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ABSTRACT 

 

 

Energy harvesting from ambient sources had received much attention in the past few years 
due to worldwide awareness on green technology expands. In vibration based energy 
harvesting, resonant linear generator are commonly used as the harvesting devices. 
However, a linear generator induces several limitations. The power harvested by a linear 
generator is proportional to the cube of excitation frequency and the power is maximum in 
a narrow bandwidth only. In this research, human motion vibration was selected as an 
input excitation and its frequency content is investigated. The frequency of human motion 
was investigated by placing a vibration recorder on a test subject under 5km/h walking and 
9 km/h jogging speed.The investigation shows that the human motion vibration is 
distributed in the low frequency region. Hence, a device that can operate optimally with 
low frequency input and has the ability to overcome the narrow bandwidth limitation is 
designed. A device is designed to overcome the limitations of the linear generators. This 
device has the combination of the tuning, frequency-up conversion, multimodal and non-
linear techniques. The aim is to amplify the input frequency to a higher frequency and at 
the same time, widen the bandwidth of response. The frequency-up mechanism is made by 
transforming the translation motion into the rotary motion by using gear ratio to amplify 
the response to a higher rotational speed. Winding springs are used with twistable 
enclosure cap to alter the device stiffness. The angles of twist of the enclosure cap are 
ranging from 180 degree to 900 degree. Two oscillating masses are connected to the 
device. Each mass can be set with different characteristic to widen the bandwidth. The two 
masses are also configured with non-linear softening and non-linear hardening properties 
to further widen the bandwidth. The non-linearities of the system are changed by varying 
the magnets gap. The non-linear restoring force of the system shows the influences of the 
linear coefficient and non-linear coefficient. The device is then investigated with two sets 
of experiments. The quasi-static measurement is to investigate the system stiffness and 
dynamic measurement is to investigate its response across a frequency range. In the 
dynamic measurement the device is excited with sinusoidal inputs and real human motion 
inputs. Overall, the results obtained from the experiment show that device is able to 
produce frequency amplification. The response also shows that with a properly tuned 
system, both softening and hardening can produce a flat response which is insensitive to 
excitation frequency as well as at amplified amplitude. 
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ABSTRAK 

 

 

Penuaian tenaga daripada sumber ambien semakin mendapat perhatian selaras dengan 
kesedaran teknologi hijau yang semakin berkembang pesat.Di dalam mod penuaian tenaga 
melalui getaran, penjana resonan linear adalah contoh peranti yang selalu digunakan. Namun 
begitu, di dalam mod getaran melalui input dari tapak penjana, penjana linear mempunyai 
beberapa had ke atas prestasinya. Tenaga yang terhasil oleh penjana linear adalah berkadaran 
dengan nilai kuasa tiga input getarannya dan tenaga maksimum yang terhasil hanya terdapat di 
dalam lingkungan frekuensi yang kecil. Di dalam thesis ini, getaran hasil dari pergerakan 
manusia di pilih sebagai input kepada penjana dan telah dikaji. Kajian yang di buat mendapati 
bahawa getaran dari pergerakan manusia adalah di dalam jalur frekuensi yang rendah. Maka, 
penjana yang dapat mengatasi had prestasi penjana linear telah direka. Penjana yang 
dibinatelah direka bentuk dengan gabungan teknik penalaan, berbilang mod, amplifikasi 
frekuensi dan kekakuan sistem tidak linear. Teknik amplifikasi frekuensi yang ada pada 
penjana yang direka telah dilakukan dengan menukar pergerakan selari ke pergerakan putaran 
oleh gear bernisbah untuk amplifikasikan respon putaran penjana tersebut kepada respon 
putaran yang lebih tinggi. Spring lingkaran dengan kap yang boleh diubah suai sudut 
putarannya digunakan untuk mengubah kekakuan sistem penjana.Dua bebanan dengan 
kebolehan untuk diubah cirinya digunakan pada penjana tersebut untuk melebarkan responjalur 
frekeunsi penjana.Dua bebanan tersebut telah dikonfigurasi dengan ciri kekauan pelembutan 
tidak linear dan pengerasan tidak linear untuk melebarkan lagi jalur frekuensi penjana. 
Kekakuan tidak selari sistem penjana menunjukkan pengaruh pekali linear dan pekali tidak 
linear kepada kekauan system. Penjana tersebut telah diuji dengan dua set uji kaji iaitu kuasi-
statik dan dinamik. Di dalam uji kaji dinamik, dua set input digunakan iaitu input gelombang 
sine dan input getaran pergerakan manusia. Hasil dari ujian tersebut menunjukkan penjana 
yang direka dapat menghasilkan amplifikasi frekuensi.Respon penjana yand direka juga 
menunjukkan, dengan penalaan sistem yang betul, konfigurasi mod sistem perlembutan tidak 
linear dan pengerasan mampu menghasilkan respon yang mendatar dan tidak sensitive kepada 
frekuensi pengujaan mahupun amplitude amplifikasi.  
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CHAPTER 1 

 

1.0 INTRODUCTION 

 

1.1 Energy Harvesting 

A megawatt power plant produces sufficient electricity to empower house 

appliances. In house, some appliances or devices use direct plug in socket to operate, 

however, for the device that uses battery as power source, the socket is merely used to 

recharge the battery. These kinds of devices can be categorized as wireless or wearable 

gadgets. In recent years, it has been proven that these kind of gadgets power usage is going 

towards a smaller scale for its operation, thus it creates an opportunity to create a device 

that has the ability to harvest energy from ambient sources that can power themselves. The 

positive side of this is that it can overcome the lack of efficiency that a battery cannot offer 

but the major task is how to manipulate various sources. Figure 1.1 shows mobile 

computing improvement and battery energy density over the past few years. The figure 

indicates that the computing technology improvement increases but the energy density of a 

battery remain stagnant over the past year. 
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Figure 1.1:Mobile computing improvement and batter energy density improvement 
[Source: (Cottone, 2011)]. 

Improvement in the gadget operation means that less power is needed for its 

operation, which is why most of the gadgets these days are getting smaller. One of the 

factors is because of the battery size is getting smaller but yet still able to operate the 

gadgets. Figure 1.2 demonstrates that less power supply is needed due to lower time taken 

for computation as the technology evolves over the past years. 

 

Figure 1.2: The graph of power supply needed for mobile device with respect to the years 
[Source: (Cottone, 2011)]. 

Energy harvesting occurs when the available ambient sources are converted into 

useful energy such as electrical energy. Ambient source such as wind flow, thermal 
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