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ABSTRACT 

 

 

In future, robots and mechatronic system are required to support human, they should have a 
lot of abilities such as recognition of the real world based on the complicated human action 
to environment based on human sensation and so on. The word “Haptic” means sense of 
touch and haptic information is studied as the third type of multimedia information. Unlike 
audio and visual information which is transmitted to one direction (unilateral), haptic 
information is bidirectional information (bilateral), which applied “law of action and 
reaction” a tactile information in bilateral information. Thus, a bilateral control system with 
master and slave manipulator to transmit the information bilaterally has been researched. In 
this thesis, bilateral teleoperation control system is implemented in single link planar and 
two link planar manipulator which consisted of master and slave system. The modelling of 
bilateral teleoperation control system is designed with the integration of Disturbance 
Observer (DOB), Reaction Force/Torque Observer (RFOB)/(RTOB), position controller and 
force controller. Then further research on micro-macro bilateral teleoperation control system 
is done on multi degree-of-freedoms (MDOF) which is two link planar manipulator. The 
micro-macro bilateral control teleoperation system provides the human operator with a sense 
of feel to a micro or macro environment as if it is in the same scale environment. However, 
the micro-macro bilateral control system of this thesis consists of same size structure 
between master and slave manipulator. Thus a standardized modal space method is proposed 
to achieve for MDOF micro-macro bilateral control teleoperation system. This method able 
to scale the force and position information between master slave system. It is a novel method 
for transmission of force and motion in macro environment in order to realize the physical 
support for the macro activities. Nevertheless, this proposed method able to scale the haptic 
information between the master and slave system accordingly. To validate the performance 
of common mode and differential mode of the proposed method, 4 cases of free and contact 
motion experiments with different nominal mass ratio between master and slave system are 
conducted. Then the root-mean-square deviation of the nominal mass ratio and scaling α 
gain from 4 different cases is 1.12 × 10−5  and 2.55 × 10−5  for 𝑥 -axis and 𝑦 -axis, 
respectively. As conclusion, this proved that the standardized modal space method is able to 
scale different force information of MDOF micro-macro bilateral control teleoperation 
system. 
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ABSTRAK 

 

 

Pada masa akan datang, robot dan sistem mekatronik diperlukan untuk menyokong manusia, 
mereka harus mempunyai banyak kebolehan seperti pengiktirafan dunia sebenar 
berdasarkan tindakan manusia yang rumit kepada alam sekitar berdasarkan sensasi 
manusia dan sebagainya. Perkataan "Haptic" ertinya rasa sentuhan dan maklumat haptic 
dikaji sebagai jenis ketiga maklumat multimedia. Tidak seperti maklumat audio dan visual 
yang dihantar ke satu arah (unilateral), maklumat haptic adalah maklumat dwiarah (dua 
hala), yang menggunakan "undang-undang tindakan dan reaksi" maklumat sentuhan di 
dalam maklumat dua hala. Oleh itu, satu sistem kawalan dua hala dengan induk dan hamba 
pengolah untuk menghantar maklumat secara dua hala telah dikaji. Dalam tesis ini, sistem 
kawalan teleoperasi dua hala dilaksanakan dalam satu satah penghubung dan dua satah 
penghubung pengolah yang terdiri daripada sistem induk dan hamba. Pemodelan sistem 
kawalan teleoperasi dua hala direka dengan integrasi Pemerhati Gangguan (DOB), 
Permerhati Reaksi Daya / Permerhati Reaksi Kilas (RFOB) / (RTOB), pengawal posisi dan 
pengawal daya. Kemudian penyelidikan lanjut mengenai kawalan sistem teleoperasi dua 
hala mikro-makro dilakukan pada pelbagai darjah kebebasan (MDOF) yang merupakan 
dua satah penghubung pengolah. Sistem kawalan teleoperasi dua hala mikro-makro 
memberi pengendali manusia untuk merasa persekitaran mikro atau makro seolah-olah ia 
adalah dalam persekitaran yang sama saiz. Walaubagaimanapun, sistem kawalan dua hala 
mikro-makro tesis ini terdiri daripada struktur saiz sama antara induk dan hamba pengolah. 
Oleh itu kaedah ruang model yang seragam adalah dicadangkan untuk mencapai sistem 
teleoperasi kawalan dua hala mikro-makro MDOF. Kaedah ini dapat mengubah skala 
maklumat daya dan maklumat posisi antara sistem induk hamba. Ia adalah satu kaedah baru 
untuk penghantaran daya dan gerakan dalam persekitaran makro bagi merealisasikan 
sokongan fizikal untuk aktiviti-aktiviti makro. Bagaimanapun, kaedah yang dicadangkan ini 
mampu mempertingkatkan maklumat haptik antara sistem induk dan hamba sewajarnya. 
Untuk mengesahkan prestasi mod lazim dan mod berbeza daripada kaedah yang 
dicadangkan, 4 kes eksperimen gerakan bebas dan sentuhan dengan nisbah jisim nominal 
yang berbeza di antara sistem induk dan hamba dijalankan. Kemudian punca purata kuasa 
dua sisihan bagi nisbah jisim nominal dan berskala α dari 4 kes yang berbeza adalah 1.12 ×
10−5  and 2.55 × 10−5  bagi paksi-x dan paksi-y. Sebagai kesimpulan, ini membuktikan 
bahawa kaedah ruang model yang seragam mampu untuk mengubah skala maklumat daya 
yang berbeza bagi sistem teleoperasi kawalan dua hala mikro-makro MDOF. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.0 Background/Motivation 

Imagine a world that human being is strong, able to be present in deep underwater, 

or outer space to explorer and feel the environment which normal human being cannot exist 

and able carry big and heavy objects. Unfortunately, human being does not. Human being is 

incapable and do not possess such abilities, but robot can. Human can control with a 

controller from a recliner at home while robot does the bidding in the world.  

It is similar as a teleoperation system. Teleoperated robots are used where human is 

not physically present in the environment. The common applications of teleoperation are 

handling inaccessible or hazardous environment such as nuclear plant, deep underwater and 

outer space. As the technology of teleoperation become more advanced, teleoperation is also 

applied in medical surgeries. During surgery, the human operator operates the surgical tools 

located at another room which is in a different location with patient to provide comfort for 

the patient during the surgery. The human operator depends on the projected image of the 

patient on a monitor and controls the position of the surgical tools. However, in order to 

achieve minimally invasive surgery (MIS), the ability of human operator to sense the motion 

in the teleoperation system is vital.  

In the future, for robots and mechatronic system are required to support humans, they 

should have a lot of abilities such as recognition of the real world based on human action, 

and transmission of sense of touch of the environment based on human sensation. Thus, with 

the ability to sense touch and manoeuvrability in teleoperation system, the human operator 
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can manipulate the environment as if the human operator is present in the environment. In 

this case, during surgery, the human operator manipulates a surgical tool to cut a tissue of a 

patient, the human operator is able to perform the task and at the same time sense the stiffness 

of the tissue to avoid damage to the tissue and surrounding organs. 

In fact, sensation from the environment is always a way to feel and recognize 

everything that is touched. With auditory and visual information utilised together with the 

haptic information, human can feel total immersion in augmented reality using Avatar robots 

going to distance or unreachable places instead. In other words, unmanned aerial vehicles 

(UAV) used for deep underwater exploration can implement haptic system to obtain haptic 

information other than audio and visual information from the deep underwater environment. 

In that case, the system must have interactivity for human operator to get information 

from environment through bilateral control system. This means that the haptic information 

from the real environment is only received when making contact with the real environment. 

Thus, a bilateral control system with master and slave manipulator is needed to transmit the 

information bilaterally. Each manipulator is equipped with actuators and sensors having one 

or more degrees of motion freedom.  

Further application of bilateral control system is micro-macro bilateral control 

systems. The micro-macro bilateral control system consists of different size of master and 

slave system. This system allows to transmit haptic information between different scaled 

objects. Nevertheless, this system must able to scale the haptic information between the 

master and slave system accordingly. Thus this allow operator to feel sensation as if they are 

touching different scale of environment. It is also effective for application where operator 

cannot manipulate directly.  

Real-world haptic is the current attention not only as the principle of attaining real-

world haptic information in teleoperation but also the key technology for future human 
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support. There are haptic fields that will expected to have great demand in our society. In 

the next decade, haptic technology will become part of human’s compliant device for any 

age of people and any occupations or professions. This includes human-support technologies, 

medical/rehabilitation, exploration and industry. It will bring new technical issues in haptic 

system. 

 

1.1 Problem Statement 

In particular, geared motor has been implemented vastly in industrial field such as 

factory automation, robotics, industrial machine and medical sciences and laboratory 

technology. Geared motor also brings cutting-edge technology application such as outer-

space and underwater exploration, advanced robotics, and machinery. The advantages of 

geared motor are able to produce high torque. To produce a high torque out from a motor 

itself without gear for power transmission, the size of the motor has to be big. This in fact 

not just costly, but also impractical in size. Thus, it is important to realise that the higher the 

torque required, the larger the size of the motor. With many different types of gears and 

ratios, the engineer can decide the torque output required for an application.  

However, in the past approaches, researches on bilateral teleoperation control system 

utilised linear motor. The output force is powerful but the cost is high. Moreover, it controls 

in linear position. Nevertheless, some researches approached bilateral teleoperation control 

system using motor. But the output power is very low. For instance, the implementation of 

geared motor in bilateral teleoperation control system is a new step in research. The outcome 

of the teleoperation using geared motor able to realize a low cost teleoperation system. 

Unfortunately, geared motor produces large joint friction in teleoperation and affects the 

force/torque sensorless control.  
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Furthermore, industrial robots that seen in automation and car manufacturing industry, 

the operation of the robots are programed based on trajectory position. Those usually are for 

pick and place or assembly task. Yet, the operation area is fenced around to avoid human 

access the operation zone. This is because the industrial robots are rigid and sensor-less to 

external environment, thus it will harm and injured when it contacts with human during 

operation. Consequently, these industrial robots are not safe during operation and not human 

friendly. In order to be safer, accessible and human friendly, the system must have external 

force feedback from the environment other than operation task. By all means if the system 

able is to track external force, the industrial robots will halt the operation immediately when 

it makes contact to undesired force from the environment. 

Scaled teleoperation has been developed since decades ago. This which means the 

physical and parameters of master and slave device are totally different. Even though 

teleoperation systems used for human to operate larger scale slave manipulator such as 

excavator, underwater UAV for exploration or maintenance purposes, these applications 

have no haptic feedback information from the environment. In teleoperation between 

different scale world, it is vital to consider the scaling effect in micro-macro bilateral control 

system that able to provide the human operator with force feedback. In other words, it is 

important to develop an effective method which can easily manipulate a different size 

manipulator with scaling effect. Then the motion and force scaling are required for this 

bilateral control system to realize physical support and manipulate in different scale of 

environment. Thus, the micro-macro bilateral control system provides not just easy to 

manipulate different size of master and slave device, also able to provide human operator 

with a sense of haptic to a micro or macro environment as if it is in the same scale 

environment. 


