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Modelling of Elastic Modulus Degradation in Sheet Metal Forming 
Using Back Propagation Neural Network

(Permodelan Penyusutan Modulus Kenyal dalam Pembentukan Kepingan Logam Menggunakan 
Jaringan Neural Rambatan Belakang)

M. R. Jamli*, A. K. Ariffi n, & D.A. Wahab

ABSTRACT

The aim of this study is to develop an elastic modulus predictive model during unloading of plastically prestrained SPCC
sheet steel. The model was developed using the back propagation neural networks (BPNN) based on the experimental 
tension unloading data. The method involves selecting the architecture, network parameters, training algorithm, and model 
validation. A comparison is carried out of the performance of BPNN and nonlinear regression methods. Results show the 
BPNN method can more accurately predict the elastic modulus at the respective prestrain levels.
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ABSTRAK

Tujuan kajian ini adalah untuk membangunkan model penyusutan modulus kenyal semasa proses melepaskan beban terhadap 
kepingan logam SPCC yang telah mengalami terikan plastik. Model ramalan ini dibangunkan beban dengan menggunakan 
kaedah jaringan neural rambatan belakang (BPNN) berdasarkan data eksperimen tegangan-melepaskan beban. Penggunaan 
kaedah tersebut melibatkan pemilihan seni bina, parameter jaringan, algoritma latihan, dan penentusahihan model. 
Penilaian terhadap kaedah regresi tak lelurus dan kaedah BPNN dijalankan untuk tujuan perbandingan. Hasil perbandingan 
menunjukkan kaedah BPNN berupaya untuk meramal model penyusutan modulus kenyal dengan lebih baik dan jitu untuk 
pra-terikan plastik yang tertentu.

Kata kunci: Rambatan belakang; penyusutan modulus kenyal; jaringan neural

INTRODUCTION

Springback is a major problem faced in conjunction with 
the formability of sheet metal. It causes the dimensions of 
a product to diverge from the intended result. To move on 
from the trial and error approach, prediction techniques have 
been studied over many years. The fi nite element method 
(FEM) has been used to reduce the cost and time required to 
conduct analysis. There are a number of factors that require 
comprehensive understanding to formulate a FEM prediction. 
These include mesh density, friction coeffi cient, and material 
model. The factor that most affects the accuracy of the FEM
is the material constitutive model (Eggertsen & Mattiasson 
2011). The factors that affect springback during unloading 
include the yield criteria, hardening law, and elastic 
behaviour. Standard elastoplasticity theory still underpins 
the majority of FEM practices. The assumption is after plastic 
deformation, which the unloading modulus will remain the 
same. However, research has shown the unloading modulus 
is a function of accumulated plastic strain (Eggertsen & 
Mattiasson 2009; Yoshida et al. 2002).

Using the classic elastoplasticity theory, the results for 
springback showed a signifi cant error for part geometries 
coupled to the uniaxial state of stress (Cleveland & Ghosh 

2002). The elastic modulus degradation effect has also been 
cited as more infl uential than the hardening law (Eggertsen 
& Mattiasson 2009). However, if the hardening law is used 
to predict springback, it should be considered in conjunction 
with unloading modulus degradation. Experiments have been 
undertaken by Yang et al. (2004) with the aim of linking 
the microscopic properties and alterations in macroscopic 
behaviour of SPCC mild steel sheet. Close to the grain 
boundary of large plastic deformation, the elastic modulus 
had a lower value that at other areas. It was predicted 
that the accumulation of pile-up and dislocation at the 
grain boundary, were the most infl uential factors affecting 
elastic modulus degradation. A saturated value resulted 
from decreased unloading modulus and increased prestrain 
(Yoshida et al. 2002). An exponential formula was introduced 
to describe the relationship between the unloading modulus 
degradation and plastic prestrain. More accurate springback 
prediction was sought by applying this formula in several 
studies (Chatti 2010; Eggertsen & Mattiasson 2010).

Despite the use of the exponential equation, results 
between experimental and calculated values showed 
signifi cant errors. The back propagation neural network 
(BPNN) method was used to reduce these errors. It can 
represent experimental data with minimum errors. Analysing 
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complex experimental data can increase understanding, as 
it captures linear and nonlinear patterns. A strong accuracy 
fi t is obtainable by randomly comparing complex nonlinear 
models and multidimensional data. 

Inverse techniques previously applied in BPNN to sheet 
metal forming, concentrated on predicting the parameters for 
establishing constitutive models (Aguir et al. 2011; Chamekh 
et al. 2009; Güner et al. 2010). Other fi elds in metal forming 
contain reports of BPNN applied to complex constitutive 
models (Lu et al. 2011; Zhu et al. 2011). Therefore, potentially 
there are extensive BPNN applications in sheet metal forming 
capable of representing the unloading modulus behaviour as 
part of a constitutive model. The present study is concerned 
with SPCC mild steel sheet and BPNN to predict the unloading 
modulus where plastic prestrain is applied. A comparison is 
made of model performance predictions and the exponential 
equation model by applying the regression method. 

DATABASE

Experimental data published by previous researchers was 
used in this study (Yoshida et al. 2002). Mild steel sheet 
(1 mm SPCC) was cut in the rolled direction. A clip-on 
extensometer and strain gauges were used to accurately 
measure 20 different unloading moduli, including virgin 
and increasingly prestrained specimens. The average 
unloading modulus (Eav) was introduced instead of Young’s 
modulus. The stress ranges shown in Figure 1 were used:
(A) 0.75 0 <= 0 <= 0.95 0; (B) 0.5 0 <= 0 <= 0.95 0; (C) 0.25 0
<= 0 <= 0.95 0; and (D) 0 <= 0 <= 0.95 0. Immediately after 
the unloading commenced, high nonlinear stress–strain was 
experienced. Therefore, 0.95 0 was defi ned as the starting 
point of the calculations, the results of which are shown in 
Figure 2, where the plastic pre-strain and the average Young’s 
modulus are the input and the output of the BPNN model. 

FIGURE 2. Average unloading modulus vs. reverse plastic strain of SPCC mild steel sheet (Yoshida et al. 2002)

FIGURE 1. Defi nition of average Young’s modulus: average slope of unloading stress–strain curves in stress 
ranges A, B, C, and D (Yoshida et al. 2002)
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BACK PROPAGATION NEURAL NETWORK MODELLING

BPNN models are mathematical or computational mimicking 
of neuron interconnections in the human brain, used to 
perform complex processing tasks. The sophistication of the 
technique has developed more recently in response to high-
performance computer technology. In this paper, ANN tool 
box of MATLAB software was used to simulate the proposed 
BPNN. Figure 3 is a schematic representation of a BPNN
structure composed of input and output layers, which are the 
plastic pre-strain and average Young’s modulus. The input 
signals are propagated through the hidden layer, until they 
reach the output layer. The input layer, which consists of a 
single neuron receives signals from the experimental data, but 
does not process an input pattern. The signals are weighted 
and redistributed to all the neurons in a hidden layer, which 
sums correspondingly weighted signals to determine the 
output pattern through the output layer, which also consists 
of a single neuron. 
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All input data were normalized according to the following 
equation:
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where Xn is the normalized value of plastic pre-stain, and 
Xmin and Xmax  are the minimum and maximum values of X
accordingly, so that all input lies between -0.5 to 0.5. The 
input value is generated as a sigmoid activation function:
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The derivative of this function is easily computed, 
and the neuron output range is -1 to 1. The degree of 
BPNN prediction accuracy is substantially affected by the 
number of hidden layer neurons. An optimum number is 
determined by a trial and error procedure. Figure 4 shows 
the relationship between the trained network performance 
and number of hidden layer neurons using mean square error 
(MSE). The optimum number is 22 neurons, as performance 
deteriorated above that amount. The Lavenberg–Marquardt 
training algorithm method was selected. It is commonly 
used in BPNN, as it converges optimum weights in an entire 
network quickly and effi ciently (Hagan et al. 2003). Table 
1 shows the network training parameters that were set for 
this study.

FIGURE 3. Schematic structure of a BPNN

The learning algorithm propagates signals from the input 
to output layers via each layer. When there is a deviation 
between the target and actual output patterns, the errors are 
calculated. These are then propagated back from the output 
to the input layer. The signal weight is modifi ed according to 
the backward propagated error for the next epoch. The BPNN is 
determined by neuron connections, activation functions, and 
the weight modifi cation procedure of the training algorithm. 
In this study, there is a single hidden layer and the output for 
each neuron is computed as a net weighted input:

TABLE 1. Neural network training parameters

Network Training Performance Max. training Error
 function function epoch goal

Feed- Train1m MSE 400 1 x 10–4

forward (LM)

FIGURE 4. Network performance based on number of 
hidden layer neurons
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RESULTS AND DISCUSSION

The deformation of the unloading modulus degradation 
curves of SPCC mild steel sheet in the four stress ranges are 
shown in Figure 5. The curves exhibit saturated degradation 
contingent on increased plastic prestrain. More stress causes 
a decrease in degradation, indicated by the slightly curved 
unloading paths deviating from linearity. The effect is a secant 
to the curves around an imaginary mean line. In a given stress 
range, the relationship between the unloading modulus and 
plastic prestrain can usually be expressed by the following 
equation (Yoshida et al. 2002):

0 0 0( )[1 ]p
av aE E E E e xe (4)

where, Eav is the average unloading modulus, E0 and Ea are the 
unloading moduli for virgin and infi nitely large prestrained 
materials respectively, and  is the material constant for a 
particular prestrain. 

To compare all the stress ranges, the unloading modulus 
degradation data were calculated by Equation 4 using 
nonlinear regression analysis. Both Ea and  constants are 
listed in Table 2 for each of the ranges, calculated by the 
regression method. For each range they are slightly different, 
because of the nonlinear unloading modulus characteristic. 

An interpolation data set was used to train, validate, and 
test the BPNN. The training stopped at a 0.0013 MSE and 237 
epochs as shown in Figure 6. The generalisation capability 
of the trained network was quantifi ed by the correlation 
coeffi cient (R) and relative error (ER) using the target output 
and predicted values:
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where, E is the experimental value and P is the predicted 
value obtained from the network model. E– and P– are the mean 
values of E and P respectively, and n is the total number of 
data employed in the investigation. 

Figure 7(a–b) shows the experimental and calculated 
plots of the unloading modulus using Equation 4, together 
with the predicted value by the BPNN model. An optimal line 
inclined at 45º from the horizontal has been added. All points 
should lie on this line for a perfect prediction. Most of the data 
points are positioned very close to the line. The BPNN model 
and Equation 4 correlation coeffi cients are 0.98259 and 0.971 
respectively. The BPNN model has achieved greater accuracy 
in predicting the unloading modulus than the regression 
method. The BPNN model has produced a good correlation 
between the predicted and experimental data.

FIGURE 5. Average unloading modulus vs. plastic prestrain of 
SPCC mild steel sheet (Yoshida et al. 2002)

TABLE 2. Material constants calculated by 
Equation 4

E0 (GPa) E  (GPa) 

 Case A 206 153.7 18.22
 Case B 206 125.4 21.32
 Case C 206 149.1 23.1
 Case D 206 140.7 24.51

 Source: Yoshida et al. 2002

FIGURE 6. Network performance of the selected architecture

A comparison is made of the relative errors of the BPNN
and regression models to the experimental values, which 
are depicted as scatters in Figure 9. The relative error in the 
BPNN model varies from 0.19% to 0.272% and from 6.17% 
to 1.31% in the regression method, showing a better data fi t 
in the former method. The predicted and experimental values 
from the BPNN and regression models were compared, to test 
the generalisation capacity of the network model in all the 
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stress ranges. Figure 9 shows the result of the comparison, 
using the experimental unloading moduli for cases A and 
D only. The BPNN model provides an accurate evaluation 
of the unloading modulus. From these results, the network 
architecture and performance is satisfactory, as there is good 
agreement with the experimental data. 

CONCLUSION

The unloading modulus degradation for plastically prestrained 
SPCC mild steel sheet using the BPNN model was studied. 
The accuracy of predictions was assessed in relation to the 
infl uence of network training and its parameters. The BPNN
method gave a higher level of accuracy than the nonlinear 
regression method when representing the unloading modulus 
degradation. For future research, the authors are planning to 
further explore the BPNN method to be integrated with the 
commercial fi nite element software to provide high quality 
simulations of springback in sheet metal.

ACKNOWLEDGEMENT

The author wishes to thank the Malaysian Ministry of 
Education, Universiti Teknikal Malaysia Melaka and 
Universiti Kebangsaan Malaysia, for the fi nancial support 
provided to undertake this research.

REFERENCES

Aguir, H., Belhadjsalah, H. & Hambli, R. 2011. Parameter 
identification of an elasto-plastic behaviour using 
artifi cial neural networks-genetic algorithm method. 
Materials & Design 32(1): 48-53.

Chamekh, A., Bel Hadj Salah, H. & Hambli, R. 2009. 
Inverse technique identifi cation of material parameters 
using fi nite element and neural network computation. 
The International Journal of Advanced Manufacturing 
Technology 44(1): 173-179.

Chatti, S. 2010. Effect of the elasticity formulation in fi nite 
strain on springback prediction. Computers & Structures
88(11-12): 796-805.

Cleveland, R. M. & Ghosh, A. K. 2002. Inelastic effects on 
springback in metals. International Journal of Plasticity
18(5-6): 769-785.

FIGURE 7. Comparison between experimental and predicted values for Case A; (a) regression model vs. 
experiment; and (b) BPNN prediction vs. experiment

FIGURE 8. Comparison using experimental data of relative error 
of BPNN predicted value and calculated value by regression

FIGURE 9. Comparison of BPNN model prediction and regression 
model calculated experimental values



28

Eggertsen, P.-A. & Mattiasson, K. 2011. Experiences from 
experimental and numerical springback studies of a 
semi-industrial forming tool. International Journal of 
Material Forming: 1-19.

Eggertsen, P. A. & Mattiasson, K. 2009. On the modelling 
of the bending-unbending behaviour for accurate 
springback predictions. International Journal of 
Mechanical Sciences 51(7): 547-563.

Eggertsen, P. A. & Mattiasson, K. 2010. On constitutive 
modeling for springback analysis. International Journal 
of Mechanical Sciences 52(6): 804-818.

Güner, A., Yin, Q., Soyarslan, C., Brosius, A. & Tekkaya, 
A. 2010. Inverse method for identifi cation of initial 
yield locus of sheet metals utilizing inhomogeneous 
deformation fi elds. International Journal of Material 
Forming: 1-8.

Hagan, M. T., Demuth, H. B. & Beale, M. H. 2003. Neural
Network Design. Vikas Publishing House.

Lu, Z., Pan, Q., Liu, X., Qin, Y., He, Y. & Cao, S. 
2011. Artifi cial neural network prediction to the hot 
compressive deformation behavior of Al–Cu–Mg–Ag 
heat-resistant aluminum alloy. Mechanics Research 
Communications 38(3): 192-197.

Yang, M., Akiyama, Y. & Sasaki, T. 2004. Evaluation of 
change in material properties due to plastic deformation. 
Journal of Materials Processing Technology 151(1-3): 
232-236.

Yoshida, F., Uemori, T. & Fujiwara, K. 2002. Elastic–plastic 
behavior of steel sheets under in-plane cyclic tension–
compression at large strain. International Journal of 
Plasticity 18(5-6): 633-659.

Zhu, Y., Zeng, W., Sun, Y., Feng, F. & Zhou, Y. 2011. Artifi cial 
neural network approach to predict the fl ow stress in the 
isothermal compression of as-Cast Tc21 titanium alloy. 
Computational Materials Science 50(5): 1785-1790.

Mohamad Ridzuan Jamli*
Department of Manufacturing Process
Faculty of Manufacturing Engineering
Universiti Teknikal Malaysia Melaka
Hang Tuah Jaya
76100 Durian Tunggal, Melaka
Malaysia

Ahmad Kamal Ariffi n & Dzuraidah Abdul Wahab
Department of Mechanical & Materials Engineering 
Faculty of Engineering & Built Environment
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E.
Malaysia

*Corresponding author; email: ridzuanjamli@utem.edu.my

Received date: 3rd December 2014
Accepted date: 30th March 2015


