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An alternative block method for solving fifth-order initial value problems (IVPs) is proposed with an adaptive strategy of
implementing variable step size. The derived method is designed to compute four solutions simultaneously without reducing the
problem to a system of first-order IVPs. To validate the proposed method, the consistency and zero stability are also discussed.
The improved performance of the developed method is demonstrated by comparing it with the existing methods and the results
showed that the 4-point block method is suitable for solving fifth-order IVPs.

1. Introduction

Many natural processes or real-world problems can be trans-
lated into the language of mathematics [1–4]. The mathe-
matical formulation of physical phenomena in science and
engineering often leads to a differential equation, which can
be categorized as an ordinary differential equation (ODE)
and a partial differential equation (PDE). This formulation
will explain the behavior of the phenomenon in detail.
The search for solutions of real-world problems requires
solving ODEs and thus has been an important aspect of
mathematical study. For many interesting applications, an
exact solution may be unattainable, or it may not give the
answer in a convenient form. The reliability of numerical
approximation techniques in solving such problems has been
proven bymany researchers as the role of numerical methods
in engineering problems solving has increased dramatically
in recent years.Thus a numerical approachhas been chosen as
an alternative tool for approximating the solutions consistent
with the advancement in technology.

Commonly, the formulation of real-world problems will
take the form of a higher order differential equation asso-
ciated with its initial or boundary conditions [4]. In the
literature, a mathematical model in the form of a fifth-order
differential equation, known as Korteweg-de Vries (KdV)
equation, has been used to describe several wave phenomena
depending on the values of its parameters [2, 3, 5, 6]. The
KdV equation is a PDE and researchers have tackled the
problem analytically and numerically. It is also noted that in
certain cases by using different approaches the KdVmight be
transformed into a higher order ODE [7]. To date, there are
a number of studies that have proposed solving fifth-order
ODEdirectly [8, 9].Hence, the purpose of the present paper is
to solve directly the fifth-order IVPs with the implementation
of a variable step size strategy. The fifth-order IVP with its
initial conditions is defined as
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Conventionally, (1) will be converted to a system of first-
order ODEs by a simple change of variables. However, it
will increase the computational cost in terms of function
evaluation and thus will affect the computational time. This
drawback is obviously seen when dealing with a higher order
problem. Furthermore, [10] also has remarked that the block
method is far more cost-effective when it is implemented
in direct integration. Hence, several researchers [11–16] have
shown an interest in the development of direct integration
methods. A direct integration method of variable order and
step size for solving systems of nonstiff higher order ODEs
has been discussed in [11] whereby [12] has proposed an
algorithm based on collocation of the differential system at
selected grid points for direct solution of general second-
order ODEs. In addition, [13] has used the Gaussian method
in order to solve fourth-order differential equations directly.
However, it requires a tedious computation as well, since it
consists of higher order partial derivatives of Taylor series
algorithm which supplies the starting values. Jator and Li
[15] have proposed the linear multistep method (LMM)
for solving general second-order IVPs directly. The method
is self-starting, so it involves less computational time by
avoiding incorporating subroutines to supply the starting
values.

Thus far, a number of researchers have concerned them-
selves with developing a numerical method based on block
features, and the characteristic feature of the block method
is that in each application it generates a set of solutions
concurrently [10]. Rosser [10] also has remarked that the
implementation of block method in numerical computa-
tion will reduce the computational cost by reducing the
number of function evaluations. Shampine and Watts [17]
have constructed an𝐴-stable implicit one-step block method
and Cash [18] has studied block methods based upon the
Runge-Kutta method for the numerical solution of nonstiff
IVPs. Furthermore [19] has used the self-starting LMM
to solve second-order ODEs in a block-by-block fashion
and recently [20] has constructed a predictor-corrector
scheme 3-point block method with the implementation of
variable step size. This research is an extension of the
work in [20] in which the solution is computed at three
points concurrently and it shows the satisfactory numer-
ical results obtained when solving general higher order
ODEs.

An increasing amount of literature is devoted to vari-
able step size implementations of numerical methods [11,
21, 22]. The practicality of varying the step size for block
method has been justified by [10]. This strategy is an attempt
to reduce the computational cost as well as maintaining
the accuracy. The Falkner method with variable step size
implementation for the numerical solution of second-order
IVPs has been employed in [21]. Although the implemen-
tation of the method involves varying the step size and
solving directly, the computation is still tedious since the
coefficients of the formulae must be calculated every time
the step size is changed. On the contrary, the present
work will store all the integration coefficients in the code
in order to avoid the tedious calculations of the divided
differences.
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Figure 1: 4-point block method.

2. Methodology

2.1. Derivation of 4-Point Block Method. The basic approach
of numerical methods for integration is performed by sub-
dividing the interval of integration into certain subintervals.
The proposedmethodwas based on concurrent computation;
hence the closed finite interval was subdivided into a series
of blocks and each block contains four equal subintervals as
illustrated in Figure 1.

Initially, (1) was integrated five times over the corre-
sponding interval: [𝑥
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The integration was started by replacing the function
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Nine points were interpolated in (2) with 𝑤 set to be
eight for deriving the corrector and thus one point less for
the predictor formula. Then, the integration process was
proceeded by substituting 𝑧 = (𝑥 − 𝑥

𝑛+4
)/ℎ and 𝑑𝑥 = ℎ𝑑𝑧

in (2). Consistent with the number of interpolation points
involved in deriving the formulae, predictor and corrector
formulae were obtained in terms of variables 𝑟 and 𝑞. The
variables 𝑟 and 𝑞 refer to the distance ratio between current
and previous point as a result of implementation variable step
size strategy in the proposed method.

In this work, the selection of the next step size could be
increased by a factor of (𝑟 = 0.5, 𝑞 = 0.5) or maintained
by ((𝑟 = 1, 𝑞 = 1), (𝑟 = 1, 𝑞 = 2), (𝑟 = 1, 𝑞 = 0.5)) and
(𝑟 = 2, 𝑞 = 2) for halving the current step size. This step
size changing technique was limited in order to minimize
the number of coefficients to be stored as well as reducing
the computational storage. The increment of step size was
also limited to doubling in order to control the accuracy of
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the computation [10].The compact form of the 4-point block
method is presented in
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where 𝛾𝑔
𝑑,𝑗

are the coefficients of the formulae to be calculated,
𝑑 is the number of points (𝑑 = 1, 2, 3, 4), 𝑔 is the number
of times (1) will be integrated, and 𝑘 is the number of terms
when the equation is integrated. The values of 𝑠 = −7, 𝑡 =
0 and 𝑠 = −4, 𝑡 = 4 were considered for deriving the
predictor and corrector formulae, respectively. After further
simplification, the associated corrector formulae of the 4-
point block method when 𝑟 = 1 are represented below.
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Integrate thrice:
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Integrate four times:
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Integrate five times:
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6
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[
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𝑛

𝑦
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]
]
]
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+
ℎ
4
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[
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]
]
]
]
]

]

[
[
[
[
[
[

[

𝑦
iv
𝑛

𝑦
iv
𝑛−1

𝑦
iv
𝑛−2

𝑦
iv
𝑛−3

]
]
]
]
]
]

]

+
ℎ
5

3632428800
(

[
[
[
[
[

[

−397695 4349090 −24084760 118367466

−16628480 183347200 −1022977536 7852902400
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]
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]
]
]

]

[
[
[
[
[

[

𝑓
𝑛+4

𝑓
𝑛+3

𝑓
𝑛+2

𝑓
𝑛+1

]
]
]
]
]

]

+

[
[
[
[
[

[

679888370 −66798970 18463200 −3649810

18183101440 −2522204160 720401920 −144287744

109670461100 −15912327690 4493865096 −893148930

375644487700 −54760308740 1534525440 −3038248960

]
]
]
]
]

]

[
[
[
[
[

[
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𝑛

𝑓
𝑛−1

𝑓
𝑛−2

𝑓
𝑛−3

]
]
]
]
]

]

+

[
[
[
[
[

[

348869 0 0 0

13889280 0 0 0

85522635 0 0 0

1095172096 0 0 0

]
]
]
]
]

]

[
[
[
[
[

[

𝑓
𝑛−4

𝑓
𝑛−5

𝑓
𝑛−6

𝑓
𝑛−7

]
]
]
]
]

]

).

(9)

2.2. Order and Convergence of the Method. Thematrix differ-
ential equation of the derived method is given as

𝛼𝑌
𝑚
= ℎ𝛽𝑌



𝑚
+ ℎ
2
𝜆𝑌


𝑚
+ ℎ
3
𝜇𝑌


𝑚
+ ℎ
4
𝜎𝑌

iv
𝑚
+ ℎ
5
𝜃𝐹
𝑚
, (10)

where 𝛼, 𝛽, 𝜆, 𝜇, 𝜎, and 𝜃 are the coefficients of the developed
method. Consequently, the order of 4-point block method
can be determined using the following formulae:

𝐶
0
=

19

∑

𝑗=0

𝛼
𝑗
,

𝐶
1
=

19

∑

𝑗=0

(𝑗𝛼
𝑗
− 𝛽
𝑗
) ,

𝐶
2
=

19

∑

𝑗=0

(
𝑗
2

2!
𝛼
𝑗
− 𝑗𝛽
𝑗
− 𝜆
𝑗
) ,

.

.

.

𝐶
𝑞
=

19

∑

𝑗=0

(
𝑗
𝑞

𝑞!
𝛼
𝑗
−

𝑗
𝑞−1

(𝑞 − 1)!
𝛽
𝑗
−

𝑗
𝑞−2

(𝑞 − 2)!
𝜆
𝑗

−
𝑗
𝑞−3

(𝑞 − 3)!
𝜇
𝑗
−

𝑗
𝑞−4

(𝑞 − 4)!
𝜎
𝑗
−

𝑗
𝑞−5

(𝑞 − 5)!
𝜃
𝑗
) .

(11)

As a result, a 4-point blockmethod of order nine is developed
with 𝐶

𝑝+5
̸= 0 and the error constant obtained is given as

𝐶
14
= [

2497

7257600
,

40321

239500800
,

47357

479001600
,

2818273

43589145600
,

164971

3632428800
, −

23

113400
,

481

1871100
,

1187

1871100
,
95143

85135050
,
8753

4729725
,
113

89600
,
689

985600
,

2559

1971200
,
683073

179379200
,
497799

44844800
, −

94

14175
,

−
568

467775
,
1088

467775
,
429568

42567525
,
532736

14189175
]

𝑇

.

(12)

Hence, the consistency of 4-point block method is proven
according to the definition in [23]. The analysis of zero
stability for the developed method is tested using a similar
approach as presented in [24] and the first characteristic
polynomial obtained is 𝜌(𝑅) = 𝑅3(𝑅−1) = 0. It is clearly seen
that the roots are 0 and 1. Thus fromTheorem 2.1 in [23], the
convergence of the proposed method is asserted.

3. Implementation

Throughout this section, the implementation of 4-point block
method for solving fifth-order IVPs will be explained in
detail. The code starts by finding the values of 𝑦 in the initial
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Table 1: Numerical results for solving Problem 1.

TOL MTD TS MAXE AVERR FC

10−2
ode45 11 1.743 (−6) 2.244 (−6) 67
4P1FI 23 1.640 (−4) 5.346 (−7) 210

4PHODE 20 9.031 (−9) 1.611 (−10) 186

10−4
ode45 11 1.641 (−6) 2.186 (−6) 67
4P1FI 37 9.727 (−7) 6.988 (−9) 339

4PHODE 27 7.059 (−10) 1.092 (−11) 243

10−6
ode45 18 5.234 (−7) 8.596 (−7) 109
4P1FI 50 5.582 (−9) 5.727 (−11) 447

4PHODE 35 1.009 (−9) 3.401 (−11) 307

10−8
ode45 44 5.485 (−9) 9.472 (−9) 265
4P1FI 96 7.597 (−11) 2.881 (−13) 799

4PHODE 42 1.838 (−10) 2.619 (−12) 363

10−10
ode45 108 5.552 (−11) 9.551 (−11) 649
4P1FI 788 1.834 (−14) 2.554 (−15) 6331

4PHODE 50 1.023 (−10) 3.443 (−12) 439
KAYODE (a) Not stated 1.638 (−6) Not stated Not stated
KAYODE (b) 100 5.082 (−7) Not stated Not stated

block using Euler method. However, it should be noted that
Euler method will act only as a fundamental building block.
Then the 4-point block method will be applied until the end
of the interval. As stated earlier, the proposed method is
implemented in the mode of predicting and correcting. In
order to preserve the accuracy, the step will succeed if the
local truncation error (LTE) is less than the specified error
tolerance (TOL) such that

LTE = 𝑦
𝑡

𝑛+4
− 𝑦
𝑡−1

𝑛+4


< TOL, (13)

where 𝑦𝑡
𝑛+4

and 𝑦𝑡−1
𝑛+4

are the corrector value of 𝑦 at the last
point for each block with 𝑡 iterations. If (13) is satisfied, the
new step size will be calculated via the step size increment
formula. Otherwise, the current step size will be reduced by
half. The step size increment formula is defined as

ℎnew = 𝛿 × ℎold × (
TOL
2 × LTE

)

1/𝑚

, (14)

where ℎnew and ℎold denote the current and previous step size,
respectively, with value of 0.5 for safety factor (𝛿) and 𝑚 is
the order of corrector formulae. To show the accuracy and
efficiency of the proposed method, the computational errors
will be reported, equal to

𝐸
𝑖
=



𝑦
𝑖
− 𝑦 (𝑥

𝑖
)

𝐴 + 𝐵 (𝑦 (𝑥
𝑖
))



. (15)

Different values of 𝐴 and 𝐵 represent the type of error test
which will be considered; namely, 𝐴 = 1, 𝐵 = 0 are for the
absolute error test; 𝐴 = 1, 𝐵 = 1 represent the mixed error
test; and 𝐴 = 0, 𝐵 = 1 correspond to the relative error test.
Here we will use the mixed error test and the maximum error
is calculated by

MAXE = max
1≤𝑖≤4

(𝐸
𝑖
) . (16)

4. Numerical Results

To illustrate the technique proposed in the preceding sec-
tions, two test problems are solved and the results obtained
compared with the method proposed in [8, 9, 25] and the
ODE solver in MATLAB ode45. The work done by [25]
involved the solving of the first-order ODEs using 4-point
block method using variable step size. This means that (1)
needs to be reduced into a system of first-order IVPs whereby
themethods proposed by [8, 9] are for solving (1) directlywith
the implementation of constant step size. The notations used
in Tables 1 and 2 are listed below:

TOL: error tolerance limit;

MTD: method used;

TS: total steps taken;

MAXE: maximum error of the computed solution;

AVERR: average error of the computed solution;

FC: total function calls;

ode45: Runge-Kutta-Dormand-Prince ODE solver;

4PHODE: implementation of the 4-point block
method in this research;

4P1FI: numerical results in [25];

KAYODE (a): numerical results in [8];

KAYODE (b): numerical results in [9].
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Table 2: Numerical results for solving Problem 2.

TOL MTD TS MAXE AVERR FC

10−2
ode45 11 5.027 (−3) 3.806 (−3) 67
4P1FI 58 2.528 (−7) 3.002 (−8) 490

4PHODE 28 5.537 (−6) 2.245 (−7) 250

10−4
ode45 13 1.967 (−4) 1.253 (−4) 79
4P1FI 68 9.819 (−9) 1.117 (−9) 571

4PHODE 36 4.193 (−7) 1.432 (−8) 315

10−6
ode45 25 4.592 (−7) 1.870 (−7) 151
4P1FI 86 1.219 (−10) 9.992 (−12) 715

4PHODE 46 1.003 (−7) 4.290 (−9) 395

10−8
ode45 58 1.861 (−9) 1.006 (−9) 349
4P1FI 135 1.363 (−12) 1.597 (−13) 1107

4PHODE 56 2.413 (−8) 1.012 (−9) 475

10−10
ode45 142 4.555 (−11) 2.026 (−11) 853
4P1FI 807 5.630 (−14) 1.250 (−14) 6483

4PHODE 71 1.949 (−10) 7.564 (−12) 595
KAYODE (a) Not stated 2.225 (−7) Not stated Not stated
KAYODE (b) 10 3.156 (−4) Not stated Not stated

Problem 1. Consider the following:

𝑦
(v)
= 2𝑦

𝑦

− 𝑦𝑦
(iv)
− 𝑦

𝑦

− 8𝑥 + (𝑥

2
− 2𝑥 − 3) 𝑒

𝑥
,

𝑥 ∈ [0, 2] , 𝑦 (0) = 1, 𝑦


(0) = 1, 𝑦


(0) = 3, 𝑦


(0) = 1, 𝑦
(iv)
(0) = 1.

(17)

Solution is as follows: 𝑦(𝑥) = 𝑒𝑥 + 𝑥2. Source is [8].

Problem 2. Consider the following:

𝑦
(v)
= 6 (2 (𝑦


)
3

+ 6𝑦𝑦

𝑦

+ 𝑦
2
𝑦

) , 𝑥 ∈ [1, 3] , 𝑦 (1) = 1, 𝑦



(1) = −1, 𝑦


(1) = 2, 𝑦


(1) = −6, 𝑦
(iv)
(1) = 24. (18)

Solution is as follows: 𝑦(𝑥) = 1/𝑥.
Source is [8].

5. Discussion

In this section the performances of 4PHODE, ode45, 4P1FI,
KAYODE (a), and KAYODE (b) are discussed in terms of
three parameters, namely, total steps taken, accuracy, and
total function evaluations. It is apparent from these tables,
mostly at tolerances 10−2, 10−4, and 10−6, that 4PHODE gives
better accuracy compared to ode45, whereas at tolerances
10
−8 and 10−10, ode45 is one decimalmore accurate compared

to 4PHODE for both problems. As both tables show, the
total steps taken by the 4PHODE reduce by nearly half to
ode45 at tolerance 10−10. Although, at other tolerance, ode45
requires lesser steps to compute the solution, this result may
be explained by the fact that the initial step size generated by

4PHODE is extremely small in order for the method control
of the accuracy. From the data in Tables 1 and 2, it is apparent
that the number of function calls is likely to be related to the
number of steps taken.

In the comparison of block-by-blockmethod, the numer-
ical results obtained in Tables 1 and 2 demonstrate that
the proposed method 4PHODE always requires fewer steps
in converging to the exact solution compared to 4P1FI.
This gain becomes more obvious as the tolerance decreases.
However, the 4P1FI achieves better accuracy than 4PHODE.
Even so, the maximum error for 4PHODE is still within the
specified tolerance. Another issue that had to be addressed
was the total number of function evaluations used by each
method.The 4PHODE solved all the problems at much lower
cost than 4P1FI and this superiority is most apparent at
finer tolerance. This result is in agreement with [10] which
states the drawback of using the reduction approach in the
implementation of simultaneous computations.
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Comparing the results with the method proposed by
KAYODE (a) and KAYODE (b), for Problem 1, 4PHODE
outperformed both KAYODE (a) and KAYODE (b) in terms
of accuracy and total steps taken. While, for Problem 2,
KAYODE (b) has lesser total steps taken, however, 4PHODE
still has superiority in terms of accuracy.

6. Conclusion

The overall performance revealed that the 4-point block
method is best to be implemented in a direct integration
approach as it required much less storage than the reduc-
tion method while still maintaining an acceptable accuracy.
Besides that, the results of this study also indicate that the
developed method has better accuracy compared to the
existing methods. Hence it can be said that 4PHODE is one
of the alternative methods that can be used for solving fifth-
order ODEs.
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