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ABSTRACT  

The rapid growth of Android-based mobile devices technology in recent years has increased the proliferation of 

mobile devices throughout the community at large. The ability of Android mobile devices has become similar to its 

desktop environment; users can do more than just a phone call and short text messaging. These days, Android mobile 

devices are used for various applications such as web browsing, ubiquitous services, social networking, MMS and many 

more. However, the rapid growth of Android mobile devices technology has also triggered the malware author to start 

exploiting the vulnerabilities of the devices. Based on this reason, this paper explores mobile malware detection through an 

n-gram system call sequence which uses a sequence of system call invoked by the mobile application as the feature in 

classifying a benign and malicious mobile application. Several n-gram values are evaluated with Linear-SVM classifier to 

determine the best n system call sequence that produces the highest detection accuracy and highest True Positive Rate 

(TPR) with low False Positive Rate (FPR). 
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INTRODUCTION 

Technological advancement had produced many 

mobile operating systems such as iOS from Apple, 

Blackberry, Symbian, Windows mobile and Android by 

Google. Of all the systems mentioned, the most popular 

platform is the Android system by Google as it has 

controlled over 80% of the overall mobile devices market 

sales in 2013 [1]. Despite the high market demand, 

Android-based mobile devices are also exposed to mobile 

malware threat. This is shown in the 2013 Kaspersky’s 
Lab report which reveals almost 98 % of the mobile 

malware found in 2013 is targeting the Android platform 

[2].  A mobile device infected by malware can expose the 

user to information theft, activity and location sniffing, 

overbilling of sending random SMS and MMS to contacts, 

being exploited as denial of services attack source and can 

cause the mobile device resources such as memory, battery 

and storage overloaded by unknown processes [3]. 

To date, several mitigation processes to overcome 

the mobile malware infection have been introduced. For 

instance, software companies have introduced their mobile 

version of antivirus, yet they still detect malware using the 

signature approach and works as a cleaning up service 

after the mobile devices have been infected. Since the 

signature based mobile malware detection only detects 

known malware, a new malware on the market can easily 

evade this approach. Furthermore, solely depending on 

antivirus is not enough. Based on Zhou et al. [4], in the 

best case, only 79.6% antivirus can detect the mobile 

malware variant they have collected and even worse, some 

existing antivirus only detected 20.2% of the malware 

variant. Hence, there is a need for an effective approach in 

detecting mobile malware.  

Another detection approach that can be used to 

mitigate mobile malware is the anomaly-based detection 

which has the ability to monitor regular activities in the 

devices and look for any behavior that deviates from the 

normal pattern. Anomaly-based detection is effective in 

detecting a known and unknown malware, yet it has a 

drawback of generating false alert which indicates an 

incorrectly classified benign application to be malicious or 

vice versa. This research also uses the anomaly-based 

detection approach through the machine learning 

classifying technique in revealing the benign and 

malicious method. On the contrary, this research attempts 

to improve the drawback of the anomaly-based detection 

by improving the detection TPR, FPR and accuracy using 

the n-gram system call sequence as a feature in classifying 

the mobile malware. The n-gram system call sequence is 

an n number of system call sequence invoked by the 

mobile application. The n-gram system call sequence can 

be used to represent a set of system call processes invoked 

by the malicious application. The basic concept of this 

approach is discussed in the next section.  

 

RELATED WORK 

Malicious software or called malware is written 

for the purpose of exploiting the weaknesses found in a 

computer system. The rapid changes and evolution of 

malware have made it difficult to stop any malware in any 

platform. The first step in mitigating the mobile malware 

is to understand how mobile malware behaves in mobile 

devices. This can be done by analyzing the malware 

sample itself. Malware analysis can enable researchers to 

observe and obtain the real behavior of a malware in 

action [5]. Based on the work done by [6] and [7] most 

Android-based malware has the following malicious 

intentions. 

 

 Changes and accessing file system, e.g. creation, 

modification or deletion of files. 

 Attempts on root access, e.g. creation or modification 

root files. 
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 Infection of running processes, e.g. to insert malicious 

code into other processes, or updating packages. 

 Acquiring of sensitive data, e.g. IMEI, GEO Location 

or SMS and call log. 

 Network activity and transfer, e.g. HTTP connections. 

 Starting and stopping OS or application, e.g. restart 

OS. 

The comparison between the malicious intention 

with the mobile malware behavior experiment and the 

observation made in the previous work [8] reveals that the 

behavior of mobile malware can be traced via the system 

call invoked by the application. Figure 1 shows a sample 

of the system call log file captured in the experiment run 

in [8]. 

 

Argument In System Call

GoldDream

System Call

Writev

writev

3 [{"\3", 1}, {"Gsm/SmsMessage\0", 15}, {"SMS SC timestamp: 1410667507000\0", 32}]

3 [{"\6", 1}, {"Gsm/SmsMessage\0", 15}, {"hasUserDataHeader : false\0", 26}]

futex

access

open

fstat64

chmod

write

fstat64

close

0x409a76a8 0x81 /* FUTEX_??? */

"/data/data/com.GoldDream.pg03/files" F_OK

"/data/data/com.GoldDream.pg03/files/zjsms.txt"

O_WRONLY|O_CREAT|O_APPEND|O_LARGEFILE

61 {st_mode=S_IFREG|0660, st_size=365, ...}

"/data/data/com.GoldDream.pg03/files/zjsms.txt" 660

61 "+60126730936#Account 56789543216 pin 6785#2014-09-14 12:05:07\r\n"

61 {st_mode=S_IFREG|0660, st_size=428, ...}

61

Access

Access

Stat64

futex

"/data/data/com.GoldDream.pg03/shared_prefs/GoogleAdMobAdsPrefs.xml.bak" F_OK

"/data/data/com.GoldDream.pg03/shared_prefs/GoogleAdMobAdsPrefs.xml" F_OK

"/data/data/com.GoldDream.pg03/shared_prefs/GoogleAdMobAdsPrefs.xml" 0x541c2bf8

0x4dea47e8 0x81 /* FUTEX_??? */

Associate with 

sms logging

Associate with 

accessing file 

 
 

Figure-1. A GoldDream system call log for capturing and logging user SMS. 

 

writev writev access fstat chmod write fstat close

 
 

Figure-2. Sequence of system call used to capture and log 

sms received. 

 

SYSTEM CALL AND N-GRAM ANALYSIS 

A set of system call invoked by a mobile 

application through the kernel interface in an operating 

system is able to provide accurate information on the 

behavior of a mobile application. This is based on the 

reason that all requests made from the mobile application 

such as network communication, file management or 

process related operations have to pass through to the 

kernel using the system call interface before they are 

executed. This system has been used by these people in 

their work; Crowdroid [9], Isohara et al. [10], Azteni et al. 

[13], AMDA [11] and MADAM [12]. Crowdroid captures 

the whole system call invoked by application and use K-

mean clustering algorithm to distinguish the benign and 

malicious application. Meanwhile, Isohara et al. applies a 

based signature approach in detecting mobile malware by 

filtering list of system call against a database of malicious 

system called regular expressions signature. System call 

dependency graph of an app execution and supervised 

learning machine learning is used by Azteni et al. to 

classify the application. MADAM and AMDA use 

machine learning classifier on a set of selected system call. 

Similarly, these researches used the anomaly-based 

detection approach and system call as features to 

distinguish a benign and malicious mobile application, yet 

our approach attempts to improve the detection rate 

accuracy and reduce the false alert using the n-gram 

system call sequence. The classification accuracy achieved 

by AMDA and Azteni et al. using their approach are 

71.15% and 86.80%, respectively. 

 

RESEARCH METHODOLOGY 

This paper proposes an n-gram system call sequence as a 

feature to be used in machine learning classifying 

algorithm for classifying the benign and malicious android 

application. For the purpose of this research, the study has 

captured the system call invoked from 100 normal 

Android applications acquired from Google play and 102 

infected Android applications acquired from the 

MalGenome Project [4]. Each Android application used in 

this experiment is scanned with these antiviruses, 

Bitdefender [20], eseT [21] and VirusTotal [22] for 

verification whether it is truly a malicious or benign 

application. Every Android application is executed on a 

tablet and stimulated with user interaction such as web 

browsing and SMS for 10 minutes. After each execution 

and simulation, the tablet is wiped out clean to its factory 

setting before another Android application is installed. 

This manual approach is used for evading any anti 

emulator or virtual machine evasion mechanism that might 

be included in the malicious application. The research 

methodology used in this research consists of four phase; 

data collection phase, n-gram extraction phase, machine 

learning classifiers phase and performance evaluation 

phase. The research methodology is depicted in Figure-3. 

In data collection phase (Phase I), each application runs on 

a real device in an experimental test bed environment [23]. 

The system call generated by each of the application is 

captured in a log file using a tool called strace.  Next, an 

extraction module is introduced in Phase II.  The module 

starts by extracting all the system call sequence and 
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dropping all the parameter from the system call log. The 

sequence of system call is then encoded into a Unicode 

UTF-8 representation before it goes through the N-gram 

Generator. The encoding of system call will represent each 

system call with a unique character; hence it reduces the 

size of data stored for processing. Finally, the output of the 

N-gram Generator is a data set consists of n-gram system 

call sequence and its occurrence frequency, fngram. In 

order to evaluate the optimum n value, this research only 

generates 6 different dataset comprise of 1-gram, 2-gram, 

3-gram, 4-gram, 5-gram and 6-gram system call sequence 

for evaluation. Each of n-gram system call sequence 

subset is then applied to the classifier in Phase III.  
 

  Phase IV  

  Phase III 

  Phase II  

  Phase I  

Normal

Application

Malicious

Application

System call log

System call sequence 

extraction

Encoding

N-gram Generator

2-gram:f2 3-gram:f3 4-gram:f4 5-gram:f5 6-gram:f61-gram:f1

Classifier

Performance Evaluation

 

 Figure-3. Research methodology. 

 
The evaluation for finding the optimum n-value in the n-

gram system call sequence for this research uses the 

linear-SVM classifier provided in the LibLinear Package 

introduced by [24]. The approach is chosen based on the 

fact that Linear SVM is suitable for machine learning 

applications that deal with large instances and features 

such as in text classification and bioinformatics [25] and 

with the number of features increased as the value of n-

gram is increased, the Linear SVM classifier is the 

appropriate classifier algorithm for this evaluation. Given 

a data set of instance (xi, yi), i = 1,..., l, xi ∈ Rn, yi ∈ {−1, 
+1}, Linear SVM type L2-SVM can be used to solve the 

optimization problem for 
 

                     (1) 
 

Where C > 0 is a penalty parameter and the loss 

functions is   ii xy  1,0max 2 

Finally, Phase IV evaluates the performance of the 

classifier based on the True Positive Rate (TPR) that 

indicates the rate of correctly detecting an instance as 

malware, False Positive Rate (FPR) that indicates the rate 

of false detection of benign application as malware, and 

Accuracy is the percentage of correctly classified benign 

or malicious mobile application [26], [27], [28]. The best n 

value is chosen based on the number of system call 

sequence that can generate the highest detection Accuracy 

and TPR while the FPR is low. The equation of all 

matrices represented as below: 
 

     (2) 
 

     (3) 
 

     (4) 
 

Where 

TP = number of malware cases correctly classified (true 

positives) 

FN = number of malware cases misclassified as legitimate 

software (false negatives) 

FP = number of benign software cases incorrectly detected as 

malware  

TN = number of legitimate executables correctly classified.    

 
ANALYSIS AND DISCUSSION 

The Linear SVM applies in this experiment is the 

L2-SVM classifier from the Liblinear package and the 

experiment is performed using Weka 3.7.10 [26]. The 

experiment is done on Windows 7 that runs on a desktop 

computer with Pentium Dual Core CPU and 2GB of 

RAM. The classifier evaluation is validated using k-fold 

cross-validation which can estimate how well the learned 

model generalizes. For this implementation, the value of k 

is set to be 10. The 10 fold cross validation divided the 

data into 10 subsets and the holdout method is repeated for 

10 times. In every fold, the subset is divided into 9 training 

sets and one testing set. The average value of the 

performance metric from each fold result is taken as a 

single estimation result for the overall implementation 

performance. The empirical results of the experiment are 

shown in Table-1.  

 

Table-1. The classifier performance evaluation result. 
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Table-1 shows the TPR, FPR and the Accuracy of 

6 different n-gram system call sequence and it apparently 

shows 3-gram system call sequence has the highest 

detection accuracy which is 96.19% and FPR which is 5%. 

Even though the TPR is only 97.06% and not the highest 

value, 3-gram system call sequence provide a 

classification between benign and malicious application 

with high detection accuracy and low FPR. Comparatively, 

the 3-gram system call sequence provides better 

classification accuracy with an acceptable TPR and the 

lowest FPR value compared to the 1 gram system call. 

Interestingly, when n-gram is higher than 3-gram, the 

accuracy is decreasing. This is due to the higher the 

number of n-gram sequence, the fewer occurrences of the 

system call sequence will be invoked hence, most of the 

system call sequence value will be 0. This causing the 

system call sequence for the higher n-gram generates a 

sparse vector, resulting in lower detection accuracy.  

 

CONCLUSIONS 

Mobile malware evolution was triggered due to 

the rapid development in mobile device technology. It has 

multiplied greatly in recent years and causing adverse 

effects towards mobile users. Thus, there is a need in 

finding more effective measure to handle this issue as this 

paper explores the used of n-gram system call sequence as 

a feature in classifying benign and malicious android 

application. The experiment and evaluation of the n-gram 

show that the n-gram can improve the accuracy for the 

classification made and the false alarm rate which solved 

the issues in anomaly-based malware detection. The 3-

gram system call sequence returns the highest detection 

accuracy with a well-balanced TPR and FPR values even 

though it cannot achieve 100% for the TPR value 

compared to 4, 5 and 6 gram system call sequence. For 

future works, the proposed method may be potentially 

applied in developing Android malware detection. 

However, there is still an issue to be addressed especially 

in the limitation and constrain of mobile devices’ 
environment especially on the storage and memory 

consumption such as the large number of features 

generated as the n-gram value increases.    

 
ACKNOWLEDGEMENTS 

The authors would like to express their gratitude 

to InsForsNet research group of Universiti Teknikal 

Malaysia Melaka (UTeM) for the invaluable support in 

encouraging the authors to publish this paper. This work is 

supported by UTeM’s Short Grant funding 
(PJP/2013/FTMK(9D)/S01167). 

 

REFERENCES 

 

[1] R. van der Meulen and J. Rivera. 2013. Gartner Says 

Smartphone Sales Accounted for 55 Percent of 

Overall Mobile Phone Sales in Third Quarter of 

2013, (Gartner Newsroom), [online] Retrieved on 

December 2012 from 

http://www.gartner.com/newsroom/id/2623415. 

 

[2] C. Funk and M. Garnaeva. 2013. Kaspersky Security 

Bulletin 2013. Overall statistics for 2013”, 

(Securelist), [online] Retrieved on December 2013 

http://www.securelist.com/en/analysis/204792318/K

asper.sky_Security_Bulletin_2013_Overall_statistics

_for_2013 

 

[3] M. La Polla, F. Martinelli, D. Sgandurra. 2013.  A 

Survey on Security for Mobile Devices. 

Communications Surveys & Tutorials, IEEE.  15(1): 

446-471. 

 

[4] Y. Zhou, J. Xuxian. 2012. Dissecting android 

malware: Characterization and evolution. In Security 

and Privacy (SP), 2012 IEEE Symposium on. 95-

109. 

 

[5] D. Farmer, W. Venema. 2005.  Forensic discovery, 

Vol. 6, Upper Saddle River: Addison-Wesley. 

 

[6] A. P. Felt, M. Finifter, E. Chin, S. Hanna, D. 

Wagner. 2011. A survey of mobile malware in the 

wild. In Proceedings of the 1st ACM workshop on 

Security and privacy in smartphones and mobile 

devices. pp. 3-14. 

 

[7] H. Pieterse, M. S. Olivier. 2012. Android botnets on 

the rise: Trends and characteristics. In Information 

Security for South Africa (ISSA). pp. 1-5.  

 

[8] M. Z. Mas'ud, S. Sahib, M. F. Abdollah, S. R. 

Selamat, R. Yusof, R. Ahmad. 2013. Profiling 

mobile malware behaviour through hybrid malware 

analysis approach. Information Assurance and 

Security (IAS). 9th International Conference on. pp. 

78-84. 

 

[9] I. Burguera, U. Zurutuza, S. Nadjm-Tehrani. 2011. 

Crowdroid: behavior-based malware detection 

system for android. In: Proceedings of the 1
st
 ACM 

workshop on Security and privacy in smartphones 

and mobile devices. pp. 15-26. 

 

[10] T. Isohara, K. Takemori, A. Kubota. 2011. Kernel-

based Behavior Analysis for Android Malware 

Detection. Computational Intelligence and Security 

(CIS), Seventh International Conference on. pp. 

1011-1015.  

 

http://www.arpnjournals.com/


                             VOL. 11, NO. 5, MARCH 2016                                                                                                                   ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
3126 

[11] Abela, K. Joshua, J.  R. D. Alas, D. K. Angeles, R. J. 

Tolentino, M. A. Gomez. Automated Malware 

Detection for Android AMDA. In: The Second 

International Conference on Cyber Security, Cyber 

Peacefare and Digital Forensic (CyberSec2013). 

180-188.  

 

[12] G. Dini. , F. Martinelli, A. Saracino, D. Sgandurra. 

2012. MADAM: a multi-level anomaly detector for 

android malware. In Computer Network Security. 

240-253. 

 

[13] W. B. Cavnar, J. M. Trenkle. N-gram-based text 

categorization. Ann Arbor MI 48113.2. 161-175. 

 

[14] D. Jurafsky, J.  H. Martin. 2000. Speech & language 

processing. Pearson Education India. 

 

[15] S. Zhou, and G. Jihong. 2002. Chinese documents 

classification based on N-grams. Computational 

Linguistics and Intelligent Text Processing. Springer 

Berlin Heidelberg. pp. 405-414. 

 

[16] J. Arpith and M. Gokhale. 2007. Language 

classification using n-grams accelerated by FPGA-

based Bloom filters. Proceedings of the 1
st
 

international workshop on High-performance 

reconfigurable computing technology and 

applications: held in conjunction with SC07. 

 

[17] R. Moskovitch, D. Stopel, C. Feher, N. Nissim, N. 

Japkowicz , Y. Elovici. 2009. Unknown malcode 

detection and the imbalance problem. Journal in 

Computer Virology. 5(4): 295-308. 

 

[18] T. Abou-Assaleh, V. Keselj, R. Sweidan. 2004. N-

gram based detection of new malicious code. Proc of 

the 28th Annual International Computer Software 

and Applications Conference, IEEE Computer 

Society. pp. 41-42. 

 

[19] S. Asaf, R. Moskovitch, C. Feher, S. Dolev, Y. 

Elovici. 2012. Detecting unknown malicious code by 

applying classification techniques on opcode 

patterns. Security Informatics. 1(1): 1-22. 

 

[20] BitDefender, [online] Retrieved on December 2014 

http://www.bitdefender.com/ 

 

[21] eseT, [online] Retrieved on December 2014 

http://www.eset.com/my/ 

 

[22] Virus Total, [online] Retrieved on December 2014 

https://www.virustotal.com/ 

 

[23] M. Z. Mas'ud, S. Sahib, M. F. Abdollah, S. R. 

Selamat, R. Yusof. 2014.  Analysis of Features 

Selection and Machine Learning Classifier in 

Android Malware Detection.  Information Science 

and Applications (ICISA). pp. 1-5. 

 

[24] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, C. 

J. Lin. 2011. LIBLINEAR: A library for large linear 

classification. The Journal of Machine Learning 

Research. 9: 1871-1874. 

 

[25] C. Chang, and C. Lin. 2011. LIBSVM: a library for 

support vector machines. ACM Transactions on 

Intelligent Systems and Technology (TIST). 2(3): 27. 

 

[26] Feizollah, Ali, N. B. Anuar, R. Salleh, F. Amalina, 

R. R. Ma’arof, and S. Shamshirband. 2014.  A Study 
of Machine Learning Classifiers for Anomaly-Based 

Mobile Botnet Detection.  Malaysian Journal of 

Computer Science. 26 (4). 

 

[27] B. Sanz, I. Santos, X. Ugarte-Pedrero, C. Laorden, J. 

Nieves, y P.G. 2013. Bringas Instance-based 

Anomaly Method for Android Malware Detection. 

En Proceedings of the 10
th 

International Conference 

on Security and Cryptography (SECRYPT). 

Reykjavik (Iceland). 387-394, ISBN: 978-989-8565-

73-0  

 

[28] Firdausi, Ivan, C. Lim, A. Erwin, and A. S. Nugroho. 

2010. Analysis of machine learning techniques used 

in behavior-based malware detection. In Advances in 

Computing, Control and Telecommunication 

Technologies (ACT). 

 

[29] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. 

Reutemann, I. H. Witten. 2009. The WEKA data 

mining software: an update. ACM SIGKDD 

explorations newsletter. 11(1): 10-18.  

 

 

 

http://www.arpnjournals.com/

