

Faculty of Electronic and Computer Engineering

DESIGN OF WIDEBAND MICROWAVE BANDPASS FILTER WITH NOTCH CHARACTERISTIC USING DEFECTED STRUCTURE

Mohamad Ariffin Bin Mutalib

MSc. in Electronic Engineering

DESIGN OF WIDEBAND MICROWAVE BANDPASS FILTER WITH NOTCH CHARACTERISTIC USING DEFECTED STRUCTURE

MOHAMAD ARIFFIN BIN MUTALIB

A thesis submitted in fulfillment of requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

DECLARATION

I declare that this thesis entitled "Design of Wideband Microwave Bandpass Filter With Notch Characteristic Using Defected Structure" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have	read this thesis and	in n	ny opinion this thesis is sufficient in
terms of scope and quality for	r the award of Maste	r of	Science in Electronic Engineering.
	Signature		
	C		
	Supervisor Name	:	
	Date	:	

ABSTRACT

Bandpass filter is an essential component, in microwave wireless communication systems, which is typically used in both receivers and transmitters. Bandpass filter with wideband passband has been attracting a lot of interests of researcher to employing different methods and techniques. However, some existing radio systems that use narrow band signals, such as IEEE 802.11a WLAN in the band 5.2 GHz, can cause an interference with the wideband systems (3-6 GHz). Therefore, this thesis presents new techniques for the design of microwave bandpass filter at 3-6 GHz which cover wideband with fractional bandwidth of about 66.67%. The return loss is better than 16 dB and insertion loss is less than 0.9 dB. This filter was constructed by using short circuit stubs bandpass filter for microstrip structure and generalized Chebyshev bandpass filter for suspended stripline structure. The suspended stripline structure bandpass filter used the method of cascading generalized Chebyshev low-pass and high-pass filters. This technique provides various advantages such as reducing the number of elements and transmission zeros can be placed in arbitrary frequency response. In order to avoid the interference from existing system that operates in the frequency band, a defected structure was introduced to generate a narrow notch band. Then the defected structure with inverse T-shape will be integrated with the band-pass filter in order to provide high attenuation is 21 dB with narrow bandwidth of 5.83% and Qfactor of about 34.33. The second design is defected stripline structure with J-shape that integrated with a generalized Chebyshev bandpass filter. The notch response of measured value is 5.2 GHz at 25 dB resonant frequencies with fractional bandwidth of 6.79% and Qfactor is about 34.78. By integrating this defected structure, the overall size can be reduced about 15% and it provides easy technique to produce band reject response. This structure is very useful for wireless systems as it can be easily integrated with other planar devices. Advanced Design System (ADS) software was used to simulate the design from circuit element to physical momentum realization. The experimental results showed good agreement with the simulated results. The benefits of the integrated band-pass filter and defected structure are the reduction of the overall size, easier to fabricate and high Q-factor. This new design of microwave filter is considered suitable and an alternative solution for wireless and radar application without any addition of external components in the cascaded structure.

ABSTRAK

Penapis laluan lulus merupakan komponen penting di dalam sistem komunikasi tanpa wayar gelombang mikro yang biasanya digunakan pada kedua-dua penerima dan pemancar. Penapis laluan lulus dengan jalur lebar telah menarik minat ramai penyelidik mengkaji dengan menggunakan kaedah dan teknik Walaubagaimanapun, terdapat beberapa sistem radio yang menggunakan jalur isyarat yang kecil, seperti IEEE 802.11a WLAN iaitu di dalam jalur 5.2 GHz dan boleh menyebabkan gangguan terhadap jalur lebar (3-6 GHz). Oleh itu, tesis ini membentangkan teknik-teknik baru dalam mereka bentuk gelombang mikro penapis laluan lulus pada frekuensi 3-6 GHz yang mana meliputi jalur lebar dengan pecahan jalur lebar kira-kira 66.67%. Pekali pantulan adalah lebih baik daripada 16 dB dan pekali penghantaran adalah kurang daripada 0.9 dB. Penapis ini telah dibina dengan menggunakan short circuit stubs laluan lulus untuk struktur mikrojalur dan Chebyshev umum penapis laluan lulus untuk struktur stripline tergantung. Bagi struktur stripline tergantung, penapis laluan lulus dihasilkan dengan menggunakan kaedah gabungan Chebyshev umum laluan rendah dan laluan tinggi. Dengan menggunakan teknik ini, pelbagai kelebihan yang diperolehi antaranya dapat mengurangkan bilangan komponen dan transmission zeros boleh dibawa ke mana-mana frekuensi yang dikehendaki. Untuk mengelakkan gangguan dari sistem yang beroperasi dalam jalur frekuensi yang sedia ada, struktur hakisan telah diperkenalkan untuk menghasilkan tindak-balas notch. Kemudian, struktur hakisan berbentuk songsangan T akan disepadukan dengan penapis laluan lulus supaya dapat menyediakan kelemahan yang tinggi sebanyak 21 dB yang mempunyai tindakbalas notch sebanyak 5.83% dan faktor Q kira-kira 34.33. Reka bentuk kedua ialah struktur hakisan stripline dengan berbentuk J yang disepadukan dengan Chebyshev umum penapis laluan lulus. Tindak-balas notch yang diukur ialah 5.2 GHz pada 25 dB resonant frekuensi dengan pecahan lebar jalur adalah 6.79% dan faktor O adalah kira-kira 34.78. Dengan menyepadukan struktur hakisan ini, keseluruhan saiz dapat dikurangkan kira-kira 15% dan menghasilkan teknik yang mudah untuk mengasingkan frekuensi yang tidak diingini. Struktur ini sangat berguna untuk sistem tanpa wayar kerana ia mudah untuk digabungkan dengan peranti satah yang lain. Perisian yang digunakan untuk simulasi ialah Advanced Design System (ADS) yang dimulakan dengan mereka bentuk elemen litar dan direalisasikan kepada bentuk momentum fizikal. Keputusan eksperimen yang ditunjukkan adalah sama dengan hasil simulasi. Kelebihan penapis laluan lulus bersepadu dan struktur hakisan adalah; pengurangan saiz keseluruhan, lebih mudah untuk direka bentuk dan faktor Q yang tinggi. Struktur baru penapis gelombang mikro dianggap sesuai dan penyelesaian alternatif kepada sambungan tanpa wayar dan aplikasi radar tanpa menggunakan penambahan komponen luaran untuk struktur tersebut.

ACKNOWLEDGMENT

I would like to express my appreciation to my main supervisor Associate Professor Dr. Zahriladha bin Zakaria who had guided me throughout my journey on writing this thesis and for his advices that had greatly improved my knowledge on the microwave field. I am also very thankful to my co-supervisor, Dr. Mohd Sa'ari bin Mohamad Isa for his guidance, advice and motivation. Without their continued moral support and concern, this thesis would not have been presented here.

My fellow postgraduate students should also be recognised for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family member. Finally, I would like to extend my gratitude to everyone who have been directly and indirectly invovled in the successful completion of this thesis.

TABLE OF CONTENTS

				PAGE
DEC	CLARA	TION		
APP	ROVA	${f L}$		
ABS	TRAC	\mathbf{T}		i
ABS	TRAK			ii
ACK	KNOW	LEDGMENT		iii
TAB	BLE O	CONTENTS		iv
LIST	Γ OF T	ABLES		vii
LIST	Γ OF F	IGURES		ix
LIST	ΓOF A	PPENDICES		xix
LIST	Γ OF A	BBREVIATIO	ON CONTRACTOR OF THE PROPERTY	XX
LIST	Γ OF S	YMBOLS		xxi
LIST	Γ OF P	UBLICATION	[S]	xxii
AW	ARDS			XXV
СНА	APTER			
1.		RODUCTION		1
	1.0	Background		1
	1.1	Problem States	ment	
	1.2	Objectives		3 5 5
	1.3		k Problem Statement	5
	1.4	Contribution o		6
	1.5	Thesis Organiz	zation	8
2	T TT		N/TE/N/	10
2.	2.0	ERATURE RE Introduction	VIEW	10 10
			of Eilter	10
	2.1	Basic Concept		11
		2.1.1 Types 2.1.2 Degree		15
	2.2	Important Def	ee of the Network, N	16
	2.2	2.2.1 Insert		16
		2.2.1 Hisert 2.2.2 Retur		17
			p Delay	17
	2.3		type Network and Circuit Transformation	18
	2.3	-	dance Transformation	18
		1	pass to Arbitrary Cut-off Frequency Lowpass Filter	19
			pass to Highpass Transformation	20
			ard Transformation	21
			ts of Losses on Bandpass Filter	23
	2.4		Microwave Filter	26
	2.4	Microstrip Str		28
	2.3		es in Microstrip Line	28 29
			tive Dielectric Constant	29 29
				30
	2.6		acteristic Impedance ipline Structure (SSS)	30
	2.0	Wideband Filt	•	32 37
	~ I	- vv iggeralite i Hil	N/1 / 3) /

		2.7.1 Comparison of Wideband, Moderate Band and Narrowband	37
		2.7.2 Review of Wideband Microwave Bandpass Filter	38
	2.8	Defected Structure	61
		2.8.1 Defected Ground Structure (DGS)	61
		2.8.2 Defected Microstrip Structure (DMS)	64
		2.8.3 Defected Stripline Structure (DSS)	71
	2.9	Summary	73
3.		SEARCH METHODOLOGY	74
	3.0	Introduction	74
	3.1	Flow Chart of the Project	75
	3.2	Design of Microwave Microstrip Bandpass Filter	78
		3.2.1 Short Circuited Design	81
	2.2	3.2.2 Physical Layout / Simulation	84
	3.3	Generalized Chebyshev Lowpass Filter Design	85
		3.3.1 Design of Generalized Chebyshev Lowpass Prototype	87
		3.3.2 Generalized Chebyshev Lowpass Filter Utilizing	89
	2.4	Suspended Stripline Structure	02
	3.4	Generalized Chebyshev Highpass Filter Design 3.4.1 Design of Generalized Chebyshev Highpass Prototype	93 94
		3.4.1 Design of Generalized Chebyshev Highpass Filter Utilizing	94
		Suspended Stripline Structure	97
	3.5	Generalized Chebyshev Bandpass Filter Design	100
	3.3	3.5.1 Design of Generalized Chebyshev Bandpass Prototype	100
		3.5.2 Generalized Chebyshev Bandpass Filter Utilizing	101
		Suspended Stripline Structure	101
	3.6	Defected Structure	104
		3.6.1 Modeling Structure of Defected Microstrip Structure (DMS)	104
	3.7	Fabrication and Measurement Process	106
	3.8	Summary	107
4.	RES	SULTS AND DISCUSSION: WIDEBAND MICROWAVE	108
	BAN	NDPASS FILTER	
	4.0	Introduction	108
	4.1	Results of Bandpass Filter Based on Microstrip Structure	108
		4.1.1 Stubs Element	108
		4.1.2 Physical Layout	110
		4.1.3 Fabrication and Measurement Results	115
	4.2	Results of S-Shape Bandpass Filter Based on Microstrip Structure	118
		4.2.1 Stubs Element	118
		4.2.2 Fabrication and Measurement Results	121
	4.3	Results of Lowpass Filter Based on Suspended Stripline Structure	124
		4.3.1 Lowpass Filter Prototype and Distributed Element	124
		4.3.2 Physical Layout of Lowpass Filter	126
	, ,	4.3.3 Fabrication and Measurement Results	128
	4.4	Results of Highpass Filter Based on Suspended Stripline Structure	130
		4.4.1 Highpass Filter Prototype and Distributed element	130
		4.4.2 Physical Layout of Highpass Filter	133

		4.4.3 Fabrication and Measurement Results	135
	4.5	Results of Bandpass Filter Based on Suspended Stripline Structure	137
		4.5.1 Bandpass Filter Prototype and Distributed Element	137
		4.5.2 Physical Layout of Bandpass Filter	138
		4.5.3 Fabrication and Measurement Results	143
	4.6	Comparison of Bandpass Filter with Other Researchers	146
	4.7	Summary	148
5.	RES	SULTS AND DISCUSSION: INTEGRATED OF BANDPASS	149
	FIL'	TER AND DEFECTED STRUCTURE	
	5.0	Introduction	149
	5.1	Results of Defected Microstrip Structure (DMS)	149
		5.1.1 Defected Microstrip Structure (DMS) with Conventional T-shape	150
		5.1.2 Defected Microstrip Structure (DMS) with Inverse T-shape	152
	5.2	Results of Defected Stripline Structure (DSS)	156
		5.2.1 Defected Stripline Structure (DSS) with J-shape	156
	5.3	Results of Integrated DMS with Bandpass Filter Microstrip Structure	160
	5.4	Results of Integrated DSS with Bandpass Filter Suspended Stripline Structure	164
	5.5	Comparison of Integrated Bandpass Filter and Notch Response with Other Researchers	170
	5.6	Summary	172
6.	CO	NCLUSION AND FUTURE WORK	173
	6.0	Conclusion	173
	6.1	Future Work	175
REF	EREN	ICES	176
APP	ENDI	CES	187

LIST OF TABLES

FABLE	TITLE	PAGE
2.1	Comparison of selected literature reviews	59
2.2	Comparison of the structure of Defected Microstrip Structure (DMS)	70
3.1	Quarter-wavelength short circuited stub bandpass filter specification	78
3.2	Element values for Chebyshev lowpass prototype filters ($g_0 = 1.0$,	81
	$\Omega_c = 1$)	
3.3	Design parameter of a 7 th order stub bandpass filter with quarter-	82
	wavelength short-circuited stubs	
3.4	Microstrip design parameters of a 7 th order stub bandpass filter with	84
	quarter-wavelength short-circuited stubs	
3.5	Lowpass filter design specification	87
3.6	Prototype element of lowpass filter	87
3.7	Summary of prototype and lumped element lowpass filter	89
3.8	Element value of distributed lowpass filter	93
3.9	Highpass filter design specification	94
3.10	Summary of prototype and lumped element highpass filter	96
3.11	Element value of distributed highpass filter	98
3.12	Summary of prototype and lumped element bandpass filter	101

3.13	Element value of distributed bandpass filter	103
4.1	Comparison of the previous researchers and this work based on	147
	wideband bandpass filter	
5.1	Comparison for different shape of DMS	153
5.2	Comparison of the previous researchers and this work based on notch	159
	response	
5.3	Comparison of the previous researchers and this work based on	171
	integrated wideband bandpass filter with notch response	

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	RF front end of a cellular base station	2
1.2	Radio communication systems	3
2.1	Frequency response of (a) lowpass filter, (b) highpass filter, (c)	12
	bandpass filter and (d) bandstop filter	
2.2	Types of response (a) lowpass Butterworth response, (b) lowpass	14
	Chebyshev response and (c) lowpass generalized Chebyshev response	
2.3	Illustration of bandpass response with specific bandwidth	16
2.4	Comparison of different type of response	18
2.5	Lowpass prototype to lowpass filter with arbitrary frequency	19
2.6	Lowpass to highpass transformation	21
2.7	Richard transformation of lumped element to stub element (a)	23
	inductor to short circuit, (b) capacitor to open-circuit and (c) series of	•
	inductor and capacitor to open circuit.	
2.8	Inductor with finite resistance	24
2.9	Circuit representations of resonators with finite resistances	25
2.10	Insertion losses as a function of different Q_u values	26
2.11	Example of various technologies in microwave filters	27

2.12	A basic of microstrip structure	28
2.13	Perspective view of Suspended Stripline Structure	33
2.14	Single suspended transmission line	33
2.15	Modification of Suspended Stripline from Stripline structure	34
2.16	Characteristic impedance of a Suspended Substrate Stripline	35
2.17	Comparison of the narrow band, moderate band and wideband	38
	response	
2.18	Side-coupled line bandpass filter (a) fabricated devices and (b) S-	39
	Parameter for simulation and measurement	
2.19	Embedding highpass filter stubs into stepped impedance lowpass	40
	filter (a) prototype and (b) S-Parameter	
2.20	Filter using Hybrid Microstrip DGS (a) Prototype and (b) S-	41
	Parameter	
2.21	Filter using short circuited stubs (a) Prototype and (b) S-Parameter	41
2.22	Filter using Parallel-Couple Microstrip Lines (a) Prototype and (b) S-	42
	Parameter	
2.23	Filter short circuited stub method (a) fabricated and (b) S-Parameter	43
2.24	Bandpass filter with pair transmission zeros (a) physical layout, (b)	44
	insertion loss and (c) return loss	
2.25	Coupled transmission lines (a) Structure of broadband bandpass filter	45
	(b) Simulated response of bandpass filter	
2.26	Simulated and measured response of compact wideband banpass filter	46
	with fabricated structure	
2.27	(a) A generalized Chebyshev lowpass prototype filter having 3	49

	transmission zeros at infinity and (N-3) at a finite frequency and (b)	
	The Dual	
2.28	Multiplexer covering the bands 500 MHz – 18 GHz	51
2.29	Printed circuit of highpass filter	52
2.30	(a) Layout of top and bottom the bandpass filter (b) Result of	53
	bandpass filter	
2.31	Quarter-wave resonator and interdigital bandpass filter (a) physical	54
	layout and (b) response of bandpass filter	
2.32	Suspended Stripline Structure resonator (a) Prototype filter and (b) S-	56
	Parameter	
2.33	(a) Schematic view of the bandpass filter with two parasitic stubs (b)	56
	comparison between simulated (dashed line) and measured	
	(continuous line)	
2.34	Bandpass filter with notch using stub loader resonator (a) Layout of	57
	the structure and (b) Simulated and measured response	
2.35	Bandpass filter with WLAN band rejection (a) The fabricated	58
	structure and (b) Comparison between the simulated and measured S_{21}	
	parameter	
2.36	Rectangular ring resonator (a) Layout of the wideband bandpass filter	59
	(b) Simulation response	
2.37	The first DGS unit (a) Dumbbell DGS unit and (b) Simulated S-	62
	Parameter	
2.38	Various types of DGS; (a) spiral head, (b) arrowhead-slot, (c) H-	63
	shape slots, (d) inverse T-shape, (e) open-loop dumbbell and (f)	

interdigital DGS.

2.39	Unit cell (a) DMS and (b) DGS	65
2.40	Frequency response of two DMS (solid line) and DGS (dot line)	65
2.41	The bandstop filter with two T-shaped slots	66
2.42	(a) Proposed DMS and (b) Equivalent circuit	67
2.43	(a) Structure of DMS and DGS for dual band bandpass filter and (b)	68
	simulated and measured S-parameter	
2.44	Band-notched ultrawideband bandpass filter (a) Fabricated structure	69
	(b) Simulated and measured response	
2.45	(a) Structure of proposed defected microstrip structure and (b)	72
	structure of defected stripline structure	
3.1	Flow chart of the project	76
3.2	Transmission line bandpass filter with quarter-wavelength short-	79
	circuited stubs	
3.3	Modelling circuit of the proposed wideband bandpass filter	81
3.4	Simulation of short circuit stub bandpass filter	83
3.5	Layout of the designed microstrip bandpass filter with quarter	85
	wavelength short-circuited stubs	
3.6	A generalized Chebyshev lowpass prototype filter	86
3.7	Equivalent circuit of the 7 th order generalied Chebyshev lowpass filter	88
3.8	Cross-section of suspended stripline structure	90
3.9	The 7 th order generalized Chebyshev lowpass distributed filter.	92
3.10	Physical layout of 7 th order generalized Chebyshev lowpass filter	93
3.11	The dual type generalized Chebyshev lowpass prototype filter	94

3.12	Seventh-degree generalized Chebyshev filter (a) lowpass prototype	95
	network (b) highpass prototype network.	
3.13	The 7 th order generalized Chebyshev highpass distributed filter	97
3.14	Physical layout of 7 th order generalized Chebyshev highpass filter (a)	100
	top (b) bottom)	
3.15	3-D view of suspended stripline structure highpass filter	100
3.16	Equivalent circuited of generalized Chebyshev bandpass filter	101
3.17	The 7 th order generalized Chebyshev bandpass distributed filter	102
3.18	Physical layout of the 7 th order generalized Chebyshev bandpass filter	103
3.19	(a) Conventional Defected Microstrip Structure (b) Inverse T-shape	105
	(c) Equivalent circuit model	
3.20	Network analyzer and fabricated structure of bandpass filter	106
3.21	CNC and Milling machine for fabrication aluminum box	107
4.1	Simulation result of distributed element quarter-wavelength short	109
	circuited stubs bandpass filter	
4.2	Simulation results of distributed element quarter-wavelength short	110
	circuited stubs bandpass filter with optimization response	
4.3	Effect of the different diameter of via for shorting the stubs	111
4.4	3-D view of microstrip structure on EM simulation	112
4.5	Transmission line for optimization short circuited stub bandpass filter	113
4.6	Physical layout for optimization short circuited stub bandpass filter	113
4.7	Current flow visualization of short circuit stubs bandpass filter (a) at 3	114
	GHz, (b) at 4.5 GHz and (c) at 6 GHz	
4.8	3-D view of microstrip short circuited stubs	114

4.9	Simulated Testilis of physical layout short circuited stubs bandpass	113
	filter	
4.10	The fabricated of quarter-wavelength short circuited stubs bandpass	116
	filter	
4.11	Comparison between simulated and measured response of quarter-	117
	wavelength short circuit stubs bandpass filter	
4.12	Comparison group delay between simulated and measured response	117
	of quarter-wavelength short circuit stubs bandpass filter	
4.13	Transmission line for optimization s-shape short circuited stub	119
	bandpass filter	
4.14	3-D view of microstrip short circuit stubs with S-shape	120
4.15	Simulated results of physical layout compact structure S-shape short	120
	circuited stubs bandpass filter	
4.16	Current flow visualization of short circuit stubs bandpass filter (a) at 3	122
	GHz, (b) at 4.5 GHz and (c) at 6 GHz	
4.17	The fabricated of S-Shape quarter-wavelength short circuited stubs	122
	bandpass filter	
4.18	Comparison between simulated and measured response of compact S-	123
	shape quarter-wavelength short circuit stubs bandpass filter	
4.19	Comparison group delay between simulated and measured response	124
	of compact S-shape quarter-wavelength short circuit stubs bandpass	
	filter	
4.20	Simulated response of generalized Chebyshev lowpass prototype	125
4 21	Simulated response of lumped element generalized Chebyshey	125

	lowpass filter	
4.22	Simulated response of distributed element generalized Chebyshev	126
	lowpass filter	
4.23	Physical layout of generalized Chebyshev lowpass filter	127
4.24	3-D view of generalized Chebyshev lowpass filter	127
4.25	Simulated response of physical layout generalized Chebyshev	128
	lowpass filter	
4.26	Current flow visualization of generalized Chebyshev lowpass filter at	128
	6.0 GHz	
4.27	The fabricated of generalized Chebyshev lowpass filter without lid	129
4.28	Comparison of simulated and measured generalized Chenyshev	130
	lowpass filter	
4.29	Simulated response of generalized Chebyshev highpass filter	131
	prototype	
4.30	Simulation results of lumped element generalized Chebyshev	132
	highpass filter	
4.31	Simulated response of distributed element generalized Chebyshev	132
	highpass filter	
4.32	Physical layout of generalized Chebyshev highpass filter (a) top layer	133
	(b) bottom layer	
4.33	3-D view of generalized Chebyshev highpass filter	134
4.34	Simulated response of physical layout generalized Chebyshev	135
	highpass filter	

Current flow visualization of generalized Chebyshev highpass filter at

135

4.35

3.1 GHz

4.36	The fabricated of generalized Chebyshev highpass filter without lid	136
4.37	Comparison of simulated and measured generalized Chebyshev	137
	highpass filter	
4.38	Simulation results of lumped element generalized Chebyshev	138
	bandpass filter	
4.39	Proposed cascading of generalized Chebyshev bandpass filter	139
4.40	3-D view of generalized Chebyshev bandpass filter	139
4.41	Simulated response of physical layout generalized Chebyshev	140
	bandpass filter	
4.42	Current flow visualization of generalized Chebyshev bandpass filter	141
	at 3.1 GHz	
4.43	Right-angle strip conductor bends (a) mitered, (b) curve and (c)	142
	square	
4.44	Equivalent circuit of bending strip conductor	142
4.45	Simulation response effect of the bending strip conductor on the	143
	bandpass filter	
4.46	The fabricated of generalized Chebyshev bandpass filter without lid	144
4.47	Comparison of simulated and measured generalized Chebyshev	145
	bandpass filter	
4.48	Comparison of simulated and measured group delay of generalized	145
	Chebyshev bandpass filter	
5.1	Conventional T-shape Defected Microstrip Structure (DMS)	151
5.2	Parametric analysis on effect of different dimension <i>l</i> ₂	151

5.3	Parametric analysis on effect of different dimension h_3	151
5.4	(a) Inverse T-shape of Defected Microstrip Structure (DMS) and (b)	153
	equivalent circuit of Inverse T-shape	
5.5	Comparison of simulated conventional T-shape and proposed Inverse	153
	T-shape	
5.6	The resonant frequency for different dimension of L_2	154
5.7	The resonant frequency for different dimension of h_2	155
5.8	The resonant frequency for different dimension of a	155
5.9	J-shape of defected stripline structure (DSS)	157
5.10	3-D view of Defected Stripline Structure (DSS)	157
5.11	The resonant frequency for different dimension of h_2	158
5.12	The resonant frequency for different dimension of h_3	158
5.13	The resonant frequency for different dimension of L_2	159
5.14	Proposed integrated of bandpass filter with inverse T-shape DMS	161
5.15	3-D view of microstrip short circuit stubs with DMS	161
5.16	Current flow visualization of integrated bandpass filter with DMS (a)	161
	at 3 GHz, (b) at 4.5 GHz and (c) at 6 GHz	
5.17	Simulated results of integrated bandpass filter with DMS	162
5.18	The fabricated of integrated bandpass filter with DMS	162
5.19	Comparison between simulated and measured response of integrated	163
	bandpass filter with DMS	
5.20	Comparison group delay between simulated and measured response	164
	of integrated bandpass filter with DMS	
5.21	Proposed integrated of bandpass filter with J-shape DSS	165

5.22	3-D view of generalized Chebyshev bandpass filter with DSS	165
5.23	Current flow visualization of integrated bandpass filter with DSS (a)	166
	at 3.1 GHz, (b) at 6 GHz and (c) at 5.2 GHz	
5.24	Simulated results of integrated bandpass filter with DSS	167
5.25	The fabricated of integrated bandpass filter with DSS	168
5.26	Comparison between simulated and measured response of integrated	169
	bandpass filter with DSS	
5.27	Comparison group delay between simulated and measured response	169
	of integrated bandpass filter with DSS	

LIST OF APPENDICES

APPENDI	X TITLE	PAGE	
A	Roger Duroid RO4350B	187	
В	Calculation for Impedance of Short Circuit Stubs	188	
C	Calculation for length (l) and width (w) of the microstrip structure	192	
D	Aluminium Box for Lowpass Filter	199	
E	Aluminium Box for Highpass Filter	201	
F	Aluminium Box for Bandpass Filter	203	

LIST OF ABBREVIATION

CNC - Computer Numerical Control

DGS - Defected Ground Structure

DMS - Defected Microstrip Structure

DSS - Defected Stripline Structure

EM - Electromagnetic

EBG - Electromagnetic Band Gap

PBG - Photonic Band Gap

RF - Radio Frequency

RX - Recieve

SAW - Surface Acoustic Wave

SIW - Substrate Integrated Waveguide

SSS - Suspended Stripline Structure

TEM - Transverse Electromagnetic

TX - Transmit

UWB - Ultra-Wideband

VNA - Vector Network Analyzer

WLAN - Wireless Local Area Network