

Faculty of Electronic and Computer Engineering

ENHANCED LOCATION AND POSITIONING IN WIMAX NETWORKS WITH VIRTUAL MIMO BASE STATION

Muhammad Hakim Bin Othman

Master of Science in Electronic Engineering

2015

C Universiti Teknikal Malaysia Melaka

ENHANCED LOCATION AND POSITIONING IN WIMAX NETWORKS WITH VIRTUAL MIMO BASE STATION

MUHAMMAD HAKIM OTHMAN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2015

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Enhanced Location and Positioning in WiMAX Networks with Virtual MIMO Base Station" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	· · · · · · · · · · · · · · · · · · ·
Name	• MUHAMMAD HAKIM OTHMAN
Date	·

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature	:
Supervisor Name	Dr. AZMI AWANG MD ISA
Date	·

DEDICATION

To my beloved wife and children, mother and father

ABSTRACT

Location and Positioning (L&P) techniques which utilize wireless broadband networks are often considered by the wireless communications industries to be a means for improving overall system performance and providing value added services. Conventional L&P methods rely on the availability of base station (BS) locations as well as the mitigation of propagation effects. It is known that location estimation accuracy suffers in poor geometric dilution of precision (GDOP) caused by BS location as conventional location algorithms generate large GDOP values which correspond to poor geometrical topology. In addition, non line of sight (NLOS) effects cause large errors in time of arrival (TOA) readings, which affecting mobile station (MS) estimation accuracy. In this thesis a new concept of virtual BS (VirBS) utilizing multiple input multiple output (MIMO) technology has been introduced and successfully applied to improve L&P accuracy. The performance of the proposed algorithm has been evaluated via computer simulations. The simulation results demonstrate that the proposed algorithm increased L&P accuracy without additional expenditure on network architecture. Furthermore, a new hybrid algorithm enhancement of mobile station (MS) location estimation by using a single MIMO base station (SMBS) with the virtual base station has been introduced. The SMBS algorithm with virtual base station utilizes both AOA and AOD measurement parameter (SMVirBS). The developed algorithm includes the effect of the geometric dilution of precision (GDOP) to assist with the location estimation accuracy. Simulation results show that the proposed technique outperforms the linear least square (LLS) algorithm in terms of estimated location accuracy.

ABSTRAK

Teknik lokasi dan kedudukan (L & P) yang menggunakan rangkaian jalur lebar tanpa wayar selalunya dianggap oleh industri komunikasi wayarles sebagai satu cara untuk meningkatkan prestasi sistem keseluruhan dan menyediakan perkhidmatan nilai tambah. Kaedah L & P konvensional bergantung pada jumlah stesen pangkalan (BS) yang terdapat di lokasi dan juga pengurangan kesan perambatan. Adalah diketahui bahawa ketepatan anggaran lokasi semakin berkurangan disebabkan oleh pengurangan ketepatan geometri (GDOP) yang lemah kerana lokasi BS sebagai algoritma lokasi konvensional menjana nilai GDOP yang besar. Nilai GDOP yang besar menunjukkan topologi geometri yang lemah. Di samping itu, kesan NLOS menyebabkan ralat besar dalam bacaan masa ketibaan (TOA) yang tentunya menjejaskan stesen mudah alih (MS) menganggar ketepatan bacaan. Dalam kertas kerja ini, satu konsep baru BS maya (VirBS) menggunakan teknologi berbilang input berbilang output (MIMO) telah diperkenalkan dan berhasil untuk meningkatkan ketepatan L & P. Prestasi algoritma yang dicadangkan telah dinilai melalui simulasi komputer. Keputusan simulasi menunjukkan bahawa algoritma yang dicadangkan dapat meningkatkan ketepatan L & P tanpa tambahan kepada jumlah stesen pengkalan. Seterusnya satu peningkatan anggaran lokasi MS menggunakan algoritma hibrid dengan stesen pangkalan MIMO tunggal dan stesen pangkalan maya (SMVirBS) juga telah diperkenalkan. Algoritma SMB dengan stesen pangkalan maya menggunakan kedua-dua parameter pengukuran AOA dan AOD (SMVirBS). Algoritma yang dibangunkan menggunakan kesan pengurangan ketepatan geometri (GDOP) untuk membantu dalam anggaran ketepatan lokasi. Keputusan simulasi menunjukkan bahawa teknik yang dicadangkan adalah lebih baik berbanding dengan algoritma linear least square (LLS) dari segi anggaran ketepatan lokasi.

ACKNOWLEDGMENT

First and foremost, I am thankful to Allah s.w.t, without whom nothing is possible. My sincere appreciation and gratitude go to my supervisor, Dr Azmi Awang Md Isa and my co supervisor Mohd Shahril Izuan without whose supervision this thesis would not have been accomplished. In particular, I wish to thank him for offering me such an invaluable chance to study here, giving constant encouragement, and also for his valuable guidance throughout my study.

I am grateful to all my research colleagues who assisted me with this research effort. The educational conversations and assistance they have provided me with during my work are much appreciated. I would also like to thank all the FKEKK staff members who have assisted me throughout my thesis work.

I also want to thank Universiti Teknikal Malaysia Melaka (UTeM), who gave me the opportunity to further my studies and also provided technical support, without which this research would not have been possible.

I would like to thank my parents and my brothers, sisters and friends, who motivated me from first day of my education.

Lastly, and most of all, my warmest gratitude belong to my beloved wife, Ummi Raba'ah Hashim and my children, Muhammad Kamal Arif, Nur Sofia and Nur Qistina, for their support during my years at University. Without their constant support, love and sacrifice, I would not have been able to complete this research as desired. This thesis is especially dedicated to them.

TABLE OF CONTENTS

DECLA	RAT	ION					
APPRO	VAL						
DEDIC	ATIO	Ν					
ABSTR	ACT		i				
ABSTRAK ACKNOWLEDGEMENT TABLE OF CONTENTS							
				LIST O	F TAI	BLES	vii
				LIST O	FFIG	HIRES	viii
LIST O	F ABI	BREVIATIONS	xi				
LIST O	F PUI	BLICATIONS	xii				
СНАРТ	'ER						
1.	INT	RODUCTION	1				
	1.0	Research Background	1				
	1.1	Problem Statement	7				
	1.2	Objectives	9				
	1.3	Scope of Research	9				
	1.4	Methodology	10				
	1.5	Contributions	11				
	1.6	Thesis Organization	11				
2.	LIT	ERATURE REVIEW	13				
	2.0	Introduction	13				
	2.1	Overview of WiMAX Standards	14				
		2.1.1 WiMAX Physical Layer	15				
		2.1.2 The Frame Structure	18				
	2.2	Orthogonal Frequency Division Multiplexing	21				
		2.2.1 Basic OFDM Generation	23				
		2.2.2 Example of Mobile Positioning in OFDM	24				
		2.2.3 Preamble Detection for Location Estimation in	25				
	WiN	ЛАХ					
		2.2.4 Cyclic Prefix as Time Delay Detection	26				
		2.2.5 Downlink Preamble Detection Scheme	28				
	2.3	Potential of L&P Utilising WiMAX Features	35				
		2.3.1 Multiple Input Multiple Output	35				
	2.4	Location and Positioning (L&P) Parameters and Algorithms	37				
	2.5	Estimation of Position Location Parameters	38				
		2.5.1 Time Of Arrival Estimation	38				
		2.5.2 Time Difference Of Arrival Estimation	40				
		2.5.3 Angle Of Arrival Estimation	41				

iv C Universiti Teknikal Malaysia Melaka

	2.5.4 Hybrid Parameter Estimation	42
2.6	Location Estimation Algorithms	43
	2.6.1 Geometric Approaches	44
	2.6.2 Geometric Approach Based on TOA Measurements	45
	2.6.3 Geometric Approach Based on TDOA Measurements	47
	2.6.4 Geometric Approach Based on AOA Measurements	49
	2.6.5 Geometric Approach Based on Hybrid Measurements	50
2.7	Statistical Approaches	51
	2.7.1 Linear Least Squares Method	53
	2.7.2 Non Linear Least Squares Method	55
2.8	Location Accuracy Measurements	57
	2.8.1 Mean Square Error	58
	2.8.2 Circular Error Probability	58
	2.8.3 Geometric Dilution Precision	60
	2.8.4 Cumulative Distribution Probability	61
2.9	Summary	61
PRO	POSED LOCATION AND POSITIONING UTILIZING	63
VIR	TUAL MIMO BASE STATION	
3.0	Introduction	63
3.1	Location and Positioning in Wireless Communications	67
	3.1.1 Measurement Model using TOA Data Fusion	67
	3.1.2 Investigation of GDOP Effects	71
	3.1.3 Linear Least Squares Estimation	75
3.2	Proposed VirBS in MIMO WiMAX Networks	77
	3.2.1 System Model	77
	3.2.2 Overview of the VirBS Algorithm	79
	3.2.3 Estimation of the Virtual Distance of VirBS	81
	3.2.4 Determination Location of VirBS Based on the	82
	Lowest GDOP Value using a VirBS-COG Scheme	
3.3	Proposed Location and Positioning Estimation with a Single	86
	Base Station in a MIMO System	
	3.3.1 System Model for Single MIMO Base Station (SMBS)	87
	3.3.2 SMBS Algorithm using Linear Least Estimation	90
	3.3.3 Proposed SMBS Algorithm with Virtual Base Stations (SMVirBS)	93
3.4	Summary	100
RES	ULTS AND DISCUSSIONS	102
4.0	Introduction	102
4.1	Result and Discussion for Proposed VirBS in MIMO	103
	WINIAA INCLWOIKS	104
	4.1.1 Observation of Angle Effects	104
4.2	4.1.2 Periormance Analysis Desult and Discussion for the Dranger of SMU/Jappe Alassid	111
4.2	Result and Discussion for the Proposed SWLVIEBS Algorithm	115

3.

4.

	4.3	Summa	ry	119
5.	CON	CLUSION	N AND DIRECTION(S) FOR FUTURE WORK	121
	5.1	Summa	ry	121
	5.2	Future V	Work	122
		5.2.1	WiMAX MIMO VirBS L&P Improved Processing Time	123
		5.2.2	Long Term Evolution (LTE) L&P using VirBS Scheme	123
		~		

REFERENCES

124

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Scalable OFDMA parameters	18
2.2	Preamble Modulation Sequences in a Mobile-WiMAX System	32
	for 1K FFT Mode	
4.1	IEEE802.16e Simulation Parameters	103
4.2	Effects of GDOP Values on Location Position Errors for Three	108
	BSs and One VirBS	

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	MS Position Location Using AOA Measurements.	2
1.2	MS Position Location Using TOA Measurements	3
1.3	MS Position Location Using TDOA Measurements	4
1.4	Non Line Of Sight (NLOS) Condition	5
1.5	Proposed MIMO WiMAX Positioning with the Assistance of	7
	Virtual BSs	
2.1	General frame structures of TDD and FDD systems	19
2.2	An example of a mobile WiMAX TDD frame structure [8]	20
2.3	Comparison Bandwidth Utilization between (a) conventional	22
	FDM and (b) OFDM	
2.4	Basic Block Diagram of an OFDM Transceiver	24
2.5	OFDM symbol with a cyclic prefix	27
2.6	Time Domain Symbol with a Cyclic Prefix	27
2.7	Preamble Delay Correlation Using a Cyclic Prefix at 20 MHz	28

(FFT 2048, CP 1/8), SNR 10 dB

2.8	Location and Positioning System Architecture in Downlink	29
	Mobile WiMAX Systems	
2.9	Block Diagram of the Proposed WiMAX Preamble Ranging	30
	System	
2.10	Time Delay Model for a Preamble Sequence from the BSs	31
2.11	Structure of preamble signals in a mobile WiMAX system for	32
	segment 0 with 1,024-point IFFT size	
2.12	The Preamble for 2,048 IFFT Size	34
2.13	Preamble Auto-Correlation Output for 2,048 IFFT Size	34
2.14	Delay Estimation by GCC Method	41
2.15	TOA Position Location Estimation Technique	46
2.16	2-D Hyperbolic Position Location Solution	48
2.17	Hybrid TOA/AOA Position Location Estimation Technique	51
2.18	The Geometry of the CEP Measure of Accuracy	59
3.1	WiMAX System Architecture	68
3.2	Geometry of TOA-based location estimation for a MIMO2x1	70
	System in (a) LOS Environments (b) NLOS Environments	
3.3	Layout of the Position of BSs and Scattering MSs	73
3.4	(a) GDOP contours using 3 MIMO Physical BSs (b) GDOP	74

contours with one additional VirBS at the centre of the BSs region

3.5	LLS Geometry Calculation Using TOA	76
3.6	Proposed MIMO WiMAX Positioning with the Assistance of	78
	Virtual BSs	
3.7	Flowchart diagram of the proposed MIMO VirBS algorithm	80
3.8	Geometry of TOA-based location estimation with the assistance	81
	of VirBSs	
3.9	Schematic Diagram of the network layout for the computation	85
	of minimal GDOP value at relative angles	
3.10	Simplified 3GPP channel model for MIMO Simulations Using	89
	SBM with a Ring of Scatterers (ROS) for a MIMO	
	communication system	
3.11	Geometry of SMVirBS Based Location System	96
3.12	Relation between the BS, VirBSs and the MS	99
4.1	Scenarios with Network Layout Consisting of 2 BSs and 1	105
	VirBS	
4.2	Average RMSE Error and GDOP versus the Relative Angle	107
	between the Initial MS and the VirBS with 2 BSs and 1 VirBS	
4.3	Average RMSE Error and GDOP versus the Relative Angle	109

between Initial MS and VirBS with 3 BSs and 1 VirBS

4.4	Scenarios with Network Layout Consisting of 3 BSs and 1 VirBS	110
4.5	The CDF of location errors for different numbers of Virtual BSs using the VirBS Algorithm	112
4.6	Performance comparison between Location Estimation Algorithms in a CDSM NLOS model	112
4.7	Performance Comparison of Location Estimation Errors with various MS positions	113
4.8	Average RMSE Location Errors versus the Disc Radius of CDSM, R_d	115
4.9	CDF Comparison of Location Errors for several MIMO Antenna Arrays [Radius of ROS, Rr: 500m, AOD SD: 10 degrees, AOA SD: 5 degrees]	116
4.10	Effect of the radius of ROS on average RMSE performance between the proposed SMVirBS and LLS algorithms utilising several Antenna Mode Configurations [AOD SD: 5 Degrees, AOA SD: 3 Degrees].	118
4.11	Comparison of Average RMSE for the SMVirBS and LLS Algorithms with Different Radii of BS to MS [Radius of ROS:	119

300m., AOD SD: 5 Degrees, AOA SD: 3 Degrees]

LIST OF ABBREVIATIONS

3GPP	-	Third generation partnership project
AAS	-	Adaptive antenna systems
AMC	-	Adaptive modulation and coding
AOA	-	Angle of arrival
AOD	-	Angle of direction
ASNs	-	Access service networks
BL-SPECCOR	-	Band-Limited Spectral Correlation Ratio
BPSK	-	Binary phase shift keying
BS	-	Base station
BWA	-	Broadband wireless access
CDP	-	Cumulative Distribution Probability
CDSM	-	Circular disk of scatterer model
CEP	-	Circular error probability
CLOP	-	Circular lines of position
СР	-	Cyclic prefix
CSNs	-	Connectivity service networks
CYCCOR	-	Cyclic Cross-Correlation
DCD	-	DL channel descriptor
DL	-	Downlink
DOA	-	Delay of arrival

ECID	-	Enhance cell ID
ESPRIT	-	Estimation of Signal Parameters by Rotational Invariance Techniques
FCC		Federal Communication Commision
FCH	-	Frame control header
FDD	-	Frequency division duplexing
FFR	-	Fractional frequency reuse
FFT	-	Fast fourier transforms
GCC	-	Generalized cross correlation
GDOP	-	Geometric dilution of precision
GIS	-	Geographic information system
GLONASS	-	Global orbiting navigation satellite system
GNSS	-	Global navigation satellite system
GPS	-	Global positioning system
IEEE	-	Institute of Electrical and Electronics Engineers
IFFT	-	Inverse FFT
L&P	-	Location and positioning
LBS	-	Location base service
LLOP	-	Linear lines of position
LOPs	-	Lines of positions
LOS	-	Line of sight
LTE	-	Long term evolution
MAC	-	Medium access control
MCS	-	Modulation and coding scheme
MF	-	Matched filter

MIMO	-	Multiple input multiple output
ML	-	Maximum likelihood
MMR	-	Mobile multi-hop relaying
MS	-	Mobile station
MSE	-	Mean squared error
MUSIC	-	Multiple signal classification
NAPs	-	Network access providers
NLLS	-	Non linear least squares
NLOS	-	Non-line of sight
NRM	-	Network reference model
NSPs	-	Network service providers
OFDM	-	Orthogonal frequency division multiplexing
OFDMA	-	Orthogonal frequency division multiple access
OTDOA	-	Observed time difference of arrival
РНҮ	-	Physical layer
QAM	-	Quadrature amplitude modulator
QPSK	-	Quadrature phase shift keying
RMSE	-	Root mean square error
ROS	-	Ring of scatterers
RSA	-	Range scaling algorithm
RSs	-	Relay stations
RTG	-	Receive/transmit Transition gap
SBM	-	Single bounce marcocellular
SM	-	Spatial multiplexing
SMBS	-	Single MIMO base station

SMVirBS	-	Single MIMO with virtual base stations
SNR	-	Signal to noise ratio
SOFDMA	-	Scalable OFDMA
SPECCOA	-	Spectral Coherence Alignment
SS	-	Signal strength
STC	-	Space time code
SVD	-	Singular value decomposition
TDD	-	Time division duplexing
TDMA		Time division multiple acccess
TDOA	-	Time difference of arrival
ТОА	-	Time of arrival
TTG	-	Transmit/receive Transition gap
TX-AA	-	Transmitter adaptive antenna
UCD	-	UL channel descriptor
UL	-	Uplink
UWB	-	Ultra wideband
VirBS	-	Virtual Base Station
WC	-	Wireless communication
WiMAX	-	Worldwide Interoperability for Microwave Access
WirelessMAN-SC	-	Single channel modulation
WLANs	-	Wireless Local Area Networks

LIST OF PUBLICATIONS

The research papers produced and published during the course of this research are as follows:

Journal

- A.A.M. Isa, M.H. Othman, N.Z. Haron, M.S.M. Isa, M.S.I.M. Zin, Z. Zakaria and A. A.
 A. Zaini, Combined TOA/DOA for Location Estimation in MIMO System, Journal Teknologi, Vol 6, 2014 (*Published*) (*Scopus*)
- A.A.M. Isa , M.H. Othman, M.S.M. Isa, M.S.I.M. Zin, N.Z. Haron and Z. Zakaria, Improved Location and Positioning In WiMAX Networks with Virtual MIMO Base Stations, Advanced Science Letters, 2014 (*Published*) (Scopus)
- 3. A.A.M. Isa, M. Hud, M. Othman, M. Isa, M. Zin, N. Haron, and A. Jaafar, "Analysis of WiMAX Positioning Received-Signal-Strength Method," Using Journal of Telecommunication, Electronic Computer Engineering, 5., 2013 and vol. (Published)(Scopus)

Proceeding/Conferences

 A.A.M. Isa, M.H. Othman, M.S. Johal, M.S.M. Isa, M.S.I.M. Zin, N.Z. Haron, Z. Zakaria and M.M. Ibrahim, Enhanced Location Estimation with a Single Base Station in WiMAX Network, 5th International Conference on Intelligent & Advanced Systems, 2014 (*Published*)(Scopus)

- A.A.M. Isa, M. Othman, M. Isa, N. Haron, Z. Zakaria, and M. Zin, "Utilising MIMO for positioning in mobile WiMAX systems," in Wireless Technology and Applications (ISWTA), 2013 IEEE Symposium on, pp. 7-10, 2013 (*Published*)(*Scopus*)
- A.A.M. Isa, M. H. Othman, M.M. Hud, M.S. Johal, M.S.I.M. Zin, and M.S.M Isa, Location Estimation Utilising WiMAX Preamble Detection Under ITU-R Channel Models, 2013 IEEE Student Conference on Research and Development (SCOReD), 2013(*Published*)(Scopus)

CHAPTER 1

INTRODUCTION

1.0 Research Background

Due to ever increasing demand for new services and applications, wireless broadband communications are becoming more popular since the users are provided with "anywhere and at any time" type of service (Awang Md Isa 2010). With the advent of Worldwide Interoperability for Microwave Access (WiMAX), the provision of mobile broadband connectivity together with other essential applications (e.g. L&P of mobile users) is becoming a reality. Furthermore its enables mobile broadband services at a vehicular speed of up to 120 km/h (Jefry G.Andrews, 2007). WiMAX complements and competes with Wi-Fi and third generation (3G) wireless standards in terms on coverage and data rates (Yarali et al. 2008). More specifically, WiMAX supports a much larger coverage area than wireless local area networks (WLANs). On the other hand, it operates in both outdoor and indoor environments and does not require line of sight (LOS) "visibility" for a connection between the mobile station (MS) and base station (BS). It is also significantly less costly and provides higher data rates when compared to current third generation (3G) cellular standards. The WiMAX standard supports both fixed and mobile broadband data services; however, there is a great demand in the market for the latter (Koon Hoo et al. 2007). Furthermore, WiMAX has some