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ABSTRACT 

 

 

High level security has nurtured the arisen of Electroencephalograms (EEG) signals as a 
noteworthy biometrics modality for person authentication modelling. Modelling distinctive 
characteristics among individuals, especially in a dynamic environment involves incremental 
knowledge updates from time to time. K-Nearest Neighbour (KNN) is a well-known 
incremental learning method which applies First-In-First-Out (FIFO) knowledge update 
strategy. However, it is not suitable for person authentication modelling because it cannot 
preserve the representative EEG signals patterns when individual characteristics changes 
over time.  Fuzzy-Rough Nearest Neighbours (FRNN) technique is an outstanding technique 
to model uncertainty under an imperfect data condition. The current implementation of 
FRNN technique is not designed for incremental learning problem because there is no update 
function to incrementally reshape and reform the existing knowledge granules. Thus, this 
research aims to design an Incremental FRNN (IncFRNN) technique for person 
authentication modelling using feature extracted EEG signals from VEP electrodes. The 
IncFRNN algorithm updates the training set by employing a heuristic update method to 
maintain representative objects and eliminate rarely used objects. The IncFRNN algorithm is 
able to control the size of training pool using predefined window size threshold. EEG signals 
such as visual evoked potential (VEP) is unique but highly uncertain and difficult to process. 
There exists no consistant agreement on suitable feature extraction methods and VEP 
electrodes in the past literature. The experimental comparison in this research has suggested 
eight significant electrodes set located at the occipital area. Similarly, six feature extraction 
methods, i.e. Wavelet Packet Decomposition (WPD), mean of amplitude, coherence, cross-
correlation, hjorth parameter and mutual information were used construct the proposed 
person authentication model. The correlation-based feature selection (CFS) method was used 
to select representative WPD vector subset to eliminate redundancy before combining with 
other features. The electrodes, feature extraction, and feature selection analysis were tested 
using the benchmarking dataset from UCI repositories. The IncFRNN technique was 
evaluated using a collected EEG data from 37 subjects. The recorded datasets were designed 
in three different conditions of ambient noise influence to evaluate the performance of the 
proposed solution. The proposed IncFRNN technique was compared with its predecessor, the 
FRNN and IBk technique. Accuracy and area under ROC curve (AUC) were used to measure 
the authentication performance. The IncFRNN technique has achieved promising results. The 
results have been further validated and proven significant statistically using paired sample t-
test and Wilcoxon sign-ranked test. The heuristic incremental update is able to preserve the 
core set of individual biometrics characteristics through representative EEG signals patterns 
in person authentication modelling. Future work should focus on the noise management in 
data acquisition and modelling process to improve the robustness of the proposed person 
authentication model.  
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ABSTRAK 

 

 
Ciri-ciri keselamatan  di tahap yang tinggi telah menjadikan isyarat EEG sebagai modaliti 
biometrik yang baik untuk memodelkan pegesahan individu. Pemodelan ciri-ciri yang 
berlainan bagi setiap individu terutamanya dalam persekitaran yang dinamik melibatkan 
penambahan pengetahuan dari masa ke masa. Teknik “K-Nearest Neighbour” (KNN) 
adalah teknik “incremental learning” yang terkenal dengan menggunakan strategi “First-
In-First-Out” (FIFO). Namun begitu, strategi ini tidak sesuai untuk pengesahan individu 
kerana ia tidak dapat mengekalkan isyarat perwakilan indvidu EEG yang berubah dari 
masa ke masa. Teknik “Fuzzy-rough nearest neighbour” (FRNN) adalah teknik yang 
terbaik untuk memodelkan ketidakpastian dalam keadaan data yang tidak sempurna. 
Pelaksanaan model FRNN tidak direka untuk “incremental learning” kerana teknik ini 
tidak mempunyai fungsi untuk menyesuaikan diri dengan pembentukan semula dan 
pembaharuan granul pengetahuan. Oleh itu, kajian ini bertujuan untuk mereka bentuk 
teknik “Incremental FRNN” (IncFRNN) untuk pengesahan individu dengan menggunakan 
ciri-ciri yang diekstrak daripada isyarat EEG menerusi elektrod VEP. Teknik IncFRNN 
mengemaskini set latihan dengan menggunakan kaedah heuristik untuk mengekalkan 
perwakilan objek dan menghapuskan objek yang jarang digunakan. Teknik IncFRNN boleh 
mengawal saiz kumpulan latihan dengan menentukan nilai ambang saiz tetingkap. Isyarat 
EEG seperti “visual evoked potential” (VEP) adalah unik tetapi sukar untuk diproses. 
Sehingga kini tiada lagi penetapan yang konsisten bagi kaedah pengekstrakan ciri dan 
elektrod VEP untuk pengesahan individu. Oleh itu, kajian ini akan membandingkan saluran 
elektrod yang biasa digunakan dalam penerbitan penyelidikan semasa, dan mencadangkan 
8 set elektrod yang terletak di sekitar kawasan belakang. Enam kaedah pengestrakan iaitu 
“Wavelet Packet Decomposition (WPD), mean of amplitude, coherence, cross-correlation, 
hjorth parameter” dan “mutual information” digunakan untuk model pengesahan individu. 
Kaedah “correlation-based feature selection” (CFS) digunakan dalam pemilihan vektor 
perwakilan WPD untuk membuang lebihan vektor sebelum menggabungkannya dengan ciri-
ciri yang lain. Analisis elektrod, pengekstraan ciri dan analisa pemilihan sifat dinilai 
dengan menggunakan dataset dari UCI. Teknik IncFRNN dinilai dengan menggunakan data 
EEG yang direkodkan daripada 37 subjek. Dataset yang direkodkan telah direka dalam tiga 
keadaan yang mempunyai tahap kebisingan yang berbeza untuk menilai prestasi 
pengelasan yang dicadangkan. Teknik IncFRNN dibandingkan dengan teknik terdahulu 
iaitu, FRNN dan KNN. Ketepatan dan luas kawasan di bawah lengkung ROC (AUC) telah 
digunakan untuk menilai prestasi pengelasan. Teknik IncFRNN mencapai hasil penilaian 
yang cemerlang. Hasil penilaian telah disahkan dan dibuktikan mempunyai perbezaan yang 
signifikan secara statistik dengan menggunakan “paired sample t-test” dan “Wilcoxon 
sign-ranked test”.  Pengubahsuaian heuristik dapat mengekalkan ciri-ciri biometrik 
individu melalui wakil isyarat EEG dalam pengesahan individu. Penambahbaikan kajian 
boleh dilakukan dengan memberi fokus kepada pengurusan bunyi dalam pemerolehan data 
dan proses pemodelan untuk meningkatkan keteguhan model pengesahan individu. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.0 Overview 

This chapter portrays the briefing of the research. The description encompasses the 

background of study, problem statement, research questions, research objectives, research 

scope, research significance and the contribution of the research. At the end of this chapter, 

there is a brief discussion of the organization of the following chapters in order to give an 

overall picture of this thesis.  

 

1.1 Project Background 

An authentication or verification system involves accepting or rejecting the identity 

that claimed by a particular individual, which is one-to-one matching. In contrast, an 

identification system attempts to establish the identity of a given person out of a closed pool 

of N people, which is one-to-N matching (Marcel and Millán, 2007).  There are several types 

of methods that can be used for person authentication such as knowledge-based, token-based 

and biometrics. Password and Personal Identification Number (PIN) are the examples of 

knowledge-based authentication method while signature is the example of token-based 

authentication method. Most of the people still prefer the use of signature and password as 

authentication methods because it is easier and do not require maintenance work. 

Unfortunately, password and signature are considered the weakest authentication methods 

because password can be stolen and guessed easily and signature can be forged easily. 

Therefore, biometric authentication systems are introduced to overcome traditional 
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authentication methods. Biometric is any measurable feature(s), in terms of physical, 

physiological, behavioural trait or their combinations, that can be used to authenticate the 

claimed identity of an individual (Neela and Kahlon, 2012). Fingerprint authentication 

system is one of the biometric authentication systems, which is widely used in many 

applications. However, possibility of counterfeit fingerprint brings down the uniqueness of 

this modality. Forgery issue encourages alternative authentication modality using 

brainwaves through EEG signals for person authentication in the recent studies.  

Electroencephalogram (EEG) signals are brain activities recorded from electrodes 

mounted on the scalp. EEG signals are the product of ionic current flows that happens in the 

brain’s neurons. EEG is the most practical capturing method that can be used in biometrics 

due to the advances in its hardware devices. It is unique, confidential and cannot be 

duplicated. Besides that, EEG signals are biodynamic and also as a proof of aliveness for a 

particular individual. Thus, it cannot be duplicated like most of the other static physical 

biometric techniques.   

EEG signals are usually nonlinear, non-stationary and hard to recreate because these 

may have been influenced by some sources of noise such as environmental noise and 

physiological noise. Therefore, the classification of EEG signals is not a trivial task. Various 

approaches like those classified with uncertainty methods are developed with fuzzy set 

theory, rough set theory and the combination of fuzzy and rough set theory. These 

approaches are proposed for EEG signals classification to deal with the vagueness and 

uncertainty in the signals (Hu and Knapp, 1991;  Jahankhani et al., 2008;  Lee et al., 

2013;  Liew et al., 2013). However, the current researches and applications mainly focus on 

static information systems. Many real-life applications are observed facing dynamically 

changing data patterns and the data volume growth in dimensions. Thus, incremental 

learning is becoming a key area of data mining research as the trend is towards dynamic data 
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sources. Incremental learning does not require sufficient training set but it can update the 

training pool from time to time when the new test object arrives. It does not need to be 

retrained from scratch and hence the computational resources can be reduced (Geng and 

Smith-Miles, 2009;  Charles Ditzler, 2011;  Read et al., 2012). In addition, incremental 

learning can be learnt continuously for improvement when the system is running. It is 

adaptable to the changes of the target concept. 

Fuzzy-Rough Nearest Neighbour (FRNN) is a hybrid technique combining the 

strengths of two natural computing design, i.e. the fuzzy sets and rough sets complement 

each other in defining the uncertainty knowledge granules. FRNN is an extension to the K-

Nearest Neighbour (KNN) which employs fuzzy-rough set theory (Qu et al., 2013). Instead 

of using Euclidean distance, the FRNN calculates the nearest neighbours by using fuzzy 

similarity. The nearest neighbours are then used to construct the fuzzy lower and upper 

approximations to quantify the membership value of a test object to determine its decision 

class. FRNN performs promisingly in various domains (Hu et al., 2008;  Hassanien et al., 

2009;  Boongoen and Shen, 2010;  Parthaláin and Jensen, 2010;  Maji, 2011) as it aims to 

mimic human decision making in solving real world problems.  

KNN is a well-known classification technique. It is a type of instance-based learning, 

or lazy learning technique, where the technique builds no general model until a new test 

object arrives. KNN applies First-In-First-Out (FIFO) strategy to update the knowledge 

granules incrementally. The function is approximated locally and all computation is deferred 

until classification. They have a small training set so that it can update the training set and 

store the test object as a new training object in the information system. Thus, small training 

set makes the lazy algorithm particularly well suited for incremental learning tasks where a 

data stream updates continuously the set of input data (Aha, 1998).  

 


