

Faculty of Electrical Engineering

ELECTROMYOGRAPHY (EMG) SIGNAL ANALYSIS OF MANUAL LIFTING USING TIME-FREQUENCY DISTRIBUTION

Tengku Nor Shuhada binti Tengku Zawawi

Master of Science in Electrical Engineering

2016

C Universiti Teknikal Malaysia Melaka

ELECTROMYOGRAPHY SIGNAL ANALYSIS FOR MANUAL LIFTING USING TIME-FREQUENCY DISTRIBUTION

TENGKU NOR SHUHADA BINTI TENGKU ZAWAWI

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitle "Electromyography Signal Analysis of Manual Lifting using Time-Frequency Distribution" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: Tengku Nor Shuhada binti Tengku Zawawi
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for award of Master of Science in Electrical Engineering.

Signature	:
Supervisor Name	: Prof. Madya Dr. Abdul Rahim Bin Abdullah
Date	:

DEDICATION

I dedicate my dissertation work towards my family, supervisor, co-supervisor, examiners, collaboration lecturer and all my friends especially from Advanced Digital Signal Processing Group (ADSP) for their support cooperation in helping me to complete this research and thesis.

Thanks to the Ministry of Education (MOE) and Universiti Teknikal Malaysia Melaka (UTeM) for the financial support of my study.

Lastly, all of the supports are highly appreciated and very meaningful to me for being there for me throughout the entire master program.

ABSTRACT

In manufacturing industries, manual lifting is commonly practiced by workers in their routine to move or transport objects to a desired place. Manual lifting with higher repetition and loading using biceps muscle contribute to the effects of soft tissues and muscle fatigue that affect the performance and efficiency of the worker. Electromyography (EMG) is a device to detect the signal's muscle that is use to investigate muscular disorder. Fast-Fourier transform is the common technique used in signal processing. However, this technique only present spectral information and have the limitation to provide the time-frequency information. EMG signals is complicated and highly complex which is consists of variable frequency and amplitude. Thus, time-frequency analysis technique is needed to be employed to provide spectral and temporal information of the signal. This research presents the analysis of EMG signal using Fast-Fourier Transform and time-frequency distribution (TFD) which is spectrogram to estimate the parameters. Manual lifting activities is repeated to five times with the different load mass and lifting height are performed until achieve muscle fatigue to collect the data. From experiments, the raw data of EMG signals were collected via Measurement Configuration Data Collection of NORAXON INC. The parameters are extracted from EMG signal such as instantaneous root mean square (RMS) voltage, mean of RMS voltage and instantaneous energy to determine the information of manual lifting behaviour such as muscle fatigue, strength and energy transfer for the subject's performance evaluation. The results show the relationship between all the parameters involve in manual lifting activities and its behaviour. The higher subjects is easier to handle manual lifting with the higher lifting height, but tough body have advantage to handle higher load mass. The increasing of load masses and lifting height are highly proportional to the strength and energy transfer, however inversely proportional to reach muscle fatigue. The overall results conclude that, the application of spectrogram clearly give the information of the subject's muscle performance based on the manual lifting activities.

ABSTRAK

Dalam industri pembuatan, pekerja biasanya angkatan secara hanya secara dalam rutin mereka untuk bergerak atau mengangkut objek ke tempat yang sepatutnya. Angkatan manual yang berkekerapan tinggi akan memberi kesan kepada tisu yang lembut dan otot akibat mengalami kepenatan dan ini memberi kesan kepada prestasi pekerja untuk bekerja dengan lebih cekap. Electromyography (EMG) adalah alat untuk mengesan signal daripada otot yang digunakan untuk menyiasat gangguan yang berlaku pada otot. Fast-Fourier transform adalah teknik yang biasa digunakan dalam pemprosesan isyarat. Walau bagaimanapun, teknik ini hanya memberikan maklumat spektrum sahaja dan mempunyai had untuk memberikan maklumat dalam frekuensi masa. Isyarat EMG adalah rumit dan sangat kompleks kerana ia terdiri daripada pelbagai bentuk frekuensi dan amplitud. Oleh itu, teknik analisis frekuensi masa perlu digunakan untuk memberikan maklumat dalam bentuk isyarat spektrum dan masa. Kajian ini membentangkan analisis EMG isyarat yang menggunakan Fast-Fourier transform dan taburan masa frekuensi (TFR) iaitu spectrogram untuk membuat anggaran parameter. Data asal isyarat EMG dikumpulkan dengan menggunakan Pengukuran Konfigurasi Koleksi Data NORAXON INC. untuk membuat angkatan yang berlainan ketinggian dan jisim beban. Parameter kemuadian diekstrak daripada isyarat EMG seperti instantaneous root mean square (RMS) voltage, min bagi RMS voltage dan instantaneous energy yang memberikan maklumat keadaan angkatan manual yang dijalankan seperti keletihan otot, kekuatan dan pemindahan tenaga untuk seiap subjek seterusnya dapat ketahui keseluruhan prestasi subjek. Hasil keputusan jelas menunjukkan hubungan antara semua parameter yang terlibat dalam tingkah laku angkatan manual. Peningkatan jisim beban dan ketinggian angkatan berkadar terus dengan kekuatan dan pemindahan tenaga, tetapi berkadar songsang dengan masa mencapai keletihan otot. Ia boleh disimpulkan bahawa, penggunaan spectrogram mampu memberikan maklumat tingkah laku angkatan manual terhadap prestasi subjek. Oleh itu, hasil kajian ini berjaya menunjukkan bahawa teknik yang dicadangkan itu boleh digunakan untuk memberi maklumat berdasarkan aktiviti mengangkat manual.

ACKNOWLEDGEMENTS

Alhamdulillah thanks to Allah Almighty for His blessing I would able to finish my research. First and foremost I wish to address my gratitude and appreciate thank to Associate Professor Dr. Abdul Rahim bin Abdullah as my supervisor. He has been supportive, trust, encourage, and give the advice to me since the days I began as Student Research Assistant (SRA) until now as Graduate Research Assistant (GRA). He helped me come up with the thesis topic and guide me in the development of my study.

A million thanks towards my co-supervisor, Associate Professor Dr. Muhammad Fahmi Bin Miskon who helped me to make sure that my thesis is successfully accomplished. Dr. Isa bin Halim from Faculty of Manufacturing Engineering and Mrs. Ezreen Farina binti Shair for their patience, guidance, opinion and discussion that further encouraged and helped me during the most difficult times when writing this thesis, they give me the moral support and freedom that is needed to move on. I would like to give appreciation to Ministry of Education (MoE) and Universiti Teknikal Malaysia Melaka (UTeM) for providing the research grants PJP/2012/FKE(1A)/S1038 and RAGS/2013/FKE/TK02/03/B00026 to support the study.

I would not complete without all my friends from Advance Digital Signal Processing Group (ADSP) who have given me the support and cooperating to finish my project. Finally, a special acknowledgement goes to whom directly and indirectly for help in all the way in my research, without their helps, I can never go through the mission alone.

TABLE OF CONTENTS

DECLARATION

DI	EDICA	TION		
AI	BSTRA	СТ		i
AI	BSTRA	K		ii
A	CKNO	WLEDGEME	NTS	iii
TA	BLE	OF CONTEN	ГS	iv
LI	ST OI	TABLES		vii
LI	ST OI	FIGURES		viii
LI	ST OI	ABBREVIA	FIONS	xii
LI	ST OI	APPENDICE	ES	xiii
LI	ST OI	SYMBOLS		xiv
LI	ST OI	PUBLICATI	ONS	xvi
CI	HAPT	ER		
1.	INT	RODUCTION		1
	1.1.			1
		Problem Stat		3
	1.3.	5	f the Research	4
	1.4.	1		5
	1.5			6
	1.6	Thesis Outlir	ne	7
2.	LITI	ERATURE RE	CVIEW	9
	2.1	Introduction		9
	2.2	Electromyog	raphy (EMG) Signal	10
			e Application of EMG Signal	11
		-	pes of EMG Electrodes	13
			2.2.1 Invasive Electrode	13
			2.2.2 Non-invasive Electrode	14
			acing EMG Electrode and Data Collection	15
	2.3	Fatigue Muse	-	17
	2.4		lling of Loads	18
			anual Lifting and Lowering	20
			shing and Pulling	21
	2.5	-	Analysis Techniques	21
			st Fourier Transform (FFT)	22
			ort Time Fourier Transform (STFT)	23
			avelet Transform (WT)	24
	• -	1	ectrogram	26
	2.6	Gap of Know	ledge	27

2.6 Gap of Knowledge

	2.7	Summar	ry		29
3.	RESI	EARCH N	METHODO	DLOGY	31
	3.1	Introduc	ction		31
	3.2	Experin	nent Setup		33
		3.2.1	Subject 3	Selection	35
		3.2.2	Skin Pre	paration Procedures	36
			3.2.2.1	Removing the Hair	36
			3.2.2.2	Cleaning of the Skin	37
		3.2.3		e Placement	39
		3.2.4	Data Co		41
		3.2.5		Lifting Task	43
	3.3		ignal Analy		44
		3.3.1		rier Transform	46
		3.3.2		equency Distributions	46
			3.3.1.1	Window Selection	47
			3.3.1.1	Spectrogram	48
	3.4		-	gmentation	49
		3.4.1		neous Energy	49
		3.4.2	Segment		50
	3.5		gnal Param		51
	3.6	Perform	ance Analy	sis of EMG Signal	52
4.	RESU	ULT ANI) DISCUSS	SION	53
	4.1	Introduc	ction		53
	4.2	Electron	nyography	Signal of Manual Lifting Activity	54
	4.3	Time-fr	equency Te	chnique for EMG Signal Analysis	55
		4.3.1	Window	Selection for EMG Signal	56
		4.3.2	EMG Si	gnal Analysis using Spectrogram	63
	4.4	Muscle	Activity Se	gmentation	69
		4.4.1	Instantar	neous Energy	69
		4.4.2	Segment	tation	74
	4.5	EMG Si	ignal Param	leter	77
		4.5.1	Instantar	neous Root Mean Square (RMS) Voltage	77
		4.5.2	Mean Ro	oot Mean Square (RMS) Voltage	82
			4.5.2.1	Manual Lifting of 5 kg mass of load, 75 cm lifting height	82
			4.5.2.2	Manual Lifting of 5 kg mass of load, 140 cm lifting height	85
			4.5.2.3	Manual Lifting of 10 kg mass of load, 75 cm lifting height	87
			4.5.2.4	Manual Lifting of 10 kg mass of load, 140 cm lifting height	90
	4.6	Summar	ry		100

5.	CON	ICLUSION AND RECOMMENDATION	101
	5.1	Conclusion	101
	5.2	Recommendation	103
			104
AP	PENI	DICES A-F	119-134

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Gap of knowledge the techniques of EMG signal	28
	analysis	
3.1	Demographics of the subjects for male	35
3.2	Demographics of the subjects for female	35
3.3	Parameter used in the experiment	42
4.1	Comparison of window size performance	61
4.2	The summaries achievement of EMG signal using	64
	Spectrogram	
4.3	Instantaneous energy for energy transfer from the body	71
4.4	The instantaneous energy for manual liftings	72
4.5	Summary of mean RMS voltage (performance) and	94
	Instantaneous RMS Voltage (Vrms(t))	
4.6	The comparison performances of manual lifting task	97

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Schematic representation of the generation Surface EMG	10
	Signal	
2.2	Contraction of EMG signal	11
2.3	Uses of EMG signal	12
2.4	Invasive electrode inserted into the muscle	13
2.5	Non Invasive electrode attached on the skin surface	14
2.6	The position of the subject that were seat with their elbow	16
	90° and the finger in line with wall-mount force sensor to	
	record strength of isometric contraction	
2.7	(a) The normal manual handling, and (b) The daily activity	19
	involved manual handling	
3.1	The flow of the research	32
3.2	Flowchart of the experiment for EMG data collection	33
3.3	Flow of the experiment for data collection	34
3.4	The right biceps brachii shaved	36
3.5	BD Alcohol Swabs of 70 % Isorophyl Alcohol	37
3.6	Electrode (Ag/AgCL, 10 mm diameter)	38
3.7	Electrode Gel, 227 g tube	38
3.8	Anatomical landmark on the human body	39

3.9	(a) Migration of the muscle below the electrode pair attached	40
	at the biceps brachii, (b) in the extended position, the distal	
	electrode has left the active muscle area	
3.10	Placement of surface EMG electrodes of biceps as input (A)	40
	and reference electrode location (B).	
3.11	TeleMyo 2400T G2, (Noraxon, USA)	41
3.12	MyoResearch XP Master Software (Noraxon, USA)	42
3.13	Four phases involved in each lifting for 75 cm lifting height	43
3.14	Four phases involved in each lifting for 140 cm lifting height	43
3.15	Software MATLAB 2011 (MathWorkInc, USA)	45
3.16	Hanning window	47
3.17	Resolutions in Spectrogram	49
4.1	The flow of the result analysis	54
4.2	(a) Muscle activities tasks, (b) RAW data of EMG signal	55
4.3	(a) FFT of EMG signal with window size of 256, (b)	58
	Spectrogram of EMG signal with window size of 256 and	
	(c) Instantaneous RMS value of EMG signal with window	
	size of 256	
4.4	(a) FFT of EMG signal with window size of 1024, (b)	59
	Spectrogram of EMG signal with window size of 1024 and	
	(c) Instantaneous RMS value of EMG signal with window	
	size of 1024	
4.5	(a) FFT of EMG signal with window size of 2048, (b)	60
	Spectrogram of EMG signal with window size of 2048 and	

(c) Instantaneous RMS value of EMG signal with window size of 2048

4.6	(a) Raw signal for overall liftings for 5 kg and 75 cm (b)	65
	Spectrogram for overall liftings, (c) The maximum peak	
	value amplitude, (d) Minimum peak value of amplitude	
4.7	(a) Raw signal for overall liftings for 5 kg, 140 cm (b)	66
	Spectrogram for overall liftings	
4.8	(a) Raw signal for overall liftings for 10 kg, 75 cm (b)	67
	Spectrogram for overall liftings	
4.9	(a) Raw signal for overall liftings for 10 kg, 140 cm (b)	68
	Spectrogram for overall liftings	
4.10	(a) Raw signal of manual lifting task, (b) Spectrogram	75
1.10	representation, (c) Instantaneous energy, (d) Threshold	15
	calculation	
4.11	(a) The overall raw EMG signal, (b) Raw EMG signal of the	76
	first lifting	
4.12	(a) Segmented raw signal,(b) Time-frequency representation	78
	(spectrogram) and (c) Instantaneous RMS Voltage	
4.13	Instantaneous RMS Voltage $(V_{rms}(t))$ of: (a) 5 kg mass of	81
	load with 75 cm lifting height, (b) 5 kg mass of load with	
	140 cm lifting height, (c) 10 kg mass of load with 75 cm	
	lifting height and (d) 10 kg mass of load with 140 cm lifting	
	height	
4.14	(a) The performance of Mean RMS Voltage of load mass 5	84

kg and 75 cm lifting height for Phase 1 and, (b) The

performance of Mean RMS Voltage of load mass 5 kg and 75 cm lifting height for Phase 2

- 4.15 (a) The performance of Mean RMS Voltage of load mass 5 87
 kg and 140 cm lifting height for Phase 3 and, (b) The performance of Mean RMS Voltage of load mass 5 kg and 140 cm lifting height for Phase 4
- 4.16 (a) The performance of Mean RMS Voltage of load mass 10 89
 kg and 75 cm lifting height for Phase 1 and, (b) The
 performance of Mean RMS Voltage of load mass 10 kg and
 75 cm lifting height for Phase 2
- 4.17 (a) The performance of Mean RMS Voltage of load mass 10 92
 kg and 140 cm lifting height for Phase 3 and, (b) The performance of Mean RMS Voltage of load mass 10 kg and 140 cm lifting height for Phase 4

LIST OF ABBREVIATIONS

AIF	-	Average Instantaneous Frequency
ECG	-	Electrocardiogram
EEG	-	Emergency electroencephalography
EMG	-	Electromyography
FFT	-	Fast-Fourier Transform
MSDs	-	Musculoskeletal Disorders
RMS	-	Root Mean Square
sEMG	-	Surface Electromyography
SENIAM	-	Surface Electromyography for Non-invasive Assessment
		of Muscle
STFT	-	Short-time Fourier transform
TFD	-	Time-frequency Distribution
TFR	-	Time-frequency Representation
WT		Wavelet transform

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Window sizes selection performances	118
В	Pattern of EMG signal by $V_{rms}(t)$	120
С	Full Result of EMG signal Analysis based on the Subjects	122
	Comparison	
D	Mean $V_{rms}(t)$ to present the strength of the subjects	126
Е	Experiment Protocol	128
F	Performances comparison of manual lifting tasks	133

LIST OF SYMBOLS

E(t)		Instantaneous energy
E_{thres}		Global threshold
fmax		Maximum frequency
F _r		Frequency resolution
F_s	-	Sampling frequency
f(t)		Frequency to Analyse
$h(\tau)$		Input Signal
M(t)		Thresholded
Ν	-	Number of singal length
N_s	-	Number of sample shift
N_w	-	Number of window length
t	-	Time
S(t,f)		
		Time-frequency distribution
$S_x(t,f)$		Time-frequency distribution TFR of the signal
$S_x(t,f)$ T_r		
		TFR of the signal
T_r		TFR of the signal Time resolution
T_r $V_{rms}(t)$		TFR of the signal Time resolution Instantaneous Root Mean Square Voltage
T_r $V_{rms}(t)$ w(t)	_	TFR of the signal Time resolution Instantaneous Root Mean Square Voltage Window Observation

C Universiti Teknikal Malaysia Melaka

x(t) Time domain Signal

LIST OF PUBLICATIONS

A. Journal

- T. N. S. T. Zawawi, A. R. Abdullah, E. F. Shair, I. Halim, S. M. Salleh., 2015.
 EMG Signal Analysis of Fatigue Muscle Activity in Manual Lifting. *Journal* of *Electrical Systems*, 11(3), pp.319–325. (ISI Journal)
- T. N. S. T. Zawawi, A. R. Abdullah, I. Halim, E. F. Shair, S. M. Salleh, 2015. Application of Spectrogram in Analysing Electromyography (EMG) Signals of Manual Lifting. *ARPN Journal of Engineering and Applied Sciences*, 11(6), pp.3603 – 3609. (Scopus Journal)

B. Conference

- T. N. S. T. Zawawi, A.R. Abdullah, E.F. Shair, I. Halim, and Rawaida, O., 2013, December. Electromyography signal analysis using spectrogram. In *Research and Development (SCOReD), 2013 IEEE Student Conference* on, pp. 319-324. (IEEE Conferences)
- 2) E. F. Shair, T. N. S. T. Zawawi, A. R. Abdullah & N. H. Shamsudin., (2015). sEMG Signals Analysis Using Time-Frequency Distribution for Symmetric and Asymmetric Lifting. In 2015 International Symposium on Technology Management and Emerging Technologies (ISTMET), August 25 - 27, 2015, Langkawi, Kedah, Malaysia, pp. 233–237.(IEEE Conferences)

xvi

C) Universiti Teknikal Malaysia Melaka

C. Other

Kasim, R., Abdullah, A.R., Selamat, N.A., Abidullah, N.A. and T. N. S. T. Zawawi,
 2015, August. Lead Acid Battery Analysis Using Spectrogram. In *Applied Mechanics and Materials* (Vol. 785, pp. 692-696). Trans Tech Publications.
 (Scopus)

CHAPTER 1

INTRODUCTION

1.1 Introduction

In industrial workplaces, manual lifting is a prevalent choice that needed to perform a material handling task, although mechanized and automated equipment are provided (Chang et al., 2003 and Halim et. al., 2014). Manual lifting is commonly practiced by workers in industrial workplaces to move or transport the object to a desired place (Waters et. al., 1994 and Halim et. al., 2014).

Manual lifting is one of the manual handling activities. Improper manual handling becomes the common causes of injuries at work (Arif et. al., 2013). National Safety council (NSC) indicated that the estimation of safe load limit for manual handling operations should be judged scientifically to reduce the rate of industrial accidents (Maiti and Bagchi, 2006).

Skeletal muscles are critically implemented to perform the manual lifting task. It is important to handle a suitable load mass and lifting height to ensure the muscles properly used to achieve muscle fatigue. Inappropriate lifting techniques will contribute to work-related musculoskeletal disorders (MSDs) in workplace injuries (Lu et. al., 2016). In general, the repetition of manual lifting tasks frequently may expose worker to the high risk of (MSDs) (Arif et al., 2013, Halim et. al., 2014 and Nurhayati, et. al., 2015)

1

MSDs can be divided into two parts which are upper limb and lower limbs. Statistic data of prevalence (total cases) from 2001 to 2014 shown that back pain was recorded as a common complaint in Malaysia (Veerapen et. al., 2007). It will cause absenteeism at work and lead to direct loses like the increasing of medical and compensation cost, and indirect loses as contribute to low the productivity, miserable due to the soreness and absenteeism (Veerapen et. al., 2007 and Sterud, T. and Tynes, T., 2013). Electromyography (EMG) will relate to the MSDs.

EMG signal is widely used and applied as a control signal in numerous man-machine interfaces' applications. It has also been deployed in numerous clinical and industrial applications (Phinyomark et. al., 2012). The EMG is known as biomedical signal that consist of electrical current. It is generated during contraction and relaxation phase of muscles (Gokgoz and Subasi, 2015 and Ruchika and Dhingra, 2013). Moreover, it is originally developed for investigating muscular disorder and EMG recording has also been used for studying the functional state of the muscle during various motions (Rekhi et. al., 2009).

However, EMG signal is complicated and non-stationary signal with highly complex time and frequency characteristics (Kamaruddin, Khalid, and Shaameri, 2015). It is controlled by nervous signal because it always responsible the muscle activity (Ruchika and Dhingra, 2013 and Canal, 2010). During data collection and recording process, it become difficult because of EMG signal that really sensitive to noise and easier distorts while travelling through different tissues in the body muscle (Gokgoz and Subasi, 2015 and Reaz et. al., 2006). Feature extraction and function classification is the key in processing and analysing the EMG signals (Rekhi et. al., 2009).

A lot of studies have been done in EMG signal investigation especially in extraction of EMG signal (Bekka and Chikouche, 2003, (Gokgoz and Subasi, 2015; Reaz et. al., 2006 and Wu, Talmon, and Lo, 2015). The previous researchers have been used fast Fourier