laser is proposed using low cost MWCNTs based passive 

saturable absorber. The TDF is also used as a SA for generating nanosecond mode-locked 

pulse train in erbium-doped fiber laser (EDFL) cavity. Finally, the TDF is once again use 

as a gain medium in order to design tunable TDFL operating at 2 µm region using 

stretched fiber Bragg gratings (FBGs). 

1.3  Objectives 

 This work aims to explore the usage of TDF as gain medium and saturable absorber 

for pulsed fiber lasers. This study embarks on the following objectives: 

i. To propose and demonstrate a Q-switched TDFL operating in 2 µm region using a 

homemade MWCNTs based passive SA as a Q-switcher. 

ii. To demonstrate a mode locked EDFLs using TDF as saturable absorber. 

iii. To demonstrate a tunable TDFL based on Fiber Bragg grating stretching  

4 
 


	Cover
	finale
	Abstract
	Abstrak
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	List of Publications
	Chapter 1
	Introduction
	1.1  The Evolution of Fiber Laser
	1.2 The Demand for Applications
	1.3  Objectives
	1.4  Scope of Works
	1.5 Thesis Outline


	Chapter 2
	Literature Review
	2.1  Overview of LASER
	2.2  2 µm Laser
	2.3 Preliminary Ideas of Light Amplification
	2.3.1 Transition Cross Section
	2.3.2 McCumber Theory

	2.4  Basic of Optical Fiber
	2.5  Rare-Earth Doped Fibers
	2.5.1  Thulium-doped Fiber Laser (TDFL)
	2.5.2  Erbium-doped Fiber Laser (EDFL)
	2.6  Pulsed Fiber Lasers
	2.6.1  Q-switching Laser
	2.6.2  Mode-locking Laser
	2.6.3  Important Parameters of Pulsed Laser
	2.7 Carbon Nanotubes
	2.7.1 Crystallographic Structure
	2.7.2  Synthesis of SWCNTs and MWCNTs
	2.7.3 Spectroscopic Properties

	2.8 Fiber Laser Components
	2.8.1 Wavelength Division Multiplexers (WDMs)
	2.8.2 Coupler
	2.8.3 Optical Isolator
	2.8.4  Laser Diode Pump
	2.8.5  Fiber Bragg Grating (FBG)

	2.9 Optical Test Equipment
	2.9.1 Optical Spectrum Analyzer (OSA)
	2.9.2  Power Meter
	2.9.3  Oscilloscope
	2.9.4  Photodetector

	2.10 Summary


	Chapter 3
	Q-switching on Thulium-doped Fiber Lasers
	3.1  Introduction
	3.2 Preparation and Characterization of SA
	3.3 Experimental Setup for the Proposed Q-switched TDFL
	3.4 Optical Spectrum Characteristic
	3.5 Temporal Characteristic of the Pulse Train
	3.6 Q-switching Behavior Towards Variation of Pump Power
	3.7 Summary


	Chapter 4
	Thulium-doped Fiber as Saturable Absorber
	4.1  Introduction
	4.2 Experimental Setup for the Proposed Mode-locked EDFLs
	4.3 Performance of the Mode-locked Nanoseconds EDFLs
	4.4 Summary


	Chapter 5
	Tunable thulium-doped Fiber Laser
	5.1 Introduction
	5.2 Experimental Setup for Proposed Tunable TDFL
	5.3 Performance Analysis of Tunable TDFL
	5.4 Summary


	Chapter 6
	Conclusion and Future Outlooks
	6.1  Conclusion
	6.2 Future Outlook


	References
	Appendix A




