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Abstract—Missing values are a common occurrence in a
number of real world databases, and statistical methods have
been developed to deal with this problem, referred to as missing
data imputation. In the detection and prediction of incipient
faults in power transformers using Dissolved Gas Analysis
(DGA), the problem of missing values is significant and has
resulted in inconclusive decision making. This study proposes
an efficient non-parametric iterative imputation method, named
FINNIM, which comprises of three components : the imputation
ordering, the imputation estimator and the iterative imputation.
The relationship between gases and faults and the percentage
of missing values in an instance are used as a basis for the
imputation ordering; whilst the plausible values for the missing
values are estimated from k-nearest neighbour instances in
the imputation estimator; and the iterative imputation allows
complete and incomplete instances in a DGA dataset to be utilized
iteratively for imputing all the missing values. Experimental
results on both artificially inserted and actual missing values
found in a few DGA datasets demonstrate that the proposed
method outperforms the existing methods in imputation accuracy,
classification performance and convergence criteria at different
missing percentages.

Index Terms—Dissolved gas analysis, iterative imputation, im-
putation ordering, k-nearest-neighbour, missing values, missing
data imputation.

I. INTRODUCTION

Power transformers are essential equipments to transmit
and distribute electrical energy through interconnected power
systems. While in-service, transformers may face electrical or
thermal disturbances that cause faults such as arcing, partial
discharge, and thermal to surface. These faults will release
several gases commonly known as fault gases: hydrogen (H2),
acetylene (C2H2), ethylene (C2H4), methane (CH4), ethane
(C2H6), carbon monoxide (CO) and carbon dioxide (CO2)
that stay dissolved at above threshold values in the insulating
oil of a transformer. If left untreated for long, these faults
could induce transformer failure and disrupt power supply
to industries, businesses, and homes; causing huge financial
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losses or triggering worst impacts such as explosions, loss
of human lives, or environmental disasters. Therefore, to
minimize these risks, early detection of incipient faults in a
transformer is of vital importance. In industrial practice and
for oil-filled transformers, dissolved gas analysis (DGA) is
an efficient tool for such purpose since it can give warning
about an impending problem, and helps provide an early
diagnosis and identify the necessary preventive actions. These
are achieved through a) periodic sampling of insulation oil, b)
extracting the dissolved gases, calculating and analyzing the
concentration of these gases, their gassing rates and the ratios
of certain gases and c) finally, the identification of the possible
fault types through conventional methods such as IEC ratios,
Rogers ratio, Doernenburg ratio and the Duval Triangle.

The above diagnostic DGA ratio methods identify fault
types using the ratios of certain fault gases and each ratio is
assigned to one or more numerical thresholds. These thresh-
olds are coded and mapped to specific faults. In some cases,
measured gas concentrations or ratios may be incomplete and
thus do not match any predefined threshold. As a result, fault
that occurs inside a transformer may be classified unknown
or inconclusive [1]. One of the reasons for incomplete gas
concentrations is missing values for some of the fault gases.
Missing values in DGA can occur for various reasons, such as
acetylene evaporates quickly, the existence of contamination
on the surface of the platinum alloy of a gas meter, and some
transformer faults generate only a few but not all of the fault
gases. Apart from reducing the effectiveness of the DGA ratio
methods as stated earlier, missing values can also affect the
performance of machine learning algorithms that learns from
DGA data to diagnose faults, such as support vector machines
(SVM), neural network, and fuzzy logic. As missing values
increase in a dataset, the prediction accuracy of the learning
algorithms decreases in tandem, as documented in [2] and [3].

This problem can be managed in many different ways from
simply deleting the DGA instances containing missing values,
although this may substantially reduce the number of available
instances, especially if the missing rate is high, to reporting
only complete instances (instances without missing values) of
DGA, although this is inappropriate because valuable infor-
mation of the incomplete instances (instances with missing
values) is lost. The best solution is to attempt to accurately
estimate and fill-in the missing values with available data
(”imputation”), but to our knowledge, only [4] estimated the
missing values in DGA dataset using support vector machine
regression (SVR), which increased the accuracy of their Naive-
Bayes classifier. However, their approach requires dispersion
of the continuous values of the fault gases before estimation
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takes place, a pre-processing step that can lead to information
loss. In addition, only complete instances were used to esti-
mate plausible values for the missing values, whereas [5], [6]
have demonstrated that if the information within incomplete
instances is utilized as well then the estimation bias caused by
the only few complete instances can be reduced. There is, thus
considerable need to develop an efficient method to estimate
missing values in a DGA dataset minus the information
loss and estimation bias found in [4] and with the missing
values being filled in, the reduced performance of a learning
algorithm is duly arrested.

As an attempt to realize the above objectives, we introduce
an efficient imputation algorithm called FINNIM that itera-
tively imputes all missing values by utilizing complete and
incomplete instances in a DGA dataset. It has three different
components mainly 1) imputation ordering, 2) imputation
estimator and 3) iterative imputation. The task of imputation
ordering is to assign an imputation order to a missing value in
a dataset. The assignment is made based on the relationship
between gases and faults and the percentage of the missing
values in an instance. In the imputation estimator, the plausible
values to replace the missing values are estimated using the
k nearest-neighbor (kNN) algorithm. This estimation process
is done iteratively in the third component, where for the
first iteration, the kNN instances are selected from complete
instances only, and the next imputations thereafter use all
instances (imputed and complete) until convergence is reached.
The primary contributions of this paper lies in the following:
1) a unified framework to impute missing values found in a
DGA dataset that simultaneously facilitates the principle of
DGA method, applies a non-parametric approach to predict
the missing values, and utilizes all information contained in a
DGA dataset; 2) a unified framework that works collectively
to ensure that the data distribution in a dataset is preserved
after data imputation; 3) an ordering of missing values which
preserves continuous data and the feature-class relationship in
a dataset.

Comparative studies between FINNIM and other well-
established methods such as single regression (REG),
mean/mode (MEAN), expectation-maximization (EM), and
multiple imputation (MI) are presented. The first comparison is
made to evaluate the convergence ability between our proposed
method and the EM method. Only these two methods apply
iterative imputation, thus the convergence comparison between
the EM method and FINNIM. Next, the accuracy of each
imputation method is evaluated using the normalized root
mean square error (NRMSE) which calculates the deviation
between the estimated and the actual values. Imputation
method with the lowest NMRSE produces the most accurate
estimates. According to [7], one desirable characteristic of an
imputation method is the ability to improve the classification
performance of a learning algorithm. Therefore, the ”before-
and-after” experiment where the accuracy of SVM learned
on the original incomplete dataset and that learned on the
imputed dataset is compared to validate the effectiveness
of each imputation method in meeting the aforementioned
characteristic. Experimental results show the robustness and
effectiveness of the proposed method.

Fig. 1. FINNIM Imputation Accuracy on LITGY dataset

TABLE I
DGA DATASET

Instances Features f1 f2 f3 f4 y
X1 x11 x12 ? x14 1
X2 x21 x22 x23 x24 2
X3 ? x32 ? x34 1
X4 x41 x42 x43 x44 3
X5 x51 x52 x53 x54 3

The remaining part of the paper consists of the following.
Section II details out the proposed method that is FINNIM.
The efficiency of the proposed method is demonstrated using
three different comparisons and the results are analyzed in
Section III. Section IV provides some conclusions of the paper.

II. THE FINNIM ALGORITHM

This section presents the FINNIM method that capitalizes
on the characteristics of DGA data and utilizes all available
information when estimating missing values in a DGA dataset.
It consists of three processes; first is the imputation ordering;
second is the imputation estimator, and third is the iterative
imputation process as shown in Fig. 1.

In general, a dataset D is represented as a set of data points
with label, {Xi, yi}n(i=1), yi ∈ {1, · · · , c} as illustrated in
Table I where n is the number of instances. Xi = {fj}mj=1

is an instance with m number of features, and the symbol
? represents a missing value. An incomplete instance is an
instance that has one or more missing values such as X1 and
X3, whilst a complete instance contains no missing values
such as X2, X4 and X5. Let us call Dt the subset of D that
contains only complete instances, Du is the subset of D that
contains only incomplete instances. Here, D represents a DGA
dataset with n samples Xi where each sample is labeled with
a fault type yi and contains m dissolved gases (fj).

A. Imputation Ordering

Table I has three missing values (denoted as X1f3, X3f1,
and X3f3) in different features and in different instances. This
raises the question whether imputing X1f3, X3f1 and X3f3
arbitrarily makes no difference to the estimation performance,
or giving a preference to one (e.g X3f3) to be imputed first
will produce better estimation values for all. References ([8],
[9], [10] ) proved that the latter approach was better. Because
a DGA dataset may contain instances with multiple missing
values as in Table I, this study proposes that all missing values
in the DGA dataset are ordered so as to provide hierarchy of
imputation for each missing value.

DGA is a method that relies on the strong presence of a
few dissolved gases (features) to determine a fault type (class).
Thus, the stronger the relationship between a feature and the
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class is, the more worthwhile it is to impute the missing values
of that feature. Other imputation ordering techniques [9], [11]
did not take into consideration the relationship of features
and classes. For example, [9] proposed lexicographic ordering
in which the missing values were re-arranged based on the
number of missing values in columns as the first criterion, and
the number of missing values in rows as the second criterion.
This rearrangement could distort the data distribution of a
dataset whereas several authors [10], [11] have argued that it
is more important that such imputations produce a workable
estimate that least distorts the values that are actually present.

To preserve both the data distribution and the continuous
values in a DGA dataset after the imputation process, this
study exploits the strong relationship between features and
classes (also known as feature-class relationship) as the main
criterion to produce the imputation order for each missing
value in a DGA dataset. In order to represent the degree of
feature-class relationship, each feature is given a weight I .
Thus a method that calculates I without having to discretize
the continuous values into discrete values is preferred. One of
the main issue of the proposed imputation ordering method
is to measure the weight I which is actually the distance
measure between features and classes. Fisher score, one of the
popular methods for determining the most relevant features for
classification, is chosen for measuring I since it works with
multiclass dataset and continuous data. In addition, to the best
of our knowledge, Fisher score has not been used as a criterion
for generating imputation order in the literature.

Let np denote the number of data points Xi in class p,
p = 1, · · · , c, p ∈ yi. Let µpand σp be the mean and variance
of the class p, corresponding to the jth feature fj . Let µ and
σ2 denote the mean and variance of the whole data set. Then,
the weight I for the feature fj is as below:

Ij = F (fj) (1)

where F (fj) is the Fisher score of the jth feature and is
defined as follows:

F (fj) =

c∑
p=1

np(µp − µ)2

c∑
p=1

npσ
2
p

(2)

Because a higher I indicates a stronger relationship, thereby
an ordered list of features based on descending I is established
where missing values in features with higher I are imputed
earlier.

However, an I-ordered feature may contain more than one
missing value as in the features of Table I. This gives rise to
the question of which missing value in an I-ordered feature
should be imputed first. The fact that an imputation algorithm
is an instance-based learning algorithm has compelled us to
consider the missing rate of the instances as the secondary
criterion, where instances with lower missing rates get higher
imputation priority. Let nummiss denotes the number of
missing values in Xi, and numfeature denotes the number
of features in Xi. The missing rate of an instance (denoted as

Ri, where i is the index of the instance) is defined as

Ri =
nummiss

numfeature
(3)

Using (3), all missing values in an I-ordered feature are sorted
in ascending R. A missing value where its instance has the
lowest R gets imputed first.

Using Table I as an example and assuming that each feature
fj has a weight Ij such that I4 ≥ I3 ≥ I2 ≥ I1. Only
f1 and f3 contain missing values, and since I3 ≥ I1, all
missing values in f3 are to be imputed first than the missing
values in f1. f3 has two missing values at instance X1 and
X3, respectively. Therefore, the secondary criterion is applied
and has resulted in R1 ≥ R3. Thus, X1f3 is the first to be
imputed, followed by X3f3. Because f1 has only one missing
value X3f1, than R become insignificant. Therefore, X3f1 is
the last to be imputed.

The proposed ordering in this study has two benefits:
a) it utilizes the relationship between features and classes

which helps preserve the correlation between features
and classes.

b) it avoids discretization of continuous values which pre-
vents loss of useful information.

B. Imputation Estimator

The next step after obtaining the ranked-list of missing
values from the imputation ordering component is to fill-in
the missing values with estimated values from the pool of
complete instances. Before doing so, this study adopts a few
considerations as follows.

a) the estimated values should be as close as possible to
the original (unobserved) values so that the covariance
or correlation to other variables are preserved.

b) no pre-processing of continuous values so that loss of
useful information is avoided.

c) non-parametric method is preferred since parametric
ones are based upon certain assumptions such as the
population of data values and the prior distribution for
the model parameters. These assumptions are difficult to
realize in real-world applications.

As one of the popular non-parametric imputation methods,
k-nearest neighbours (kNN) algorithm fulfills with all of the
above considerations as evident in [2] and [7], thus becomes
the proper choice for the estimation task. This method searches
the kNN of the instances with missing value(s) and replaces
the missing value(s) by the mean or mode value of the
corresponding feature values of the kNN. The quality of the
estimated values obtained from the kNN approach largely
depends on two important parameters: the choice of (k),
the number of neighbors used and the appropriate distance
metric. Simulation results have demonstrated that for small
datasets, k = 10 is the best choice (Acuna et al., [12]), while
Troyanskaya et al. ([13]) observed that kNN is insensitive
to values of k in the range of 10−20. Therefore, this study
replaces the missing values with estimated values from 1−10
nearest neighbors depending on the size of datasets. To get the
best k, a simulation is performed, by randomly changing the
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observed values into missing values, estimating these missing
values based on different choices of k, and measuring the error
between the imputed and the actual observed values. The k that
produces the smallest error can be considered as the best. In
this study, the Manhattan distance is used to measure similarity
between instances because of its simplicity in calculation and
easy decomposition into contributions made by each variable
(for the Euclidean distance, we would need to decompose
the squared distance). Most importantly, Manhattan distance
is more robust (since the distances are not squared) to the
influence of outliers compared to higher order distance metrics
including Euclidean distance and Mahalanobis distance.

The steps of kNN estimation are as follows:
1) choose k, the number of nearest neighbours to be

selected.
2) using the Manhattan distance metric, calculate the

distance between the instance with the to-be-imputed
missing value with another instance. Let Xi =
{xi1, · · · , xim} denotes the instance with the to-be-
imputed missing value, and Xq = {xq1, · · · , xqm} be
the other instance. The Manhattan distance between Xi

and Xq is calculated using (4)

dist(Xi, Xq) =

m∑
j=1

|xij − xqj | (4)

where m is the number of features in Xi and Xq , and
xij is the jth feature of instance Xi and xqj is the jth
feature of instance Xq .

3) Repeat step 2 to compute the distance between Xi with
each remaining instance in the dataset.

4) sort in ascending order (based on the calculated Man-
hattan distance values) all Xq excludes Xi.

5) select the top k instances from the sorted list as the k-
nearest neighbours to Xi. These k-nearest neighbours
are XkNN = {X1, X2, · · · , Xk}.

6) Let xij be the to-be-imputed missing value in Xi. Then
the estimated value is obtained from (5)

xij =

k∑
l=1

xlj

k
(5)

where k is the number of nearest neighbours, xlj is the
jth feature of instance Xl, and Xl ∈ XkNN .

C. Iterative Imputation

If the proposed imputation stops at the second component
of FINNIM, then all missing values are imputed only once.
This single-imputation approach, however, tends to overstate
precision because it omits the between imputation compo-
nent of variability [14]. Multiple imputation, where several
likelihood choices for imputing the missing values are com-
puted, incorporates data variability by replacing a missing
datum with two or more values representing a distribution of
likely values. As such, this study adds iterative imputation as
the third component, where each missing datum is imputed
using the imputation estimator iteratively until convergence

is reached. This study adopts the definition found in [8]
which concludes that when the change in estimated values in
successive iterations is zero or trends to a value which trends
fast and stably to zero means that the method has converged.
This component is divided into first iteration and successive
iterations as elaborated below.

1) First Iteration: For the first iteration, many studies [5],
[6] used the MEAN method to fill in the missing values but
this method can distort the original data distribution since
it causes the missing values to be artificially close to each
other. This motivates us to use our imputation estimator as
the imputation method in the first iteration since it takes into
account the data correlation. In this iteration, a missing value
xij in Du is selected for imputation from the ordered list of
missing values. Then, the imputation estimator is executed.
Here, the candidates for the k-nearest neighbours are selected
from instances in Dt that have the same label as the label of
Xi. These steps are repeated to each missing value in Du.
The final outcome of the first iteration is a filled and complete
dataset of Du. Let Du,1 be the filled and complete dataset of
Du and Du retains its original instances.

2) Successive Iterations: For the subsequent iterations, the
same steps in the first iteration are executed. However, the
candidates for the k-nearest neighbours of xij in Du are
selected from instances in (Dt+D(u,s−1)) that have the same
label as the label of Xi. If s is the current number of iteration,
then Du,s−1 is the outcome of the previous iteration. Each
iteration s will produce Du,s dataset. With the inclusion of the
imputed instances, all information are now used to estimate the
missing values in a DGA dataset. This phase stops when the
change in the estimated values drop to zero or does not drop
all the way to zero and only trends to a value which trends
fast and stably to zero in non-parametric models.

D. The FINNIM Algorithm

Below is the summarized algorithm for FINNIM.
input:
D =

{
Xi, yi

}n
i=1 //an incomplete dataset with n instances

output: Dcomp //complete and imputed dataset of D
begin
Imputation Ordering:

for each feature fj in Xi
Ij = Fisher-score of fj ;

end for
for each instance Xi in D
Ri = missing rate of Xi ;

end for
for each missing value xij in fj

if fj has 1 xij
O(i, j) = Ij ; // O(i, j) is the imputation order of xij

else
O(i, j) = Ij + Ri ;

end for
Drank = dataset that contains only missing values ranked by O(i, j)

Imputation estimator
k = an integer;
xij = a missing value;
Xi = the instance that contains xij ;
for each instance Xq in D
calculate the Manhattan distance between Xi and Xq using (4);

end for
Dneighbours = all Xq sorted in ascending Manhattan distance;
DkNN = X1, X2, · · · , Xk //the top k Xq from Dneighbours ;
calculate the estimated value for xij using (5);

First Iteration:
Dt = subset of D that contains complete instances only;
Du = subset of D that contains incomplete instances only;
s = 1;
for each missing value xij in (Drank ∩Du )

class = yi of Xi ;
Dclass = subset of Dt that contains instances having label ==class;
execute the Imputation estimator using Dclass ;

end for
D(u,s) = imputed and complete dataset of Du at iteration s = 1;

Successive Iterations:
D = Dt + D(u,s−1)
repeat

for each missing value xij in (Drank ×Du)
class = yi of Xi ;
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TABLE II
CHARACTERISTICS OF DGA DATASETS USED IN THIS STUDY

LITZW LITZM LITGY IEC10DB MAL
A 30 30 50 167 1228
B 5 5 5 7 9
C 5 5 5 6 6
D (%) 0 0 0 27.54 76.07
E (%) 0 0 0 7.96 14.21

A=number of samples, B=number of dissolved gases, C=number of fault
types, D=percent of instances with missing values, E=total number of

missing values

Dclass = subset of D that contains instances having label ==class;
execute the Imputation estimator using Dclass ;

end for
s = s + 1;
D(u, s) = imputed dataset of Du at iteration s

until convergence
Dcomp = Dt + Du,s //complete and imputed dataset of D

end

III. EXPERIMENTAL DESIGN AND RESULTS

A. Experimental Design

In this study, three DGA datasets named LITZW, LITZM,
and LITGY that contained no missing values were downloaded
from [15], [16], and [17] respectively. They were deliberately
chosen to help validate the accuracy of FINNIM, EM, MI,
REG and MEAN. Randomly simulated missing values were
then inserted to each dataset, and the missing rates were fixed
at 3%, 6%, and 9%. Missing rate is the total number of missing
values over the total number of values in a dataset. Next,
each method independently imputed each simulated dataset.
However, experiments performed on datasets with randomly
inserted missing values may not truly reflect the nature of
actual DGA data missing values. All the five imputation
methods were, therefore, tested on the IEC10DB and MAL
datasets which contain actual missing values. IEC10DB is
a benchmark database that contains actual missing values,
whilst the MAL dataset was obtained from a local utility
company in Malaysia that maintained power transformers all
over Malaysia. The characteristic of the five datasets are shown
in Table II.

For the implementation of FINNIM, the number of near-
est neighbors were selected as k=1,2,3,4,5 for the LITGY,
LITZM, and LITZW datasets as most classes have less than
ten instances. For the IEC10DB and MAL datasets, nearest
neighbors were restricted to k=1,3,5,7,10. For the implemen-
tation of MI, the number of repetition was set to M=5 because
according to [18], the MI method does not need a large number
of repetition for precise estimates. The number of iterations
for the EM method was manually selected for each dataset.

B. Evaluation on Convergence

Since FINNIM and EM are iterative imputation methods, it
is important to determine at which point additional iterations
have no meaningful effect on the imputed values, i.e. how to
evaluate the convergence of the two algorithms. For datasets
with actual missing values, Table III shows the convergence
results where each cell represents the number of iterations
needed to converge. For MAL dataset, FINNIM with k=1 and
k=5 required less number of iterations than EM. However,

TABLE III
COMPARISON OF CONVERGENCE BETWEEN FINNIM AND EM USING

DATASETS WITH ACTUAL MISSING VALUES

Dataset FINNIM EM
k = 1 k = 3 k = 5 k = 7 k = 10

MAL 6 49 11 148 77 23
IEC10DB 4 7 23 19 14 38

TABLE IV
COMPARISON OF CONVERGENCE BETWEEN FINNIM AND EM USING

DATASETS WITH SIMULATED MISSING VALUES

Dataset FINNIM EM
k = 1 k = 2 k = 3 k = 4 k = 5

LITGY 3% 4 4 4 4 4 3
6% 4 4 4 4 5 7
9% 4 5 5 5 6 10

LITZM 3% 4 4 4 4 4 7
6% 4 4 4 4 4 6
9% 4 5 4 5 5 5

LITZW 3% 4 4 4 4 4 6
6% 4 4 4 7 6 8
9% 4 4 5 4 4 6

the other three k needed more iterations than EM. For the
IEC10DB dataset, all k of FINNIM needed less number of
iterations to converge than EM.

For datasets with artificially inserted missing values, Table
IV shows the comparison of performances between FINNIM
and EM on these datasets. Here, both methods have almost
similar convergence performances where the number of itera-
tions needed is mostly small for all values of k. Nevertheless,
FINNIM converged faster than EM in most experimental
settings. Only once did EM perform better than FINNIM
on the LITGY dataset for all values of k and the missing
rate was 3%. However, for the other two datasets, FINNIM
for all values of k required a few iterations lesser than EM
to converge. Overall, the results on all datasets showed that
both methods converge but FINNIM converged faster than EM
in most experimental settings. We note that, despite the big
difference in the number of iterations needed to converge and
the various sizes of the datasets, both of the methods require
very minimal time to converge ( seconds only ) for all values
of k and for all missing rates on each datasets. It can be
said that, because time is insignificant, convergence rate is
not so important as what is more important is the accuracy of
the imputed values - how different are they compared to the
actual observed values. The next section III-C evaluates the
accuracy of the imputation methods mentioned in this study
in estimating missing values in different datasets.

C. Evaluation on Imputation Accuracy

The accuracy of a set of imputation methods were compared
by computing a statistic quantifying the deviation between the
estimated and the true values for each imputation method.
These were done using normalized root mean squared error
(NRMSE) as recommended by [19] for datasets with contin-
uous variables. The imputation method achieving the smallest
NRMSE gives the most correct picture of the complete data
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TABLE V
NRMSE FOR FINNIM USING DIFFERENT VALUES OF k

Dataset NRMSE
k = 1 k = 2 k = 3 k = 4 k = 5

LITGY 3% 0.74 0.66 0.52 0.58 0.62
6% 0.70 0.66 0.60 0.58 0.60
9% 0.66 0.65 0.59 0.56 0.59

LITZM 3% 0.74 0.67 1.10 1.43 1.41
6% 0.69 0.57 0.62 0.59 0.64
9% 0.62 0.61 0.70 0.80 0.86

LITZW 3% 0.58 0.51 0.44 0.46 0.56
6% 0.66 0.59 0.61 0.62 0.74
9% 0.64 0.62 0.59 0.60 0.73

when estimated values were included. NRMSE is defined by

NRMSE =

√√√√∑n
i=1

∑m
j=1 [ẽij − eij ]

2∑n
i=1

∑m
j=1 [eij ]

2 (6)

where eij is the original value; ẽij is the estimated value, n
and m are the total number of rows and columns, respectively.
The more NRMSE is, the less is the prediction accuracy. These
evaluations were done on the imputed LITGY, LITZM and
LITZW datasets.

Because FINNIM used kNN algorithm to estimate the
missing values, the effect of the value of k on the NRMSE was
evaluated and the best k for each dataset was identified. Table
V shows the calculated NRMSE for each k over three datasets.
It can be seen that for the three imputed datasets, lower and
higher values of k produced higher NRMSE. With lower k,
only a small set of correlated instances are used to estimate
the missing values while other highly correlated instances are
ignored. When k is high, instances which have either very low
or no correlation with the instance having missing values will
be included in the estimation process. Both scenarios decrease
the performance of FINNIM. For the LITGY dataset, k = 3
produced the least NRMSE, while k = 2 was FINNIM the
most accurate on the LITZM dataset, and FINNIM required k
= 3 to produce the best estimates on the LITZM dataset.

Next, we evaluated the efficiency of FINNIM and the
four established methods (EM, MI, REG and MEAN). These
comparisons were done using FINNIM at its best perfor-
mances as identified above. Fig.2, Fig.3 and Fig.4 illustrate
the performance of each method for each dataset. It is clear
that FINNIM surpassed the four methods for most of the
experimental settings. FINNIM was the most accurate at all
missing rates for the LITZM dataset. The efficiency of EM
was comparable to FINNNIM for all of the datasets. In fact,
at 6% missing rate in the LITGY and LITZW datasets, EM
produced the least NRMSE values. The MI method was the
least efficient of all for all of the datasets, followed by the
REG and the MEAN methods. It can be seen that the NRMSE
values of FINNIM were the most stable over the whole range
of tested missing rates in all of the datasets, a testimony of
the robustness of FINNIM. The EM and the MEAN methods
were comparably robust to FINNIM. However, the REG and
MI methods experienced high fluctuations of NRMSE values
over different missing rates, especially at the 9% missing rate.
Again, the MI was the least robust of all.

Fig. 2. Imputation Accuracy of FINNIM for the LITGY dataset

Fig. 3. Imputation Accuracy of FINNIM for the LITZM dataset

For more careful estimation of imputation efficiency, we
examined the structure of data after imputation. We calculated
the Pearson correlation coefficients for each feature between
original data and imputed data. The larger the correlation
coefficient is, the better the relationship between original
complete data and imputed data is preserved in a feature. Due
to lack of space, the correlation coefficients are shown only for
each imputation method and for each dataset at 9% missing
rate. Table VI, VII, and VIII show that the FINNIM method
preserved the structure of the original data set better than the
other four methods for many features of the three datasets.
In fact, for all features of the LITGY dataset, FINNIM was
the most efficient. Interestingly, the MI method was the worst
method, congruent with the NRMSE analysis. This column-
wise comparison gives us more specific information on the
efficiency of imputation method.

D. Evaluation on Classification Accuracy

To evaluate the performance of an imputation method
that imputes actual missing values in a dataset, a different
approach is required instead of the NRMSE. The fact that the
actual complete values are not known has made the NRMSE
unsuitable for the evaluation task. This scenario motivates
us to use the classification accuracy of a machine learning
algorithm as the evaluation criteria, because one desirable
characteristic of an imputation method is the ability to improve
the classification performance of a learning algorithm [7]. The
classification accuracy is defined as:

Accuracy =
nc
n
× 100% (7)

where nc is the number of instances whose class labels being
correctly predicted and n is the total number of instances
in a test set. Recently, a growing number of researchers
have applied SVM for the classification of faults in power
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Fig. 4. Imputation Accuracy of FINNIM for the LITZW dataset

TABLE VI
PEARSON CORRELATION COEFFICIENT FOR THE LITGY

H2 CH4 C2H6 C2H4 C2H2

MEAN 0.9907 0.9923 0.9967 0.9930 0.9988
REG 0.9669 0.9655 0.9886 0.9991 0.9873
EM 0.9959 0.9996 0.9897 0.9997 0.9986
MI 0.9101 0.9864 0.9667 0.9603 0.9603
FINNIM 0.9972 0.9999 0.9977 0.9999 0.9999

transformers and have reported higher classification accuracies
with SVM than other widely used learning algorithms, such
as the multilayer perceptron neural network, back-propagation
neural network and fuzzy logic [20]-[21]. Therefore, this
study chose the classification accuracy of SVM to measure
the performance of an imputation method on datasets with
actual missing values. First, imputed datasets and the original
incomplete datasets of IEC10DB and MAL were divided into
training and testing subsets where the number of instances for
each fault type on both subsets were divided into 70:30 ratio,
respectively. Finally, SVM was trained on each training set
and its classification accuracy was evaluated by applying the
classification learnt model on the corresponding testing set.
On each dataset, this experiment was independently run 10
times and the classification accuracy was the average of 10
accuracies.

To identify which k improved the learning task of SVM the
most, we compared the performances of SVM using FINNIM-
imputed datasets with the original incomplete datasets and
the results are shown in Table IX. From it we observe that
on the MAL dataset, FINNIM increased the SVM accuracies
for all values of k except at k = 1, which recorded lower
accuracy than the original incomplete dataset. In the case of
the IEC10DB dataset, SVM performed better on all value of k
than the incomplete dataset. Both datasets reported k = 3 as the
best number of neighbor for estimating missing values. It can
be said that the increased performance of SVM for majority
of k on both of the datasets demonstrates that FINNIM indeed
meets the one desirable characteristic mentioned before.

Next, the effectiveness of each imputation method to im-
prove the classification accuracy of SVM was validated using
the ”before-and-after” experiment where the accuracy of SVM
learned on the original incomplete dataset and that learned on
the imputed dataset was compared as shown in Table X. We
observe that in the case of the MAL dataset, only FINNIM
managed to increase the SVM performance, whilst the other

TABLE VII
PEARSON LITZM

CH4 C2H6 C2H4 C2H2

MEAN 0.9891 0.9515 0.9853 1.0000
REG 0.9882 0.9976 0.9909 1.0000
EM 0.9946 0.9965 0.9962 1.0000
MI 0.8080 0.8287 0.8382 1.0000
FINNIM 0.9896 0.9986 0.9991 1.0000

TABLE VIII
PEARSON LITZW

H2 CH4 C2H6 C2H4 C2H2

MEAN 0.9913 1.0000 0.9782 0.9978 0.9978
REG 0.9948 1.0000 0.9908 0.9525 0.9998
EM 0.9888 1.0000 0.9819 0.9967 0.9810
MI 0.8842 1.0000 0.9464 0.9807 0.9980
FINNIM 0.9966 1.0000 0.9727 0.9984 1.0000

four methods behaved oppositely. For the IEC10DB dataset,
only three methods (FINNIM, EM and REG) increased the
classification accuracy of SVM compared to the original
dataset, with FINNIM scored the highest followed by the EM
method and lastly, the REG method.

We analyzed the statistical significance of differences in
classification accuracies of SVM on the FINNIM-imputed
datasets and on the imputed datasets obtained from the other
four methods based on paired t-tests at the 95 percent signifi-
cance level. The significance is computed for each pair of com-
pared algorithms based on average classification accuracies
across the two data sets. The results are presented in Table XI.
The results show that on the MAL dataset, FINNIM improves
the classification accuracy of SVM significantly compared to
the other methods. This indicates FINNIM robustness over
higher percentage of missing values as shown on the MAL
dataset. For the IEC10DB dataset, FINNIM has significant
advantage over the MEAN method in improving SVM classi-
fication performance.

E. Analysis

Our proposed method offered better performance in con-
vergence complexity, imputation and classification accuracies
than the other four established methods for datasets with
artificially inserted missing values as well as for datasets with
actual missing values. FINNIM computational complexity was
comparable to EM - the other iterative method compared in
this study - especially on small datasets of DGA. Convergence
iterations differed on individual datasets but all experiments
took seconds to complete. Notably, the FINNIM method was
robust to different percentages of missing values contained
in a dataset. For the REG, MEAN, and MI methods, their
efficiency for imputing missing values were not maximized in
that they did not efficiently use the information of the instances
having missing values. The existence of missing values in an
instance limits the use of other observed values of that instance
in these well-known imputation methods. In our work, this
problem was improved by using the imputed values iteratively
for the latter nearest neighbor calculations and imputations.
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TABLE IX
COMPARATIVE PERFORMANCES OF SVM ON THE FINNIM-IMPUTED DATASETS

Incomplete FINNIM(k=1) FINNIM(k=3) FINNIM(k=5) FINNIM(k=7) FINNIM(k=10)
MAL 93.18 92.78 93.54 93.48 93.40 93.46
IEC10DB 59.62 61.54 62.12 60.39 61.15 61.54

TABLE X
COMPARATIVE PERFORMANCES OF SVM ON DATASETS IMPUTED BY ALL

METHODS

Incomplete FINNIM MEAN REG EM MI
MAL 93.18 93.54 75.17 65.08 73.51 76.08
IEC10DB 59.62 62.12 57.31 59.81 60.38 56.92

TABLE XI
STATISTICAL DIFFERENCE OF PAIRED METHODS USING PAIRED-T TEST

p-value
MAL IEC10DB

FINNIM-vs-INCOMPLETE 0.07 0.125
FINNIM-vs-MEAN 0.001 0.049
FINNIM-vs-REG 0.001 0.291
FINNIM-vs-EM 0.001 0.500
FINNIM-vs-MI 0.001 0.104

The iterative reuse of imputed data did not propagate errors of
imputation as the missing rate increased which made FINNIM
registered the best improvement of accuracy for datasets with
high missing rates where the NRMSE results of FINNIM were
the lowest.

It can be seen that FINNIM preserved the original distribu-
tion of a dataset better than the extant approaches. They neither
exploited the relationship between features and classes nor
assigned imputation hierarchy when imputing missing values
in a DGA dataset. FINNIM, on the hand utilized this feature-
class relationship - the basis principle of the DGA method -
to determine imputation hierarchies for missing values during
the imputation ordering phase. Using the imputation order,
features that strongly discriminated the classes were imputed
earlier than the less relevant ones, a step which made FINNIM
preserve correlations to other features better than the existing
approaches as shown in the Pearson coefficient results. Also,
by selecting nearest neighbors having the same class label
with the instance of interest during the imputation estimator
phase further enhanced the preserving ability of FINNIM.
Our proposed method also increased the performance of a
supervised machine learning algorithm, that is SVM. Over
various missing percentages and size of datasets, FINNIM-
imputed datasets managed to raise the accuracy of SVM higher
than the incomplete datasets. Especially, for the dataset with
high number of missing values, FINNIM surpassed the other
four methods significantly with p less than 0.001 and was
marginally significant to the incomplete one with p value(0.07)
close to 0.05. For the small dataset, SVM performance was
significantly better using FINNIM-imputed dataset than using
MEAN-imputed dataset.

Meanwhile, the performances of the other four methods
largely depended on the individual datasets. To the best of
our knowledge, all the methods have not been well introduced

in the domain of power transformer fault diagnosis using DGA
method despite the fact that the EM and MI methods are the
state of the art imputation methods. For small datasets such
as IEC10DB, LITGY, LITZM, and LITZW, the MI method
performed the worst both in imputation and classification
accuracies. As stated in [18], the MI method relies on large
sample for unbiased estimates, therefore, we can conclude
that the MI method is not effective for imputing missing
values in small DGA datasets. If a research objective is to
improve the learning task of a supervised learning algorithm,
the EM method can be an alternative candidate for imputing
missing values in small DGA datasets, under consideration
of its comparable effectiveness to FINNIM in meeting the
said objective, especially for SVM. The EM method was
comparable to FINNIM in producing accurate estimates in
small DGA datasets. Moreover, the EM method was as robust
as FINNIM over various percentages of missing values.

From the results, we can safely said that the compounded
effects of the three components of FINNIM helps exert
relatively more accurate imputation and classification than
the four imputation methods. We want to highlight that for
small DGA datasets, methods using incomplete and complete
values (FINNIM and EM) achieved even better accuracy than
the method using only observed values (REG, MEAN, and
MI). For various type of datasets, researchers in [5], [6]
also demonstrated the better performance of their proposed
methods against compared extant approaches. Using estimated
values iteratively was one of the key components for their
methods. If iterative use of estimated values is a shared
concept in FINNIM, [5], and [6], imputation ordering - a
component of FINNIM - is not. The contribution of this
component in preserving data distribution has been highlighted
earlier.

Although FINNIM is built for the DGA datasets, we suggest
that for datasets having similar characteristics as the DGA
datasets and if the objective is to improve classification accu-
racy of a learning algorithm, then imputing missing values
using FINNIM can be considered as a pre-processing step
to improve data quality before learning process takes place.
Through data summarization, researchers in [22] presented
robust and efficient rules and matched antecedents to diagnose
fault in welding dataset. For an instance with missing values,
their method ignored those features with missing values, which
led to multiple rules and probabilities being activated and
estimated, and the class with the highest probability score
is assigned to an unknown data point. Instead of ignoring
those features with missing values in the welding dataset,
the researchers may apply our proposed method to impute
the missing values in the experimented dataset before feature
selection and rules extraction processes take place. Imputing
with our proposed method may reduce the complexity of their
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approach - less rules and probabilities activation and estima-
tion - and may increase the performance of their method.

Missing data in the form of packet dropouts is one of the
problems commonly faced by networked system [23], [24],
[25]. Missing data is also an issue faced by discrete-time
systems as mentioned in [26], [27]. Majority of these studies,
while incorporating the missing data probability during the
design stage of their proposed solution, eluded from estimat-
ing the missing data. Researchers in [23] applied corrective
sampling-based (CS) algorithm which required no estimation
of the missing packets. However, the maximum number of
missing data tolerated by their CS depends on the value
of sketch length - one of the CS design parameters. This
constraint may limit the efficiency of their proposed method
because it is difficult to estimate the number of missing values
in any dataset beforehand. This possible drawback can be
avoided by estimating the missing packets using our proposed
method as a pre-processing step to their CS algorithm. To solve
H∞ filtering problem for discrete-time systems, [26] proposed
a measurement that compensated the negative influence of
missing data by representing the missing data as a stochastic
variable that satisfied the Bernoulli binary distribution. Instead
of assuming the probability of the missing data occurrence,
[26] can apply the FINNIM algorithm to estimate the missing
data as alternative approach to handling missing data in
discrete-time systems.

IV. CONCLUSION

This paper has presented an efficient imputation method
named FINNIM that estimates missing values in DGA
datasets. Experiment results have demonstrated that FINNIM
outperforms EM, MI, REG and MEAN, in terms of imputation
accuracy, the classification accuracy, and the convergence
criteria. In particular, FINNIM lives up to one desirable
characteristic for an imputation method that is the missing
data estimation improves the classification performance of a
learning algorithm, that is SVM. In future, we aim to replace
kNN algorithm with SVR as the estimator in the second
component of FINNIM. First, set a feature with missing
values as the output attribute and the other features as the
input attributes. Then, predict all missing values in the output
attribute using SVR. Repeat these two steps for the other
features. The imputation ordering will consist of only I , which
determine the sequence for selecting a feature as the output
attribute. The whole process is iteratively executed according
to steps in Section II-C.
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