
 VOL. 11, NO. 5, MARCH 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3122

AN EVALUATION OF N-GRAM SYSTEM CALL SEQUENCE IN MOBILE

MALWARE DETECTION

M. Z. Mas’ud, S. Sahib, M. F. Abdollah, S. R. Selamat and R. Yusof
Faculty of Information Technology and Communication, Univeristi Teknikal Malaysia, Melaka,Ayer Keroh, Melaka, Malaysia

E-Mail: zaki.masud@utem.edu.my

ABSTRACT

The rapid growth of Android-based mobile devices technology in recent years has increased the proliferation of

mobile devices throughout the community at large. The ability of Android mobile devices has become similar to its

desktop environment; users can do more than just a phone call and short text messaging. These days, Android mobile

devices are used for various applications such as web browsing, ubiquitous services, social networking, MMS and many

more. However, the rapid growth of Android mobile devices technology has also triggered the malware author to start

exploiting the vulnerabilities of the devices. Based on this reason, this paper explores mobile malware detection through an

n-gram system call sequence which uses a sequence of system call invoked by the mobile application as the feature in

classifying a benign and malicious mobile application. Several n-gram values are evaluated with Linear-SVM classifier to

determine the best n system call sequence that produces the highest detection accuracy and highest True Positive Rate

(TPR) with low False Positive Rate (FPR).

Keywords: mobile malware detection, n-gram, machine learning, linear SVM.

INTRODUCTION

Technological advancement had produced many

mobile operating systems such as iOS from Apple,

Blackberry, Symbian, Windows mobile and Android by

Google. Of all the systems mentioned, the most popular

platform is the Android system by Google as it has

controlled over 80% of the overall mobile devices market

sales in 2013 [1]. Despite the high market demand,

Android-based mobile devices are also exposed to mobile

malware threat. This is shown in the 2013 Kaspersky’s
Lab report which reveals almost 98 % of the mobile

malware found in 2013 is targeting the Android platform

[2]. A mobile device infected by malware can expose the

user to information theft, activity and location sniffing,

overbilling of sending random SMS and MMS to contacts,

being exploited as denial of services attack source and can

cause the mobile device resources such as memory, battery

and storage overloaded by unknown processes [3].

To date, several mitigation processes to overcome

the mobile malware infection have been introduced. For

instance, software companies have introduced their mobile

version of antivirus, yet they still detect malware using the

signature approach and works as a cleaning up service

after the mobile devices have been infected. Since the

signature based mobile malware detection only detects

known malware, a new malware on the market can easily

evade this approach. Furthermore, solely depending on

antivirus is not enough. Based on Zhou et al. [4], in the

best case, only 79.6% antivirus can detect the mobile

malware variant they have collected and even worse, some

existing antivirus only detected 20.2% of the malware

variant. Hence, there is a need for an effective approach in

detecting mobile malware.

Another detection approach that can be used to

mitigate mobile malware is the anomaly-based detection

which has the ability to monitor regular activities in the

devices and look for any behavior that deviates from the

normal pattern. Anomaly-based detection is effective in

detecting a known and unknown malware, yet it has a

drawback of generating false alert which indicates an

incorrectly classified benign application to be malicious or

vice versa. This research also uses the anomaly-based

detection approach through the machine learning

classifying technique in revealing the benign and

malicious method. On the contrary, this research attempts

to improve the drawback of the anomaly-based detection

by improving the detection TPR, FPR and accuracy using

the n-gram system call sequence as a feature in classifying

the mobile malware. The n-gram system call sequence is

an n number of system call sequence invoked by the

mobile application. The n-gram system call sequence can

be used to represent a set of system call processes invoked

by the malicious application. The basic concept of this

approach is discussed in the next section.

RELATED WORK

Malicious software or called malware is written

for the purpose of exploiting the weaknesses found in a

computer system. The rapid changes and evolution of

malware have made it difficult to stop any malware in any

platform. The first step in mitigating the mobile malware

is to understand how mobile malware behaves in mobile

devices. This can be done by analyzing the malware

sample itself. Malware analysis can enable researchers to

observe and obtain the real behavior of a malware in

action [5]. Based on the work done by [6] and [7] most

Android-based malware has the following malicious

intentions.

 Changes and accessing file system, e.g. creation,

modification or deletion of files.

 Attempts on root access, e.g. creation or modification

root files.

http://www.arpnjournals.com/

 VOL. 11, NO. 5, MARCH 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3123

 Infection of running processes, e.g. to insert malicious

code into other processes, or updating packages.

 Acquiring of sensitive data, e.g. IMEI, GEO Location

or SMS and call log.

 Network activity and transfer, e.g. HTTP connections.

 Starting and stopping OS or application, e.g. restart

OS.

The comparison between the malicious intention

with the mobile malware behavior experiment and the

observation made in the previous work [8] reveals that the

behavior of mobile malware can be traced via the system

call invoked by the application. Figure 1 shows a sample

of the system call log file captured in the experiment run

in [8].

Argument In System Call

GoldDream

System Call

Writev

writev

3 [{"\3", 1}, {"Gsm/SmsMessage\0", 15}, {"SMS SC timestamp: 1410667507000\0", 32}]

3 [{"\6", 1}, {"Gsm/SmsMessage\0", 15}, {"hasUserDataHeader : false\0", 26}]

futex

access

open

fstat64

chmod

write

fstat64

close

0x409a76a8 0x81 /* FUTEX_??? */

"/data/data/com.GoldDream.pg03/files" F_OK

"/data/data/com.GoldDream.pg03/files/zjsms.txt"

O_WRONLY|O_CREAT|O_APPEND|O_LARGEFILE

61 {st_mode=S_IFREG|0660, st_size=365, ...}

"/data/data/com.GoldDream.pg03/files/zjsms.txt" 660

61 "+60126730936#Account 56789543216 pin 6785#2014-09-14 12:05:07\r\n"

61 {st_mode=S_IFREG|0660, st_size=428, ...}

61

Access

Access

Stat64

futex

"/data/data/com.GoldDream.pg03/shared_prefs/GoogleAdMobAdsPrefs.xml.bak" F_OK

"/data/data/com.GoldDream.pg03/shared_prefs/GoogleAdMobAdsPrefs.xml" F_OK

"/data/data/com.GoldDream.pg03/shared_prefs/GoogleAdMobAdsPrefs.xml" 0x541c2bf8

0x4dea47e8 0x81 /* FUTEX_??? */

Associate with

sms logging

Associate with

accessing file

Figure-1. A GoldDream system call log for capturing and logging user SMS.

writev writev access fstat chmod write fstat close

Figure-2. Sequence of system call used to capture and log

sms received.

SYSTEM CALL AND N-GRAM ANALYSIS

A set of system call invoked by a mobile

application through the kernel interface in an operating

system is able to provide accurate information on the

behavior of a mobile application. This is based on the

reason that all requests made from the mobile application

such as network communication, file management or

process related operations have to pass through to the

kernel using the system call interface before they are

executed. This system has been used by these people in

their work; Crowdroid [9], Isohara et al. [10], Azteni et al.

[13], AMDA [11] and MADAM [12]. Crowdroid captures

the whole system call invoked by application and use K-

mean clustering algorithm to distinguish the benign and

malicious application. Meanwhile, Isohara et al. applies a

based signature approach in detecting mobile malware by

filtering list of system call against a database of malicious

system called regular expressions signature. System call

dependency graph of an app execution and supervised

learning machine learning is used by Azteni et al. to

classify the application. MADAM and AMDA use

machine learning classifier on a set of selected system call.

Similarly, these researches used the anomaly-based

detection approach and system call as features to

distinguish a benign and malicious mobile application, yet

our approach attempts to improve the detection rate

accuracy and reduce the false alert using the n-gram

system call sequence. The classification accuracy achieved

by AMDA and Azteni et al. using their approach are

71.15% and 86.80%, respectively.

RESEARCH METHODOLOGY

This paper proposes an n-gram system call sequence as a

feature to be used in machine learning classifying

algorithm for classifying the benign and malicious android

application. For the purpose of this research, the study has

captured the system call invoked from 100 normal

Android applications acquired from Google play and 102

infected Android applications acquired from the

MalGenome Project [4]. Each Android application used in

this experiment is scanned with these antiviruses,

Bitdefender [20], eseT [21] and VirusTotal [22] for

verification whether it is truly a malicious or benign

application. Every Android application is executed on a

tablet and stimulated with user interaction such as web

browsing and SMS for 10 minutes. After each execution

and simulation, the tablet is wiped out clean to its factory

setting before another Android application is installed.

This manual approach is used for evading any anti

emulator or virtual machine evasion mechanism that might

be included in the malicious application. The research

methodology used in this research consists of four phase;

data collection phase, n-gram extraction phase, machine

learning classifiers phase and performance evaluation

phase. The research methodology is depicted in Figure-3.

In data collection phase (Phase I), each application runs on

a real device in an experimental test bed environment [23].

The system call generated by each of the application is

captured in a log file using a tool called strace. Next, an

extraction module is introduced in Phase II. The module

starts by extracting all the system call sequence and

http://www.arpnjournals.com/

 VOL. 11, NO. 5, MARCH 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3124

dropping all the parameter from the system call log. The

sequence of system call is then encoded into a Unicode

UTF-8 representation before it goes through the N-gram

Generator. The encoding of system call will represent each

system call with a unique character; hence it reduces the

size of data stored for processing. Finally, the output of the

N-gram Generator is a data set consists of n-gram system

call sequence and its occurrence frequency, fngram. In

order to evaluate the optimum n value, this research only

generates 6 different dataset comprise of 1-gram, 2-gram,

3-gram, 4-gram, 5-gram and 6-gram system call sequence

for evaluation. Each of n-gram system call sequence

subset is then applied to the classifier in Phase III.

 Phase IV

 Phase III

 Phase II

 Phase I

Normal

Application

Malicious

Application

System call log

System call sequence

extraction

Encoding

N-gram Generator

2-gram:f2 3-gram:f3 4-gram:f4 5-gram:f5 6-gram:f61-gram:f1

Classifier

Performance Evaluation

 Figure-3. Research methodology.

The evaluation for finding the optimum n-value in the n-

gram system call sequence for this research uses the

linear-SVM classifier provided in the LibLinear Package

introduced by [24]. The approach is chosen based on the

fact that Linear SVM is suitable for machine learning

applications that deal with large instances and features

such as in text classification and bioinformatics [25] and

with the number of features increased as the value of n-

gram is increased, the Linear SVM classifier is the

appropriate classifier algorithm for this evaluation. Given

a data set of instance (xi, yi), i = 1,..., l, xi ∈ Rn, yi ∈ {−1,
+1}, Linear SVM type L2-SVM can be used to solve the

optimization problem for

 (1)

Where C > 0 is a penalty parameter and the loss

functions is ii xy 1,0max 2

Finally, Phase IV evaluates the performance of the

classifier based on the True Positive Rate (TPR) that

indicates the rate of correctly detecting an instance as

malware, False Positive Rate (FPR) that indicates the rate

of false detection of benign application as malware, and

Accuracy is the percentage of correctly classified benign

or malicious mobile application [26], [27], [28]. The best n

value is chosen based on the number of system call

sequence that can generate the highest detection Accuracy

and TPR while the FPR is low. The equation of all

matrices represented as below:

 (2)

 (3)

 (4)

Where

TP = number of malware cases correctly classified (true

positives)

FN = number of malware cases misclassified as legitimate

software (false negatives)

FP = number of benign software cases incorrectly detected as

malware

TN = number of legitimate executables correctly classified.

ANALYSIS AND DISCUSSION

The Linear SVM applies in this experiment is the

L2-SVM classifier from the Liblinear package and the

experiment is performed using Weka 3.7.10 [26]. The

experiment is done on Windows 7 that runs on a desktop

computer with Pentium Dual Core CPU and 2GB of

RAM. The classifier evaluation is validated using k-fold

cross-validation which can estimate how well the learned

model generalizes. For this implementation, the value of k

is set to be 10. The 10 fold cross validation divided the

data into 10 subsets and the holdout method is repeated for

10 times. In every fold, the subset is divided into 9 training

sets and one testing set. The average value of the

performance metric from each fold result is taken as a

single estimation result for the overall implementation

performance. The empirical results of the experiment are

shown in Table-1.

Table-1. The classifier performance evaluation result.

http://www.arpnjournals.com/

 VOL. 11, NO. 5, MARCH 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3125

Table-1 shows the TPR, FPR and the Accuracy of

6 different n-gram system call sequence and it apparently

shows 3-gram system call sequence has the highest

detection accuracy which is 96.19% and FPR which is 5%.

Even though the TPR is only 97.06% and not the highest

value, 3-gram system call sequence provide a

classification between benign and malicious application

with high detection accuracy and low FPR. Comparatively,

the 3-gram system call sequence provides better

classification accuracy with an acceptable TPR and the

lowest FPR value compared to the 1 gram system call.

Interestingly, when n-gram is higher than 3-gram, the

accuracy is decreasing. This is due to the higher the

number of n-gram sequence, the fewer occurrences of the

system call sequence will be invoked hence, most of the

system call sequence value will be 0. This causing the

system call sequence for the higher n-gram generates a

sparse vector, resulting in lower detection accuracy.

CONCLUSIONS

Mobile malware evolution was triggered due to

the rapid development in mobile device technology. It has

multiplied greatly in recent years and causing adverse

effects towards mobile users. Thus, there is a need in

finding more effective measure to handle this issue as this

paper explores the used of n-gram system call sequence as

a feature in classifying benign and malicious android

application. The experiment and evaluation of the n-gram

show that the n-gram can improve the accuracy for the

classification made and the false alarm rate which solved

the issues in anomaly-based malware detection. The 3-

gram system call sequence returns the highest detection

accuracy with a well-balanced TPR and FPR values even

though it cannot achieve 100% for the TPR value

compared to 4, 5 and 6 gram system call sequence. For

future works, the proposed method may be potentially

applied in developing Android malware detection.

However, there is still an issue to be addressed especially

in the limitation and constrain of mobile devices’
environment especially on the storage and memory

consumption such as the large number of features

generated as the n-gram value increases.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude

to InsForsNet research group of Universiti Teknikal

Malaysia Melaka (UTeM) for the invaluable support in

encouraging the authors to publish this paper. This work is

supported by UTeM’s Short Grant funding
(PJP/2013/FTMK(9D)/S01167).

REFERENCES

[1] R. van der Meulen and J. Rivera. 2013. Gartner Says

Smartphone Sales Accounted for 55 Percent of

Overall Mobile Phone Sales in Third Quarter of

2013, (Gartner Newsroom), [online] Retrieved on

December 2012 from

http://www.gartner.com/newsroom/id/2623415.

[2] C. Funk and M. Garnaeva. 2013. Kaspersky Security

Bulletin 2013. Overall statistics for 2013”,

(Securelist), [online] Retrieved on December 2013

http://www.securelist.com/en/analysis/204792318/K

asper.sky_Security_Bulletin_2013_Overall_statistics

_for_2013

[3] M. La Polla, F. Martinelli, D. Sgandurra. 2013. A

Survey on Security for Mobile Devices.

Communications Surveys & Tutorials, IEEE. 15(1):

446-471.

[4] Y. Zhou, J. Xuxian. 2012. Dissecting android

malware: Characterization and evolution. In Security

and Privacy (SP), 2012 IEEE Symposium on. 95-

109.

[5] D. Farmer, W. Venema. 2005. Forensic discovery,

Vol. 6, Upper Saddle River: Addison-Wesley.

[6] A. P. Felt, M. Finifter, E. Chin, S. Hanna, D.

Wagner. 2011. A survey of mobile malware in the

wild. In Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and mobile

devices. pp. 3-14.

[7] H. Pieterse, M. S. Olivier. 2012. Android botnets on

the rise: Trends and characteristics. In Information

Security for South Africa (ISSA). pp. 1-5.

[8] M. Z. Mas'ud, S. Sahib, M. F. Abdollah, S. R.

Selamat, R. Yusof, R. Ahmad. 2013. Profiling

mobile malware behaviour through hybrid malware

analysis approach. Information Assurance and

Security (IAS). 9th International Conference on. pp.

78-84.

[9] I. Burguera, U. Zurutuza, S. Nadjm-Tehrani. 2011.

Crowdroid: behavior-based malware detection

system for android. In: Proceedings of the 1
st
 ACM

workshop on Security and privacy in smartphones

and mobile devices. pp. 15-26.

[10] T. Isohara, K. Takemori, A. Kubota. 2011. Kernel-

based Behavior Analysis for Android Malware

Detection. Computational Intelligence and Security

(CIS), Seventh International Conference on. pp.

1011-1015.

http://www.arpnjournals.com/

 VOL. 11, NO. 5, MARCH 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3126

[11] Abela, K. Joshua, J. R. D. Alas, D. K. Angeles, R. J.

Tolentino, M. A. Gomez. Automated Malware

Detection for Android AMDA. In: The Second

International Conference on Cyber Security, Cyber

Peacefare and Digital Forensic (CyberSec2013).

180-188.

[12] G. Dini. , F. Martinelli, A. Saracino, D. Sgandurra.

2012. MADAM: a multi-level anomaly detector for

android malware. In Computer Network Security.

240-253.

[13] W. B. Cavnar, J. M. Trenkle. N-gram-based text

categorization. Ann Arbor MI 48113.2. 161-175.

[14] D. Jurafsky, J. H. Martin. 2000. Speech & language

processing. Pearson Education India.

[15] S. Zhou, and G. Jihong. 2002. Chinese documents

classification based on N-grams. Computational

Linguistics and Intelligent Text Processing. Springer

Berlin Heidelberg. pp. 405-414.

[16] J. Arpith and M. Gokhale. 2007. Language

classification using n-grams accelerated by FPGA-

based Bloom filters. Proceedings of the 1
st

international workshop on High-performance

reconfigurable computing technology and

applications: held in conjunction with SC07.

[17] R. Moskovitch, D. Stopel, C. Feher, N. Nissim, N.

Japkowicz , Y. Elovici. 2009. Unknown malcode

detection and the imbalance problem. Journal in

Computer Virology. 5(4): 295-308.

[18] T. Abou-Assaleh, V. Keselj, R. Sweidan. 2004. N-

gram based detection of new malicious code. Proc of

the 28th Annual International Computer Software

and Applications Conference, IEEE Computer

Society. pp. 41-42.

[19] S. Asaf, R. Moskovitch, C. Feher, S. Dolev, Y.

Elovici. 2012. Detecting unknown malicious code by

applying classification techniques on opcode

patterns. Security Informatics. 1(1): 1-22.

[20] BitDefender, [online] Retrieved on December 2014

http://www.bitdefender.com/

[21] eseT, [online] Retrieved on December 2014

http://www.eset.com/my/

[22] Virus Total, [online] Retrieved on December 2014

https://www.virustotal.com/

[23] M. Z. Mas'ud, S. Sahib, M. F. Abdollah, S. R.

Selamat, R. Yusof. 2014. Analysis of Features

Selection and Machine Learning Classifier in

Android Malware Detection. Information Science

and Applications (ICISA). pp. 1-5.

[24] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, C.

J. Lin. 2011. LIBLINEAR: A library for large linear

classification. The Journal of Machine Learning

Research. 9: 1871-1874.

[25] C. Chang, and C. Lin. 2011. LIBSVM: a library for

support vector machines. ACM Transactions on

Intelligent Systems and Technology (TIST). 2(3): 27.

[26] Feizollah, Ali, N. B. Anuar, R. Salleh, F. Amalina,

R. R. Ma’arof, and S. Shamshirband. 2014. A Study
of Machine Learning Classifiers for Anomaly-Based

Mobile Botnet Detection. Malaysian Journal of

Computer Science. 26 (4).

[27] B. Sanz, I. Santos, X. Ugarte-Pedrero, C. Laorden, J.

Nieves, y P.G. 2013. Bringas Instance-based

Anomaly Method for Android Malware Detection.

En Proceedings of the 10
th

International Conference

on Security and Cryptography (SECRYPT).

Reykjavik (Iceland). 387-394, ISBN: 978-989-8565-

73-0

[28] Firdausi, Ivan, C. Lim, A. Erwin, and A. S. Nugroho.

2010. Analysis of machine learning techniques used

in behavior-based malware detection. In Advances in

Computing, Control and Telecommunication

Technologies (ACT).

[29] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.

Reutemann, I. H. Witten. 2009. The WEKA data

mining software: an update. ACM SIGKDD

explorations newsletter. 11(1): 10-18.

http://www.arpnjournals.com/

