

# **Faculty of Electrical Engineering**

## DESIGN AND PERFORMANCE EVALUATION OF SOLAR PV SYSTEM IN MALAYSIA

Tan Pi Hua

Master of Science in Electrical Engineering

2016

## DESIGN AND PERFORMANCE EVALUATION OF SOLAR PV SYSTEM IN

## MALAYSIA

Tan Pi Hua

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

**Faculty of Electrical Engineering** 

## UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

## DECLARATION

I declare that this thesis entitled "Design and Performance Evaluation of Solar PV System in Malaysia" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature ofany other degree.

| Signature | :                 |
|-----------|-------------------|
| Name      | : Tan Pi Hua      |
| Date      | : 5 February 2016 |

•

### APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering.

| Signature       | ·                               |
|-----------------|---------------------------------|
| Supervisor Name | : Assoc. Prof. Dr. Gan Chin Kim |
| Date            | :5 February 2016                |



#### ABSTRACT

The technical design and performance evaluation of solar PV system are gaining increasing attention nowadays. This is to maximize the economic benefits and to shorten the investment payment period, particularly under the Feed-in Tariff incentive scheme. In light of this, this thesis presents a comparison between the performance of Thin Film (tandem junction-microamorphous), Heterojunction with Intrinsic Thin layer (HIT) and Mono-Crystalline (Mono) photovoltaic (PV) module technologies between estimated and real measurement data for the grid-connected PV system installed at the Research Laboratory of PV System and Smart Grid, UTeM. The respective system performances were analysed in terms of total energy yield. In addition, the rooftop and ground mounted PV system installation conditions were also considered in the study. The respective system performances were compared in terms of total energy generated, specific yield and Levelized Cost of Energy (LCOE) for PV grid parity analysis in Malaysia. The FiT degradation rate of solar PV system has been taken into consideration. The key findings suggest that under the Malaysian climate environment, the Thin Film PV system has the highest energy yield, which is mainly driven by its lower module temperature losses and minimum module fluctuation response. Moreover, under the current Feed-in Tariff scheme in Malaysia, the rooftop thin-film PV system installation has the highest economic benefit for the utility scale PV power plant. Apart from the PV system performance evaluation, the installation of an external lightning protection system is crucial for power plants to minimize PV system damages. This is because Malaysia is also one of the countries with the highest occurrences of lightning activities in the world. Thus, it is essential for PV power plants to have adequate protection from damage and power generation losses. In this regard, two different lightning systems were considered to two different PV technology Power Plant systems. The respective system performances were compared in terms of total energy yield. The key findings suggest that the air termination lightning pole is suitable for a solar power plant particularly a Thin Film or Crystalline PV power plant system that will result in lower losses compared to the Early Streamer Emitter lightning pole for the PV Power Plant system.



#### ABSTRAK

Rekabentuk dan penilaian prestasi teknikal sistem PV solar semakin mendapat perhatian pada masa kini. Ini penting untuk memaksimumkan manfaat ekonomi dan untuk memendekkan tempoh pulangan pelaburan, terutamanya di bawah skim insentif Tarif Feeddalam. Dengan itu, tesis ini membentangkan perbandingan antara prestasi filem nipis (selaras junction-mikro-amorfus), Heterojunction dengan lapisan nipis intrinsik (HIT) dan Mono-Kristal (Mono) fotovoltaik (PV) modul teknologi antara data pengukuran anggaran dan sebenar. Sistem masing-masing persembahan telah menganalisis dari segi jumlah tenaga hasil dari PV modul teknologi dan analisis ekonomi sistem PV. Penemuan-penemuan penting mencadangkan bahawa keadaan iklim Malaysia, sistem PV filem nipis mempunyai hasil tenaga yang tertinggi, yang didorong terutamanya oleh kerugian modul suhu yang rendah dan maklum balas naik-turun modul minimum. Atas bumbung dan tanah dipasang pemasangan sistem PV syarat-syarat yang telah dipertimbangkan dalam kajian ini. Prestasi sistem masing-masing telah dibandingkan dari segi jumlah tenaga yang dihasilkan, hasil tertentu dan Levelized kos daripada tenaga (LCOE).Di bawah skim Feed-in Tariff ini semasa di Malaysia, pemasangan sistem PV nipis-filem di atas bumbung mempunyai faedah ekonomi yang tertinggi untuk loji janakuasa skala PV utiliti. Kadar kemerosotan patut solar PV sistem telah diambil kira. Gabungan struktur pelekap dan konsep struktur BIPV dianggap Universiti Teknikal Malaysia Melaka Reka bentuk loji janakuasa solar. Analisis teknoekonomi adalah untuk mengetahui dalam projek yang menjadi bankability yang tempoh bayar balik pelaburan dengan suapan yang terendah dalam skim tarif yang dicadangkan oleh pihak berkuasa pembangunan tenaga lestari (SEDA) pada tahun 2015. Pemasangan sistem perlindungan kilat luar adalah penting bagi loji-loji janakuasa untuk meminimumkan kerosakan sistem PV.Dua sistem berbeza kilat telah dipasang untuk dua PV teknologi loji kuasa sistem yang berbeza. Prestasi sistem masing-masing telah dibandingkan dari segi jumlah tenaga yang dijana dan hasil tenaga. Penemuan-penemuan penting mencadangkan bahawa tiang kilat penamatan Penyaman sesuai untuk loji janakuasa solar terutamanya filem nipis atau Kristal PV loji kuasa sistem yang akan mengakibatkan kerugian yang lebih rendah berbanding dengan kutub kilat awal Streamer Emitter untuk sistem loji kuasa PV. Ini adalah disebabkan oleh bayang-bayang tiang kilat yang jatuh pada modul PV untuk meningkatkan suhu sel solar dan mengurangkan penjanaan kuasa. Malaysia mempunyai salah satu ulangan aktiviti kilat tertinggi di dunia. Oleh itu, adalah penting bagi loji-loji janakuasa PV untuk mempunyai perlindungan yang mencukupi dari kerosakan dan kuasa generasi kerugian.

## **TABLE OF CONTENTS**

PAGE

| DEC                                                 | LARA             | TION                                                |       |
|-----------------------------------------------------|------------------|-----------------------------------------------------|-------|
| APP                                                 | ROVA             | L                                                   |       |
| ABS                                                 | TRAC             | Г                                                   | i     |
| ABS                                                 | TRAK             |                                                     | ii    |
| LIST                                                | <b>OF</b>        | IGURES                                              | vi    |
| LIST                                                | <b>OFT</b>       | ABLES                                               | X     |
| LIST                                                | <b>OF</b> A      | BBREVIATIONS                                        | xii   |
| LIST                                                | r of p           | UBLICATIONS                                         | xviii |
| CHA                                                 | PTER             | 1                                                   | 1     |
| INT                                                 | RODU             | CTION                                               | 1     |
| 1.1                                                 | Backg            | round                                               | 1     |
|                                                     | 1.2              | Problem Statements                                  | 3     |
|                                                     | 1.3              | Research Objective                                  | 4     |
|                                                     | 1.4              | Research Scope                                      | 5     |
|                                                     | 1.5              | Thesis outline                                      | 8     |
|                                                     |                  |                                                     |       |
| CHA                                                 | PTER             | 2                                                   | 9     |
| LITI                                                | ERATI            | JRE REVIEW                                          | 9     |
| 2.1                                                 | 2.1 Introduction |                                                     | 9     |
| 2.2 Overview of Design Consideration for a PV Plant |                  | 10                                                  |       |
|                                                     | 2.2.1            | Grid-Connected Photovoltaic System                  | 11    |
|                                                     | 2.2.2            | Solar Resources                                     | 12    |
|                                                     | 2.2.3            | PV System Loss Factor                               | 14    |
|                                                     | 2.2.4            | System Performance Indices                          | 15    |
| 2.3                                                 | Perfor           | mance Evaluation of Grid-Connected PV System        | 16    |
|                                                     | 2.3.1            | Actual performance of PV system installed worldwide | 17    |
|                                                     | 2.3.2            | PV System performance with sun tracking system      | 18    |
|                                                     | 2.3.3            | PV Performance Degradation                          | 20    |
| 2.4                                                 | Econo            | mic Consideration of Designing PV System            | 22    |
| 2.5                                                 | Econo            | mic Analysis of PV System                           | 23    |
|                                                     |                  |                                                     |       |

| СНА | PTER             | 3                                                                                           | 24                |
|-----|------------------|---------------------------------------------------------------------------------------------|-------------------|
| МЕТ | HODO             | DLOGY                                                                                       | 24                |
| 3.1 | Introdu          | action                                                                                      | 24                |
| 3.2 | Metho<br>Crysta  | dology of Techno-Economics Analysis of 1MW Thin Film and 1M<br>lline UTeM Solar Power Plant | ЛW<br>24          |
|     | 3.2.1            | System description                                                                          | 28                |
|     | 3.2.2            | PV System Design                                                                            | 29                |
| 3.3 | Metho<br>Systen  | dology of Techno-Economic Analysis Methodology of Small Scale Rooftop<br>n in UTeM Malaysia | PV<br>40          |
|     | 3.3.1.           | System Description                                                                          | 44                |
| 3.4 | Metho<br>Systen  | dology of Techno-Economic Analysis Methodology of Medium Scale<br>n in UTeM Malaysia        | PV<br>45          |
|     | 3.4.1            | System description                                                                          | 46                |
|     | 3.5              | Methods of Lightning Protection for the PV Power Plant                                      | 48                |
|     | 3.5.1            | Methods of Lightning                                                                        | 49                |
|     | 3.5.2            | Lightning Pole System Protection Description                                                | 51                |
| 3.6 | Evalua<br>in Mal | tion of Solar Photovoltaic Levelized Cost of Energy for PV Grid Parity Analy<br>aysia       | ysis<br>52        |
|     | 3.6.1            | PV system cost                                                                              | 57                |
|     | 3.6.2            | Electricity Prices                                                                          | 58                |
|     | 3.6.3            | Levelized cost of electricity (LCOE)                                                        | 59                |
| 3.7 | Summ             | ary                                                                                         | 61                |
| СНА | PTER             | 4                                                                                           | 62                |
| RES | ULTS A           | AND DISCUSSIONS                                                                             | 62                |
| 4.1 | Introdu          | action                                                                                      | 62                |
| 4.2 | Techno<br>Power  | o-Economics Analysis of 1MW Thin Film and 1MW Crystalline UTeM So Plant                     | əlar<br><b>62</b> |
|     | 4.2.1            | Plant Layout Design                                                                         | 62                |
|     | 4.2.2            | Expected AC Power Output and Performance Ratio                                              | 65                |
|     | 4.2.3            | Energy Production and Capacity Factor                                                       | 66                |
|     | 4.2.4            | Lightning Protection                                                                        | 70                |
|     | 4.2.5            | Economic Analysis                                                                           | 73                |
|     | 4.2.6            | Environmental Analysis                                                                      | 75                |
| 4.3 | Techno           | o-Economic Analysis of Small Scale Rooftop PV System in UTeM Malaysia                       | a <b>78</b>       |

23

|     | 4.3.1  | DC Power Output with and without Standard Test Condition (STC).   | 78  |
|-----|--------|-------------------------------------------------------------------|-----|
|     | 4.3.2  | Performance ratio (PR) and Energy Production                      | 82  |
|     | 4.3.3  | Economic Analysis Base on Industrial Standard Market Price        | 89  |
| 4.4 | Techn  | o-Economic Analysis of Medium Scale PV System in UTeM Malaysia    | 90  |
|     | 4.4.1. | AC Power Output at STC                                            | 90  |
|     | 4.4.2. | Specific Yield                                                    | 93  |
|     | 4.4.3. | Economic Analysis                                                 | 95  |
|     | 4.5    | Lightning Protection for the PV Power Plant                       | 97  |
|     | 4.5.1  | Types of Lightning Poles and Coverage Areas                       | 97  |
|     | 4.5.2  | Shading Losses and Output Energy Generation Simulation            | 101 |
|     | 4.5.3  | Cable Management                                                  | 104 |
|     | 4.5.4  | Mounting Structure Management                                     | 106 |
|     | 4.6    | Result and Discussion Lightning Protection for the PV Power Plant | 110 |
|     | 4.6.1  | Grid parity analysis                                              | 110 |
|     | 4.6.2  | Comparison of income losses                                       | 115 |
| 4.7 | Summ   | ary                                                               | 117 |

| СНАРТЕ     | CR 5              | 118 |
|------------|-------------------|-----|
| CONCLUSION |                   | 118 |
| 5.1        | Conclusion        | 118 |
| 5.2        | Main Contribution | 120 |
| 5.3        | Future works      | 121 |
|            |                   |     |
| DEFERD     |                   | 100 |

| NET FERENCES | 144 |
|--------------|-----|
| APPENDICES   | 137 |



v

### **LIST OF FIGURES**

| FIGUR | E TITLE PA                                                                     | AGE    |
|-------|--------------------------------------------------------------------------------|--------|
| 2.1   | Cost reduction in PV module price over the years                               | 9      |
| 2.2   | Typical PV power plant components and arrangement                              | 11     |
| 2.3   | Average solar irradiance and ambient temperature data of UTeM fr               | om 13  |
|       | Meteonorm (meteotest, 2014)                                                    |        |
| 3.1   | Solar Radiation Distribution in Malaysia                                       | 25     |
| 3.2   | 2015 FiT offered by SEDA (SEDA, 2015)                                          | 26     |
| 3.3   | Proposed interconnection of UTeM solar power plant                             | 26     |
| 3.4   | Proposed UTeM power plant location                                             | 27     |
| 3.5   | PV system under study                                                          | 29     |
| 3.6   | Medium scale PV system configuration                                           | 38     |
| 3.7   | 1MW Thin Film and 1MW Crystalline solar power plant single 1                   | ine 40 |
|       | diagram                                                                        |        |
| 3.8   | 2MW UTeM solar power plant system losses                                       | 41     |
| 3.9   | Proportion of PV system component losses                                       | 44     |
| 3.10  | System under study                                                             | 47     |
| 3.11  | Proportion of PV system component losses                                       | 49     |
| 3.12  | Global lightning event map                                                     | 50     |
| 3.13  | PV module damage caused by a lightning strike in Johor, Malaysia in Ju<br>2013 | une 50 |

| 3.14 | Method of air terminal rod design in solar power plants                                                     | 51 |
|------|-------------------------------------------------------------------------------------------------------------|----|
| 3.15 | PV system's external lightning protection methods                                                           | 52 |
| 3.16 | Lightning pole system study for various PV power plant s                                                    | 52 |
| 3.17 | The average electricity tariff (cents/kWh) in peninsular Malaysia                                           | 55 |
|      | (Suruhanjaya Tenaga, 2013)                                                                                  |    |
| 3.18 | Flowchart of the methodology.                                                                               | 56 |
| 3.19 | Positioning matrix of the countries analyzed (Penwell, 2014).                                               | 59 |
| 3.20 | Forecasted average electricity tariff (cents/kwh) in Peninsular Malaysia.                                   | 60 |
| 3.21 | Forecast of LCOE with 1.0%/year increment of inflation rate                                                 | 61 |
| 3.22 | Forecast of LCOE with 1.0%/year degradation rate                                                            | 61 |
| 4.1  | Ground mounted PV system power plant layout                                                                 | 63 |
| 4.2  | Ground mounted mounting structure sample.                                                                   | 64 |
| 4.3  | BIPV PV system power plant layout                                                                           | 64 |
| 4.4  | BIPV mounting structure sample layout                                                                       | 65 |
| 4.5  | AC output power generation from power plant with / without STC                                              | 67 |
| 4.6  | Monthly energy generation from TF and C-Si PV system                                                        | 68 |
| 4.7  | Various output when temperature PV module increase at $1000 \text{W}/\text{m}^2$                            | 69 |
| 4.8  | 2MW UTeM solar power plant expected energy generation                                                       | 70 |
| 4.9  | Capacity factor of Thin Film and Crystalline PV system among rooftop<br>and ground mounted structure system | 71 |
| 4.10 | Sample air terminal lightning protection which applied to 84mw ned solar power plant in Thailand            | 72 |
| 4.11 | Lightning protection air terminal coverage area on PV ground mounted system                                 | 73 |
| 4.12 | Lightning protection air terminal coverage area on BIPV system                                              | 73 |
| 4.13 | Revenue of PV system types of installation and PV module technologies                                       | 74 |
|      |                                                                                                             |    |

| 4.14 | Cash flow analysis 2MW UTeM solar power plant with/without rooftop system installation    | 75 |
|------|-------------------------------------------------------------------------------------------|----|
| 4.15 | 1 MW C-Si and 1MW Thin Film solar power plant environmental analysis                      | 77 |
| 4.16 | PV array power output generation from PV panel affected by temperature                    | 80 |
| 4.17 | TF, HIT and mono PV system expected power generation                                      | 81 |
| 4.18 | Application TF, HIT and mono PV system power and performance ratio                        | 82 |
| 4.19 | Expected TF, HIT and mono PV system performance ratio                                     | 83 |
| 4.20 | Expected energy generation of difference type of PV system                                | 83 |
| 4.21 | Specific yield among difference type of PV system                                         | 84 |
| 4.22 | Daily PV system energy production analysis                                                | 84 |
| 4.23 | Monthly energy production and yield of UTeM PV systems                                    | 85 |
| 4.24 | Monthly average PV specific yield and energy production                                   | 85 |
| 4.25 | Energy production determines monthly specific yield level                                 | 88 |
| 4.26 | 21 years energy production from different type of PV system technologies                  | 88 |
| 4.27 | Type of PV systems cash flow analysis.                                                    | 89 |
| 4.28 | Monthly energy income from under Malaysia FiT scheme                                      | 90 |
| 4.29 | PV system power output generation from PV panel affected by                               | 91 |
|      | temperature                                                                               |    |
| 4.30 | Crystalline and Thin-Film PV system ac output generation from rooftop system              | 92 |
| 4.31 | Crystalline and Thin-Film PV system ac output generation from ground mounted system       | 92 |
| 4.32 | Specific yield between rooftop and ground mounted for Crystalline and Thin-Film PV system | 94 |
| 4.33 | Monthly income from Crystalline and Thin-Film PV ground mounted system output generation  | 95 |
| 4.34 | PV power plant 21-year cumulative income for the rooftop system                           | 96 |
|      |                                                                                           |    |

| 4.35 | PV power plant 21-year cumulative income for the ground mounted system                                                                        | 96  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.36 | Air termination lightning pole protection for a thin film PV power plant                                                                      | 99  |
| 4.37 | Air terminal lightning pole protection for a crystalline PV power plant                                                                       | 99  |
| 4.38 | Early streamer emitter (ESE) lightning pole protection for a Thin Film PV power plant                                                         | 100 |
| 4.39 | Early streamer Emitter (ESE) lightning pole protection for a Crystalline PV power plant                                                       | 100 |
| 4.39 | Shadow simulation of 1MW crystalline PV system per block power plant layout with and without external lightning protection                    | 102 |
| 4.41 | Shadow simulation of 1MW Thin Film PV system per block power plant layout with and without external lightning protection                      | 102 |
| 4.42 | PV output energy generation with or without Non-Lightning (NL) pole for<br>each type of PV module technologies with 1mw installation capacity | 103 |
| 4.43 | Total annual PV output energy generation according types of lightning protection of the PV power plant                                        | 103 |
| 4.44 | Cable lay method according to the PV array mount for different types of mounting structures                                                   | 106 |
| 4.45 | Current leakage between PV cell and module frame                                                                                              | 107 |
| 4.46 | Mounting structure cable lay method which increases electromagnetic concentration                                                             | 108 |
| 4.47 | Grid parity analyses in Malaysia – residential segment with an increment rate of 1.0%/year of inflation rate                                  | 110 |
| 4.48 | Grid parity analyses in Malaysia-residential segment with degradation rate of 1.0%/year                                                       | 111 |
| 4.49 | Relationship of combination parameters                                                                                                        | 112 |
| 4.50 | The tariff after grid parity with the combination of parameters                                                                               | 113 |
| 4.51 | Grid parity analyses with the combination of parameters                                                                                       | 114 |
| 4.52 | The tariff after grid parity with the combination of parameters                                                                               | 114 |

## LIST OF TABLES

| TABLE | TITLE                                                                                                             | PAGE |
|-------|-------------------------------------------------------------------------------------------------------------------|------|
| 2.1   | Solar parameters                                                                                                  | 12   |
| 2.2   | Loss factor (Sharp solar system team, Japan, 2013)                                                                | 14   |
| 3.1   | 2MW UTeM solar power plant layout                                                                                 | 30   |
| 3.2   | Solar inverter characteristic                                                                                     | 31   |
| 3.3   | PV power plant system characteristic                                                                              | 39   |
| 3.4   | FiT rates of PV solar system from SEDA                                                                            | 44   |
| 3.5   | PV systems characteristic                                                                                         | 45   |
| 3.6   | PV module characteristics                                                                                         | 46   |
| 3.7   | System characteristics                                                                                            | 48   |
| 3.8   | PV module characteristics                                                                                         | 48   |
| 3.9   | PV module characteristic                                                                                          | 53   |
| 3.10  | FiT rates for solar PV from SEDA (SEDA, 2014)                                                                     | 57   |
| 4.1   | Type of PV system energy yield                                                                                    | 70   |
| 4.2   | Feasibility study of maximum lightning poles coverage area of 12 acres<br>land size of 2MW UTeM solar power plant | 72   |
| 4.3   | Lightning poles quantities proposed to UTeM solar power plant                                                     | 72   |
| 4.4   | PV system LCOE and project IRR                                                                                    | 76   |
| 4.5   | TF, HIT and mono PV system expected and measured power                                                            | 81   |
| 4.6   | Comparison among to measure and expected energy yield                                                             | 87   |

| 4.7  | Comparison of specific yield for rooftop and ground mounted PV systems for Crystalline and Thin-Film technologies | 93  |
|------|-------------------------------------------------------------------------------------------------------------------|-----|
| 4.8  | Lightning system characteristic                                                                                   | 98  |
| 4.9  | Cable installation method and its direct effect to the PV arrays when lightning occurs                            | 103 |
| 4.10 | Risks of mounting structure management                                                                            | 109 |
| 4.11 | Comparison of cumulative tariff between 2026 and 2029 with 8% and 10% degradation rate of FiT.                    | 117 |

### LIST OF ABBREVIATIONS

| Ι               | Solar Irradiation                                                  |
|-----------------|--------------------------------------------------------------------|
| d               | Distance between the sun and the earth                             |
| $\mathbf{d}_0$  | Yearly mean earth-sun distance $(1.496 \times 10^{11} \text{m})$ . |
| n               | Number of day from 1 January.                                      |
| AI (t)          | Cosine Effect                                                      |
| Ig              | Global irradiation                                                 |
| Ι               | Extraterrestrial irradiation                                       |
| Θz              | Solar zenith angles.                                               |
| А               | Altitude of the location in kilometres.                            |
| P <sub>mp</sub> | Maximum power of the systems' capacity, kW                         |
| $\gamma$ coef   | Temperature coefficient, %/ °C                                     |
| T module        | PV module cell temperature, °C                                     |
| T stc           | Temperature at standard test condition, 25 °C                      |
| G               | Solar Irradiance W/m <sup>2</sup> .                                |
| E total         | Total energy production kWh                                        |
| P <sub>mp</sub> | Total PV installation capacity<br>xii                              |

| PSH               | Peak Sun Hour, h                                       |
|-------------------|--------------------------------------------------------|
| PR                | PV System Performance Ratio, %                         |
| E yield           | Energy yield, kWh/kWp                                  |
| P <sub>mp</sub>   | PV system installation peak capacity, $kW_p$           |
| ftemp             | Temperature correction factor                          |
| T <sub>cell</sub> | PV module cell temperature ( <sup>0</sup> C)           |
| T <sub>stc</sub>  | Temperature at standard testing condition, 25 $^{0}$ C |
| Vcorrected        | Corrected voltage                                      |
| Icorrected        | Corrected current                                      |
| Pcorrected        | Corrected Power                                        |
| CAPEX             | Capital expenditures (RM)                              |
| 0&M               | Operation and maintenance cost (RM),                   |
| α                 | Capital recovery factor.                               |
| Т                 | Economic lifetime of the PV system (year).             |
| R <sub>p</sub>    | Radius protection coverage area                        |
| V                 | Assumed to be 1m/µs                                    |
| D                 | Protection level, where $D = 20, 30, 45$ , or 60 m     |
| Н                 | Height (m)                                             |
| ΔΤ                | Gain in sparkover time ( $\mu$ s) of the upward leader |
| S                 | Separation distance xiii                               |

| ki                                   | Factor that depends upon the chosen lightning protection level. |  |  |
|--------------------------------------|-----------------------------------------------------------------|--|--|
| kc                                   | Factor that depends upon the number of down-conductors.         |  |  |
| L Leng                               | gth of down-conductor from the point being considered to the    |  |  |
| closest equipotential bonding point. |                                                                 |  |  |
| V <sub>max_oc</sub>                  | Maximum Open Circuit Voltage                                    |  |  |
| V <sub>max-mp</sub>                  | Maximum Load Connected Voltage                                  |  |  |
| $V_{oc\_stc}$                        | Open Circuit Voltage                                            |  |  |
| $V_{min\_mp}$                        | Minimum Load Connected Voltage                                  |  |  |
| $V_{mp\_stc}$                        | Load Connected Voltage                                          |  |  |
| γ νος                                | Temperature Coefficient for Open Circuit Voltage                |  |  |
| $\gamma$ vmp                         | Temperature Coefficient for Load Connected Voltage              |  |  |
| $N_{max\_base\_on\_Voc}$             | Number of maximum PV module lower than 1000V.                   |  |  |
| $N_{max\_base\_on\_Vmp}$             | Number of maximum PV module connected in series                 |  |  |
| $N_{min\_base\_on\_Vmp}$             | Number of minimum PV module connected in series                 |  |  |
| $V_{max\_in\_win}$                   | Maximum input voltage to inverter connected to load             |  |  |
| $V_{min\_in\_win}$                   | Minimum input voltage to inverter connected to load             |  |  |
| $N_{\text{parallel max}}$            | Maximum parallel PV array connection.                           |  |  |
| Idc_max_inv                          | Maximum of current inverter                                     |  |  |

| Isc_stc              | Short circuit current at STC.          |
|----------------------|----------------------------------------|
| P <sub>nominal</sub> | Nominal PV array capacity              |
| $\eta_{inv}$         | Inverter efficiency                    |
| $V_{min\_win\_inv}$  | Minimum voltage window at inverter.    |
| Parray_stc           | PV array capacity at STC               |
| ftem_energy          | Factor of temperature lost at PV array |
| $f_{ m dirt}$        | Factor of dirt and dust lost           |
| fmm                  | Factor of PV array mismatch lost       |
| <i>f</i> cable       | Factor of cable resistance lost        |
| finv                 | Factor of PV inverter efficiency       |
| $V_{drop\_dc}$       | DC voltage drop                        |
| $L_{dc\_cable}$      | DC cable length                        |
| I <sub>mp</sub>      | PV system load current                 |
| ρ                    | Resistivity of conductor               |
| $A_{dc\_cable}$      | Surface area of DC cable               |
| $V_{drop\_ac}$       | AC voltage drop                        |
| $L_{ac\_cable}$      | AC cable length                        |
| cos Ø                | Power factor                           |

| V <sub>drop</sub> %                                                  | Voltage drop factor                                                     |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Vdrop                                                                | Voltage drop                                                            |  |
| Vmin load                                                            | Minimum load voltage                                                    |  |
| Loss%                                                                | Cable loss factor                                                       |  |
| $V_{min\_mp\_string/array}$                                          | Minimum of string or array voltage.                                     |  |
| $P_{drop\_dc}$                                                       | DC power drop                                                           |  |
| $P_{dc \text{ losses}} \%$                                           | DC power loss factor                                                    |  |
| $I_{sc\_string}$                                                     | PV array string current                                                 |  |
| I trip                                                               | Tripping current                                                        |  |
| ΔCB                                                                  | Annual change in carbon stocks in biomass on land converted to          |  |
| another land-use                                                     | category.                                                               |  |
| $\Delta C_{G}$                                                       | Annual increase in carbon stocks in biomass due to growth on land       |  |
| converted to ano                                                     | ther land-use category (i.e., 2.25 metric tons C/hectare)               |  |
| CConversion                                                          | Initial change in carbon stocks in biomass on land converted to another |  |
|                                                                      | land-use category.                                                      |  |
| $\Delta C_{L}$                                                       | Annual decrease in biomass stocks due to losses from harvesting, fuel   |  |
| wood gathering, and disturbances on land converted to other land-use |                                                                         |  |
|                                                                      |                                                                         |  |

category (assumed to be zero)

| $\Delta \mathbf{C}$ Mineral                                          | Annual change in carbon stocks in mineral soils                        |  |
|----------------------------------------------------------------------|------------------------------------------------------------------------|--|
| SOC <sub>0</sub>                                                     | Soil organic carbon stock in last year of inventory time period (i.e., |  |
| 40.83 mt/hectare)                                                    |                                                                        |  |
| SOC(0-T)                                                             | Soil organic carbon stock at beginning of inventory time period (i.e., |  |
| 62 mt C/hectare)                                                     |                                                                        |  |
| D                                                                    | Time dependence of stock change factors which is the default time      |  |
| period for transition between equilibrium SOC values (i.e., 20 years |                                                                        |  |
| for cropland systems)                                                |                                                                        |  |

xvii

#### LIST OF PUBLICATIONS

#### Journal Articles

- [1] C. Y. Lau, P. H. Tan, C. K. Gan, June 2014 "Evaluation of Solar Photovoltaic Levelized Cost of Energy For PV Grid Parity Analysis in Malaysia," International Journal of Renewable Energy Resources Vol 4, No. 1, pg. 28-34.
- [2] N. M. Nawawi C.K. Gan, P.H. Tan, 2015. "Comparison of Different Options to Transport Energy in Photovoltaic Power Plant using Centralized Inverter," Applied Mechanics and Materials Vol. 785 pp.596-600.

#### **Conference Proceedings**

- [3] C. K. Gan, P. H. Tan, and S. Khalid, 18-20 Nov 2013. "System Performance Comparison between Crystalline and Thin-Film Technologies under Different Installation Conditions," 2013 IEEE Conference on Clean Energy and Technology, Langkawi, Malaysia.
- [4] P. H. Tan, C. K. Gan, Dec 2013. "Methods of Lightning Protection for the PV Power Plant," IEEE Student Conference on Research & Development, Putrajaya, Malaysia.
- [5] H. S. Liew, P. H. Tan, C. K. Gan, May 2014. "The Performances of UTeM Solar PV Systems: An Evaluation," The Power and Energy Conversion Symposium (PECS), Melaka, Malaysia.

#### xviii

- [6] C. Y. Lau, P. H. Tan, C. K. Gan, May 2014. "PV Grid Parity Analysis for Residential Sector in Malaysia," The Power and Energy Conversion Symposium (PECS), Melaka, Malaysia.
- [7] P. H. Tan, C. K. Gan, K.A. Baharin, Nov 2014. "Techno-Economic Analysis of Rooftop PV System in UTeM, Malaysia," 2013 IET Conference on Clean Energy and Technology, Kuching, Malaysia.

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Background

The Malaysian government is committed in the development of renewable energy with particular emphasis on solar Photovoltaic (PV). The Malaysia Renewable Energy (RE) Act 2011 was gazette in June 2011 with the introduction of the Feed-in Tariff (FiT) scheme (RE Act, 2011). Sustainable Energy Development Authority (SEDA Act, 2011) is then established to facilitate the development of RE in the country. Starting from 2013, 1.6% of the total electricity bills is collected from the consumers with monthly energy consumption exceeding 300kWh to support RE development under the FiT scheme. Amongst the RE technologies, the PV system received the most encouraging take up by the public and investors (SEDA, 2014). This is mainly driven by the FiT scheme for the Solar PV project to become economically attractive.

Researches on PV in Malaysia weremainly focusing on solar radiation prediction (K. Sopian, 1992; K.A. Baharin, 2013), PV module performance (N. Amin, 2009), cell materials (R. Daghigh, 2011) and inverter (N.A. Rahim, 2011). However, it is equally important to understand the cost and technical implication of PV installation in the Malaysian context. This is because technical implications and cost components of the PV system, as it will directly affect the investment return duration and the PV system performance. In addition,