

Faculty of Electrical Engineering

IMPLEMENTATION OF p-q THEORY ON UNIFIED

Haryani binti Hassan

Master of Electrical Engineering

(Industrial Power)

2014

C Universiti Teknikal Malaysia Melaka

IMPLEMENTATION OF p-q THEORY ON UNIFIED POWER FLOW CONTROLLER

HARYANI BINTI HASSAN

A dissertation submitted

In partial fulfillment of the requirements for the degree of Master of

Electrical Engineering (Industrial Power)

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014

ABSTRACT

The Flexible AC Transmission System (FACTS) became popular since it was introduced by Hingorani in the late 1988. It can be considered as the best solution to transfer higher energy without building a new transmission line. This research focuses on the design of Unified Power Flow Controller (UPFC) which are one of the best FACTS types controller. UPFC is the combination of two types of FACTS controller names Static Synchronous Compensator (STATCOM) and Static Synchronous Series Compensator (SSSC), that can be used to control either selectively or simultaneously all the three parameters (i.e. voltage, impedance and phase angle) to influence the power flow in the existing transmission line. The purpose of this research is to design the UPFC using the Matlab Simulink software and implementing the well known p-q Theory as a control strategy. The analysis of the UPFC based on p-q Theory together with the implementation of Proportional Integral (PI) controller are combined to be a controller of Pulse Width Modulation (PWM) H-bridge for both Statcom and SSSC circuit. The UPFC system in this research was automatic voltage control mode and automatic power (real and reactive) flow control without any intervention on both sending and receiving end voltage magnitude and angle. From the simulation results, it shows that the p-q Theory control strategy can effectively and promptly tracking the reference power given in an existing transmission line.

DECLARATION

I declare that this dissertation entitle "Implementation of p-q Theory on Unified Power Flow Controller" is the result of my own research except as cited in the references. The dissertation has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:	
Name	:	Haryani Binti Hassan
Date	:	

APPROVAL

I hereby declare that I have read this dissertation and in my opinion, this dissertation is sufficient in terms of scope and quality as a partial fulfillment of Master of Electrical Engineering (Industrial Power).

Signature	:
Supervisor Name	. Ir. Dr. Rosli bin Omar
Date	:

DEDICATION

To:

my beloved husband Mohd Azrin bin Abu Bakar my children Nur Hazwani, Mohd Haziq, Nur Haziqah, Nur Hazirah and Muhammad Hazali my late father Hassan bin Abdullah my mother Halimah binti Ismail my parents in law Abu Bakar bin Khamis and Zainon Md. Sirat

my siblings Helman, Hemlan, Hanizam, Heluan, Hazlina, Haryati and Heznan

ABSTRAK

FACTS menjadi popular sejak diperkenalkan oleh Hingorani dalam tahun 1988. Ia boleh dianggap sebagai penyelesaian terbaik dalam penghantaran tenaga elektrik tanpa membina sistem penghantaran yang baharu. Kajian ini akan fokus kepada UPFC sebagai salah satu jenis komponen kawalan FACTS yang terbaik di mana ia adalah kombinasi dua jenis kawalan FACTS iaitu STATCOM dan SSSC. UPFC boleh memilih untuk mengawal sama ada satu mahupun ketiga-tiga parameter iaitu voltan, galangan dan sudut fasa yang mampu mempengaruhi pengaliran kuasa di dalam system penghantaran yang sedia ada. Tujuan kajian ini adalah untuk merekacipta UPFC menggunakan software Matlab Simulink berdasarkan strategi kawalan Teori p-q. Analisa UPFC berdasarkan strategi kawalan Teori p-q berserta penggunaan pengawal Proportional Integral (PI), yang digabungkan dengan pengawal Modulasi Lebar Denyut (PWM), H-bridge bagi kedua-dua litar Statcom dan SSSC. Sistem UPFC di dalam kajian ini menggunakan mod kawalan voltan automatik dan kawalan kuasa automatik tanpa mengganggu kedua-dua voltan dan sudut fasa penghantaran dan penerimaan voltan. Daripada keputusan simulasi dapat disimpulkan bahawa strategi kawalan Teori p-q dapat mengawal aliran kuasa di dalam talian litar yang sedia ada dengan lebih cepat dan berkesan.

ACKNOWLEDGEMENT

I would like to express my gratitude to Allah by His permission I can finish my project successfully. Alhamdulillah, His Willingness has made it possible for me as the author to accomplish my research.

Special thanks dedicated to my supervisor Prof. Madya. Dr. Ismadi Bugis for guiding this research at every stage with clarity, spending much time discussing and help with this research, and that priceless gift of getting done by sharing his valuable ideas as well as his knowledge.

I am very greatly indebted to the Department of Electrical Engineering, University Technical Malaysia Melaka for giving me the opportunity to pursue my Masters of Electrical Engineering (Industrial Power).

I also want to show my gratefulness to the Ministry of Higher Education on the financial support through the scholarship and privileges provided in the HLP program for furthering my study in master level.

Last but not least, I would express my sincere thanks to my lovely husband and children for their love, time, supporting and understanding throughout the duration of completing this research. Also, thanks to my friends for their support and encourage me to make this successful research.

TABLE OF CONTENTS

PAGE
i
ii
iii
iv
vii
viii
xii
xiii
xiv

CHAPTER

1.	INT	RODUCTION	1
	1.1	General Introduction	1
	1.2	Introduction to Power Flow Control	3
	1.3	Introduction to FACTS	5
		1.3.1. Group of conventional thyristor controlled FACTS devices	7
		1.3.1.1 Static Var Compensator (SVC)	8
		1.3.1.2 Thyristor Controlled Series (TCSC)	9
		1.3.1.3 Thyristor Controlled Phase Shifter (TCPS)	9
		1.3.2. Group of voltage source converter based FACTS devices	10
		1.3.2.1 Statistic Synchronous Compensator (STATCOM)	11
		1.3.2.2 Static Synchronous Series Compensator (SSC)	12
		1.3.2.3 Unified Power Flow Controller (UPFC)	13
	1.4	Introduction to p-q Theory	14
	1.5	Problem Statement	15
	1.6	Objectives	15

	1.7	Scopes	16
	1.8	Significance of project	16
	1.9	Motivation	16
	1.10	Project Outline	17
2.	LIT	ERATURE REVIEW	18
	2.1	Introduction	18
	2.2	Comparison of FACTS	18
	2.3	p-q Theory	20
	2.4	UPFC	24
	2.5	Conclusion Of Literature	28
3.	UPF	C PRINCIPLES AND MODES OF OPERATION	30
	3.1	Introduction	30
	3.2	UPFC Configuration and Principles of Operation	30
	3.3	Modes of Operation	32
	3.4	p-q Theory	37
	3.5	Conclusion	41
4.	ME	THODOLOGY	42
	4.1	Introduction	42
	4.2	Power Flow Control and Voltage Regulation	43
	4.3	Modeling of the UPFC	45
	4.4	Modeling of Series Controller	54
	4.5	Modeling of Shunt Controller	56
	4.6	Conclusion to Methodology	58
5.	RES	ULT AND DISCUSSION	59
	5.1	Introduction	59
	5.2	Basic Concepts of Power Flow Control	60
	5.3	Shunt and Series Controller Design	73
		5.3.1 Shunt Controller Design	75
		5.3.2 Series Controller Design	77

	5.4	Result	79
		5.4.1 First Case: Changing the Pref and Qref constant	85
		5.4.2 Second Case: Changing the Qref and the Pref Constant	87
		5.4.3 Third Case: Changing the Pref and Qref	89
	5.5	UPFC in 132 KV Transmission Line	91
	5.6	Conclusion of Result and Discussion	98
6.	CO	NCLUSION	100
	6.1	Introduction	100
	6.2	Research Summary	100
	6.3	Objective Achievements	101
	6.4	Future Work	102
	6.5	Contribution of Research	103
	6.6	Conclusion	103
REF	ERE	NCES	106
APP	END	ICES	114

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Summary of Different FACTS Controllers	6
5.1	Simple Transmission System Parameters	60
5.2	Simulation System Parameters for 415V	73
5.3	Simulation System Parameters for 132KV	93

vii

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Interconnection between two synchronous systems	3
1.2	Phasor Diagram for The Interconnection of Figure 1.1	4
1.3	Group of conventional thyristor controlled FACTS devices	7
1.4	Schematic Diagram of SVC	8
1.5	Schematic Diagram of TCSC	9
1.6	The configuration of TCPS	10
1.7	Group of VSC based FACTS device	11
1.8	Schematic Diagram of STATCOM	12
1.9	Schematic Diagram of SSSC	13
1.10	Schematic Diagram of UPFC and its Phasor Diagram	14
2.1	Control algorithm for extraction of compensation currents	21
2.2	The control block diagram of generator side converter using	
	d-q Theory	23
2.3	The control block diagram of generator side converter using	
	p-q Theory	24
2.4	Shunt inverter controller with additional PI	26
2.5	Series inverter controller with additional PI	27
3.1	Configuration of UPFC	31

3.2	Simplified configuration and phasor diagram of UPFC	33
3.3	Voltage control mode	34
3.4	Voltage injection mode	35
3.5	Phase Angle Regulation Mode	36
3.6	Power Flow Control Mode	37
3.7	Graphical representations of the abc to $\alpha\beta$ transformation	38
3.8	Flow diagram of p-q Theory	41
4.1	Functionality of the UPFC	44
4.2	Schematic diagram of UPFC system	45
4.3	UPFC design using MATLAB/Simulink	49
4.4	Block diagram of series and shunt controller	50
4.5	Basic principle of PWM	51
4.6	Basic principle of switching activation	52
4.7	Internal circuit diagram of PWM generator block	53
4.8	Series controller block diagram	56
4.9	Shunt controller block diagram	57
5.1	Simple transmission system	60
5.2	Voltage of sending and receiving end when $V_{pq} = 0 \angle 0^{\circ}$	62
5.3	Phasor diagram of the sending and receiving end voltage when	
	$V_{pq} = 0 \angle 0^{\circ}$	62
5.4	Active and reactive power of simple transmission system when	
	$V_{pq} = 0 \angle 0^{\circ}$	63
5.5	Series injection supply into the transmission line	64

5.6	Voltage at the injected, sending and receiving end when	
	$V_{pq} = 415 \angle 0^{\circ}$	66
5.7	Phasor diagram when $V_{pq} = 415 \angle 0^{\circ}$	66
5.8	Sending and receiving power when $V_{pq} = 415 \angle 0^{\circ}$	67
5.9	Voltage at the injected, sending and receiving end when	
	$V_{pq} = 415 \angle 90^{\circ}$	69
5.10	Phasor diagram when $V_{pq} = 415 \angle 90^{\circ}$	69
5.11	Sending and receiving power when $V_{pq} = 415 \angle 90^{\circ}$	70
5.12	Sending and receiving power when $V_{pq} = 200 \angle 0^{\circ}$	71
5.13	Sending and receiving power when $V_{pq} = 200 \angle 90^{\circ}$	72
5.14	Simulink model of the UPFC control system	74
5.15	Simulink model of shunt controller	76
5.16	Simulink model of series controller	78
5.17	The result of active power when the reference is 6000W	79
5.18	The result of reactive power when the reference is 4500Var	80
5.19	Parameter value for PI gain controller of active power	81
5.20	Parameter value for PI gain controller of reactive power	82
5.21	The result of active power after calculating the PI controller	84
5.22	The result of reactive power after calculating the PI controller	85
5.23	Active power output for first case	86
5.24	Reactive power output for first case	87
5.25	The reactive power output for second case	88
5.26	The active power output for second case	89

5.27	The sending end voltage, DC voltage and the output power	
	for third case	90
5.28	Thermal and stability limit versus line length	91
5.29	132KV power system without UPFC	94
5.30	Active and reactive power without UPFC	95
5.31	132KV power system with UPFC	96
5.32	Active and reactive power with UPFC	97
5.33	Active and reactive power during the different time load added	98
6.1	Automatic power flow control mode for SSSC	101
6.2	Automatic voltage control mode for STATCOM	102
6.3	Fuzzy direct controller	102
6.4	Fuzzy parameter adaptive controller	103

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	PI Controller Gain Calculation	114
В	Simulink Model for Vabc to Va β Conversion	117
С	Simulink Model for labc to $I\alpha\beta$ Conversion	118
D	Signal Builder Parameters of Pref and Qref	119
E	Electrical parameters of three phase overhead lines	121

xii

LIST OF ABBREVIATIONS

d-q Theory	-	Instantaneous Current Component Theory
ET	-	Excitation Transformer
FACTS	-	Flexible Alternating Current Transmission System
HV	-	High voltage
Ki	-	Integral Gain
Кр	-	Proportional Gain
PI	-	Proportional Integral
p-q Theory	-	Instantaneous Power Theory
PWM	-	Pulse Width Modulation
SSSC	-	Static Synchronous Series Compensator
SIL	-	Surge Impedance Loading
STATCOM	-	Static Synchronous Compensator
SVC	-	Static Var Compensator
TCPS	-	Thyristor Controlled Phase Shifter
TCR	-	Thyristor-controlled reactor
TCSC	-	Thyristor Controlled Series Compensator
THD	-	Total Harmonic Distortion
TSC	-	Thyristor-switched capacitor
UPFC	-	Unified Power Flow Controller
VSC	-	Voltage Source Converter
		xiii

LIST OF PUBLICATION

 [1] Implementation of p-q Theory on Unified Power Flow Controller (UPFC).
 Accepted for presentation in National Conference "Conference, Competition and Exhibition 2014 (CCE2014)" on 23rd-25th June 2014.

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Almost every person in this world needs electricity for daily life from bathing, cooking, entertaining, communication until washing. This causes the demand for electricity increased rapidly due to modern and sophisticated way of life nowadays. To meet this demand, the power industry needs to find energy sources either naturally like a waterfall or using a fuel such as natural gas and coal. Unfortunately, these resources are located far from the demand which resulted in the construction of a new power plant. Since the elements of electric power system consist of generation, transmission and distribution, building a new power system require a very high cost and at the same time would disrupt the balance of ecology system that eventually led to catastrophes. Due to these problems, the power industry is trying to meet the consumer demand without interrupting the ecological system, environmental impact concern and public policy rule. One of the best approaches is to enhance the capability of the existing transmission to work adequately closed to its thermal limit without interfering the quality and security of power delivery. The conventional way of controlling the power flow using the phase shifter and mechanically switching is considered out of date due to its respond very slowly to the changes of loading condition. Furthermore, it cannot enhance power capacity of the transmission lines significantly. The other drawback of the traditional method is due to mechanical switching which also tends to wear out quickly. Hence, the system engineers have to come up with the best solutions to overcome these problems.

Flexible Alternating Current Transmission System (FACTS) is the alternative option that can be used to control the power flow in an existing transmission line. This idea was introduced by Hingorani in the late 1980's (Hingorani, 2000). The intention to use the FACTS is to enhance the controllability as well as the power transfer capability of a transmission line by using a power electronic switching device to replace the traditional way. As a result, it will help the existing transmission lines such that able to transfer higher power capacity without undermining the stability and security by controlling the main parameters that affect the power flows in a transmission line. Voltage, impedance and phase angle are the parameters that influence the power flows in a transmission line.

One of the most versatile FACTS is Unified Power Flow Controller (UPFC) that popularized by Gyugyi in 1991 (Akagi, 2007). UPFC is the combination of shunt and series controller that is used to control either selectively or simultaneously all the three parameters to influence the power flow in a transmission line. In this dissertation the UPFC will be specifically discussed in the implementation of the instantaneous active and reactive power theory to control the transmission line parameters.

The instantaneous active and reactive power theory which has been introduced by Akagi, et al in 1983 is also known as p-q Theory. This theory creates effective method of compensating instantaneous active and reactive power of three phase system by first transforming the three phase voltages and currents into $\alpha\beta0$ coordinates which is known as Clarke Transformation. The main purpose of the Clarke Transformation is to separate the zero sequence where in this project, the zero sequence will be neglected due to assumption that the system is in balance condition. Then the calculation of the instantaneous real and reactive power can be done to obtain the references compensation of current and voltage. The application of p-q Theory is helpful in designing control strategies with the help of Propotional Integral (PI) Controller. Moreover the presentation of mathematical equation of p-q Theory will be shown in matrix form.

1.2 Introduction to Power Flow Control

Electric power flow initially is the result of the interaction between power generation, transmission and distribution. This led to the interest in research of power flow control technology, which had increased since last several years.

The principle of power flow over a transmission line can be simplified as in Figure 1.1 where V_1 is the magnitudes of the sending end voltage and V_2 is the magnitude of the receiving end voltage. By ignoring the resistance and capacitance, the transmission line assumed to have purely inductive impedance, X which interconnects between the two end busses.

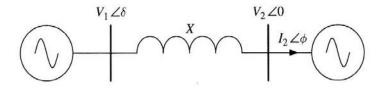


Figure 1.1: Interconnection between two synchronous systems (Arillaga, 2007)

Assume that the voltage V_2 as the phase reference meanwhile the voltage V_1 leads the V_2 by δ angle and the current I_2 lags its voltage by \emptyset angle as shown in Figure 1.2, these expressions can be derived (Arillaga, 2007):

$$I_2 X \cos\phi = V_1 \sin\delta \tag{1.1}$$

$$I_2 X \cos\phi = V_1 \cos\delta - V_2 \tag{1.2}$$

C Universiti Teknikal Malaysia Melaka

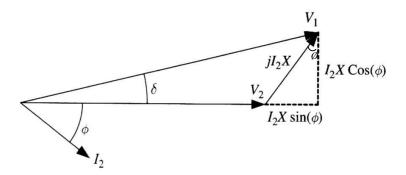


Figure 1.2: Phasor Diagram for The Interconnection of Figure 1.1 (Arrillaga, 2007)

From Equations (1.1) and (1.2) the active and reactive powers become:

$$P = V_2 I_2 \cos \phi = \frac{V_1 V_2}{X} \sin \delta$$
(1.3)

$$Q = V_2 I_2 \sin \phi = \frac{V_2 (V_1 \cos \delta - V_2)}{X}$$
(1.4)

Equations (1.3) and (1.4) show that the power flow through the transmission line can be controlled by varying one or more of these parameters V_1 , V_2 , δ and X. Even though the generated voltage phase and magnitude values can be controlled by the turbine governor and the generator, the controls are very slow and inefficient which tend to have stability problems. FACTS is the device that can overcome this problem.

1.3 Introduction to FACTS

FACTS controllers use power electronics to set control for one or more transmission parameters that can increase power transfer capability. It can be categorized in two classifications either based on their connection in transmission system or based on the power electronics used in the system.

- Classification which according to the connection of the devices within the transmission system can be divided into three connections:
 - a) Shunt connection
 - b) Series connection
 - c) Combine connection
- 2. Classification based upon the power electronics used in the control system or the operational concepts, which can be divided in two groups namely:
 - a) Group of conventional thyristor based controller
 - b) Group of voltage source converter (VSC) based controller.

The summary of FACTS controller is shown in Table 1.1.