

Faculty of Manufacturing Engineering

COMPUTER VISION SYSTEM FOR MONITORING BODY DISCOMFORT IN MANUFACTURING ENVIRONMENT

Nur Sufiah Akmala Binti Ramdan

Master of Science in Manufacturing Engineering

2016

COMPUTER VISION SYSTEM FOR MONITORING BODY DISCOMFORT IN MANUFACTURING ENVIRONMENT

NUR SUFIAH AKMALA BINTI RAMDAN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this thesis entitled "Computer Vision System For Monitoring Body Discomfort in Manufacturing Environment" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature	·
Supervisor Name	
Date	·

DEDICATION

To my father Ramdan Razali, my mother Wan Maseri and all my siblings, I love you.

ABSTRACT

Manual handling is one of the primary causes of body discomfort. If motions are repeated frequently, such as every few seconds, and for prolonged periods such as an eight-hour shift, fatigue and muscle strain can happen. Body discomfort can occur in every part of the body, such as the neck, arms, waist, spine, legs, and feet. To reduce body discomfort among manual workers, many researchers have carried out studies on body discomfort. Previous studies usually used the traditional method, which is by carrying out surveys of manual workers using specific questionnaires. A questionnaire that is often used is the Nordic Musculoskeletal Questionnaire (NMQ). The questionnaire is designed to find out about discomfort that occurs in all parts of the subject's body. The traditional method cannot detect body discomfort automatically because no automatic system is used. Furthermore, the Closed-Circuit Television (CCTV) used in factories nowadays is used for security purposes, not for ergonomic purposes. Therefore, the goal of this research is to design a vision system that monitors body discomfort in manual workers. It is done by using a new method, the image histogram. The methodology proposed is the development of a vision system using Python and SimpleCV software for recording images and image analysis. The output of the image analysis is a red-green-blue (RGB) histogram which shows the pixels of the gray scale color distribution. The image analysis is done every three minutes for 30 minutes. The results show that when the worker is moving in order to carry out his or her work, the RGB histogram also changes. When the histogram is changing throughout the period of 30 minutes, it is found that the person is likely to feel body discomfort regardless of which part of the body is involved. By also referring to the image frame, it is proven that the worker is experiencing body discomfort within the 30 minutes. To support and strengthen the results, NMQ analysis is also used. The experiments are done by conducting three types of experiments on the fitting process, milling process, and turning process. Nine subjects participated in these experiments. The results show that seven of the subjects experienced body discomfort in the range of the hypothesized limit time. From all the results, including the histograms, it is shown that the system can monitor body discomfort successfully.

Key words: Manual handling, body discomfort, image histogram.

ABSTRAK

Pengendalian manual adalah salah satu punca utama ketidakselesaan badan. Jika diulang dengan kerap, seperti setiap beberapa saat dan untuk tempoh yang lama seperti syif lapan jam, keletihan dan ketegangan otot boleh berlaku. Ketidakselesaan badan boleh berlaku dalam setiap bahagian badan seperti leher, lengan, pinggang, tulang belakang, dan bahagian kaki. Kajian sebelum ini biasanya menggunakan kaedah tradisional, iaitu dengan melakukan kaji selidik ke atas pekerja dengan menggunakan cara soal selidik yang tertentu. Tambahan pula, Televisyen Litar Tertutup yang digunakan di kilang pada masa kini adalah untuk tujuan keselamatan, bukan untuk tujuan ergonomik. Oleh itu, matlamat kajian ini adalah untuk mereka bentuk sistem visi yang memantau ketidakselesaan badan pada pekerja manual. Ia dilakukan dengan menggunakan kaedah baru iaitu histogram imej. Kaedah yang dicadangkan adalah dengan membangunkan sistem visi menggunakan Python dan perisian SimpleCV untuk rakaman imej dan analisis imej. Output analisis imej adalah histogram merah-hijau-biru (RGB) yang menunjukkan piksel pengagihan warna skala kelabu. Analisis imej dilakukan setiap tiga minit, selama 30 minit. Keputusan menunjukkan bahawa apabila pekerja bergerak untuk melakukan kerja mereka, histogram RGB juga berubah. Apabila histogram sentiasa berubah dalam tempoh 30 minit, pekerja itu mungkin mengalami ketidakselesaan badan tanpa mengira manamana bahagian badan .Dengan juga merujuk kepada sesuatu imej, ia membuktikan bahawa pekerja yang mengalami ketidakselesaan badan dalam tempoh 30 minit. Untuk menyokong dan mengukuhkan keputusan, analisis NMQ juga digunakan. Eksperimen dilakukan dengan menjalankan tiga jenis eksperimen iaitu; proses pemasangan, proses pengisaran dan proses perubahan. Sembilan subjek telah dipilih untuk menyelesaikan eksperimen ini. Setiap subjek mempunyai rekod kesihatan yang berbeza. Keputusan menunjukkan bahawa tujuh daripada sembilan subjek mengalami ketidakselesaan badan dalam lingkungan masa hipotesis. Keseluruhan keputusan menunjukkan bahawa sistem tersebut boleh memantau ketidakselesaan badan dengan jayanya.

Kata kunci: Manual pengendalian, ketidakselesaan badan, histogram imej.

ACKNOWLEDGEMENTS

I would like to thank to my Supervisor Dr. Ahmad Yusairi Bin Bani Hashim, my co-Supervisor, Dr. Seri Rahayu Binti Kamat and Dr. Siti Azirah Binti Asmai who has led me along the journey to complete this research. I also want to thank Universiti Teknikal Malaysia Melaka for the support by providing the research grant with identification number PJP/2013/FKP(5D)/S01173 and MyBrain UTeM scheme for two years.

TABLE OF CONTENTS

PAGE

APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv-vi
LIST OF TABLES	vii
LIST OF FIGURES	viii-xiii
LIST OF APPENDICES	xiv-xvii
LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE	xviii-xix
LIST OF PUBLICATIONS	XX

CHAPTER

DECLARATION

1.	INT	RODUCTION	1
	1.1	Background	1
	1.2	Statement of problem	6
	1.3	Research objectives	6
	1.4	Significance of the research	7
	1.5	Expected outcomes	7
2.	LIT	ERATURE REVIEW	8
	2.1	The study of body discomfort	9
	2.2	Issues related to low back pain	9
	2.3	The effects of LBP to productivity	12
	2.4	Nordic Musculoskeletal Questionnaire	15
		2.4.1 History of Nordic Musculoskeletal Questionnaire	15
		2.4.2 Previous studies using Nordic Musculoskeletal	
		Questionnaire	18
	2.5	Workspace Configuration	19
		2.5.1 Factory Workspace Configuration	19
		2.5.2 Multi- Camera Configurations	21
	2.6	Vision system	23
		2.6.1 Vision system for security purposes	23
		2.6.2 Vision system for medical purposes	24
		2.6.3 Vision system for industrial purposes	25
	2.7	Image processing	26
		2.7.1 Digital image	27
		2.7.2 Digital image processing	29
		2.7.2.1 Image morphing	30
		2.7.2.2 Noise removal	31
		2.7.2.3 Face detection	33
		2.7.2.4 Statistical data extraction	34
	2.8	Image histogram	37
		2.8.1 Types of histogram	38

		2.8.2 RGB histogram	40
			41
		2.8.4 Previous study using image histogram	44
			44
		2.8.4.2 Image histogram in medical study	46
			47
	2.9		47
		2.9.1 On-the-shelf software	47
		2.9.2 Development of software for image processing	49
		2.9.3 Python and SimpleCV	51
		2.9.4 Histogram in SimpleCV	51
	2.10	Summary of literature review	54
3.	MET	THODOLOGY	55
	3.1	Introduction	56
	3.2	Identification of the characteristics of body discomfort	
		and the scientific aspects of video streaming	59
	3.3	Design of a multi-view configuration workspace	
		8	54
			56
		1 1 0	64
		3.3.3 The workspace configurations for monitoring	
			66
	3.4	Development of a multi-view video streaming system	
		that highlights a predefined section of whole body using	
			69
		1 1 2	70
	3.5		72
		1 1 5	72
		3.5.2 Preparation of experiment for dynamic subject	
		6 6	73
		1 1 01	74
			75
		1	76
		1 1	76
		3.5.4 Preparation of experiment for lathe (turning process)	79
			79
		1	80
		1 1	81 83
		1 1 01	
			83 85
		1	
		1 1	85
		3.5.6 Method for histogram analysis	88
4.			90
			90
	4.2	The multi-view video streaming system that monitors human	00
		5	90 01
		4.2.1 Function of Trimata system	91

4.3	The a	ssessment and validation of the system	95
	4.3.1	Results of experiment for static subject	95
	4.3.2	Results of experiment for dynamic subject with	
		single background colour	97
	4.3.3	Experiment of fitting process	100
		4.3.3.1 The subjects	100
		4.3.3.2 Results of Subject A	104
	4.3.4	Experiment of lathe (turning process)	112
		4.3.4.1 The subjects	112
		4.3.4.2 Results of Subject A	117
	4.3.5	Experiment of milling process	125
		4.3.5.1 The subjects	125
		4.3.5.2 Results of Subject A	129
	4.3.6	Discussions	137
		SION AND RECOMMENDATIONS	141
		URE RESEARCH	
5.1		usions	141
5.2	Recor	nmendations	142
REFERE	NCES		144
APPEND	ICES		152
Appendix	A So	ource code for one histogram	152
Appendix	B So	ource code for ten histogram	153
Appendix	C So	ource code for Trimata software	156
Appendix	D Li	ist of tables of picture frames	168
Appendix	E Li	ist of table of histograms	174
Appendix	F Li	ist of superimposition histograms	180

LIST OF TABLES

TABLE

TITLE

PAGE

2.1	Summary of literature review	54
3.1	The eight workspace configurations	61
4.1	Images and histograms for static subject	96
4.2	Images and histograms for subject with single colour background	98
4.3	The biodemography of subjects for fitting experiment	100
4.4	Estimated time and actual time taken to complete the fitting experiment	102
4.5	Picture frames of Subject A	105
4.6	Histograms of Subject A	106
4.7	The value of the highest peak of each histogram	108
4.8	The biodemography of subjects for lathe experiment	113
4.9	Estimated time and actual time taken to complete the lathe experiment	114
4.10	Picture frames of Subject A	117
4.11	Histograms of Subject A	118
4.12	The value of the highest peak of each histogram	120
4.13	The biodemography of subjects for milling experiment	126
4.14	Estimated time and actual time taken to complete the milling experiment	127
4.15	Picture frames of Subject A	130
4.16	Histograms of Subject A	131
4.17	The value of the highest peak of each histogram	133
4.18	The results of all subjects	138

LIST OF FIGURES

FIGU	JRE TITLE	PAGE
1.1	Manual handling by workers. Lifting, pushing, pulling, carrying,	
	moving, and restraining are the main factors related to body	
	discomfort among manual workers	2
1.2	An example of a manual worker exercising his waist. The photograph	
	was taken in the manufacturing workshop of the Faculty of	
	Manufacturing Engineering, Universiti Teknikal Malaysia	4
1.3	An example of a manual worker massaging her arm. The photograph	
	was taken in the manufacturing workshop of the Faculty of	
	Manufacturing Engineering, Universiti Teknikal Malaysia Melaka	4
2.1	Region of low back pain	9
2.2	Two nurses are moving a patient	13
2.3	Economic cost of back pain in the UK	14
2.4	Patient reported quality of life and pain severity of different	
	Neuropathic pain subgroups	14
2.5	The body map showing a full body of a human to help the subject who	
	is answering the questionnaire. It shows the neck, shoulders, upper back	κ,
	elbows, low back, wrist/hands, hips/thighs, knees, and ankles/feet	16
2.6	The questionnaire	17
2.7	The lathe workstation in Faculty of Manufacturing Engineering, Univers	siti
	Teknikal Malaysia Melaka	19
2.8	The fitting workstations in Faculty of Manufacturing Engineering,	
	Universiti Teknikal Malaysia Melaka	20
2.9	Distributed and lightweight multi-camera human activity classification	21

2.10	Using multiple cameras for doing the swing analysis	22
2.11	Cameras are used for surveillance in Universiti Teknikal Malaysia Melaka	23
2.12	A CCTV camera operating inside a factory	24
2.13	An endoscope for endoscopy process	24
2.14	A surgeon performing robotic telesurgery	25
2.15	A camera is inspecting products in a production line	26
2.16	The formation of a digital image	27
2.17	Digitized image	28
2.18	One pixel of an image	28
2.19	An image of 4368 x 2912	29
2.20	Face morphing	31
2.21	Noise removal	32
2.22	Face detection through digital image processing	33
2.23	A picture of a woman and the histogram as the output	34
2.24	A Magnetic Resonance Imaging (MRI) result of a person's brain	36
2.25	Example of an image histogram	37
2.26	Image histogram is provided in digital camera nowadays	38
2.27	Red, green, and blue as the basic color components	39
2.28	The types of histograms	39
2.29	Example of an RGB histogram	40
2.30	The components of the RGB histogram	41
2.31	Original image	43
2.32	Lightness image	43
2.33	Average image	43
2.34	Luminosity image	43
2.35	DADCG system architecture	45
2.36	Histogram of segmented optical flow image	46
2.37	Flow chart of a method of performing multiple video streaming by using	
	on-the-shelf software	48
2.38	The red box of Secure Cam software that can detect motion	49
2.39	Flowchart of the development of a software application for	
	image processing	50
2.40	Histogram of The Starry Night as the output from the code	53
3.1	The flow of the research realization process	56

3.2	The body map showing a full body of a human to help the subject	
	answering the questionnaire	57
3.3	The questionnaire	58
3.4	The basic workspace designed using three cameras based on	
	literature study	59
3.5	Configuration 1	61
3.6	Configuration 2	61
3.7	Configuration 3	61
3.8	Configuration 4	62
3.9	Configuration 5	62
3.10	Configuration 6	62
3.11	Configuration 7	63
3.12	Configuration 8	63
3.13	Calibration process to get the correct angle	64
3.14	Calculation process	64
3.15	Positioning camera on the calculated position	64
3.16	Angle of the camera at its original position	65
3.17	Configuration 1 in real life experiment	65
3.18	Configuration 2 in real life experiment	66
3.19	Configuration 3 in real life experiment	66
3.20	Configuration 4 in real life experiment	67
3.21	Configuration 5 in real life experiment	67
3.22	Configuration 6 in real life experiment	67
3.23	Configuration 7 in real life experiment	67
3.24	Configuration 8 in real life experiment	68
3.25	Research process	69
3.26	A static subject at the fitting workstation	72
3.27	The teddy bear used for experiment with a single background	73
3.28	The dimension for the metal piece	76
3.29	The camera set-up	77
3.30	Camera 1	77
3.31	Camera 2	77
3.32	Camera 3	78
3.33	Workspace configuration of fitting workstation	78
3.34	The lathe machine	79

3.35	The illustration of the turning process	80
3.36	The original measurement the mild steel	80
3.37	The project that need to be done by the subjects	81
3.38	The camera set-up of the lathe experiment	81
3.39	The position of Camera 1	82
3.40	The position of Camera 2	82
3.41	The position of Camera 3	82
3.42	Workspace configuration of lathe experiment	83
3.43	Vertical milling machine	84
3.44	The task for milling experiment	85
3.45	The experimental set-up for milling experiment	86
3.46	Position of Camera 1	86
3.47	Position of Camera 2	86
3.48	Position of Camera 3	87
3.49	The layout of milling experiment	87
3.50	A single histogram of an image	88
3.51	A superimposition of ten histograms	88
3.52	The layout of the experiment	89
4.1	The user interface of the multi-view video streaming	91
4.2	The blank template for histogram	92
4.3	Output with one camera	92
4.4	Output with three cameras	93
4.5	Histogram output from Trimata software	93
4.6	The location for recorded video and images once captured	94
4.7	The working procedure of Trimata system	95
4.8	Superimposition of 10 histograms of the static subject	97
4.9	Superimposition of 10 histograms from Table 4.2	99
4.10	Comparison between histograms of static experiment and	
	dynamic subject with single background color	99
4.11	The histogram of number of subject versus body pain based on the NMQ	101
4.12	Subject A	102
4.13	Subject B	102
4.14	Subject C	103
4.15	The workpiece done by Subject A	103
4.16	The workpiece done by Subject B	103

4.17	The workpiece done by Subject C	104
4.18	Superimposition of 10 histograms for CAM 1	107
4.19	Superimposition of 10 histograms for CAM 2	107
4.20	Superimposition of 10 histograms for CAM 3	107
4.21	Graph of peak values versus time for CAM 1	109
4.22	Graph of peak values versus time for CAM 2	109
4.23	Graph of peak values versus time for CAM 3	109
4.24	Picture of a subject who is sweating after 14 minutes	110
4.25	The subject put one leg on the table after 23 minutes of working	111
4.26	The subject start to exercise his hand and arms to relieve	
	body discomfort after 38 minutes	111
4.27	The histogram of number of subject versus body pain	114
4.28	Subject A	115
4.29	Subject B	115
4.30	Subject C	115
4.31	The workpiece done by Subject A	116
4.32	The workpiece done by Subject B	116
4.33	The workpiece done by Subject C	116
4.34	Superimposition of 10 histograms for CAM 1	119
4.35	Superimposition of 10 histograms for CAM 2	120
4.36	Superimposition of 10 histograms for CAM 3	120
4.37	Graph of peak values versus time for CAM 1	121
4.38	Graph of peak values versus time for CAM 2	122
4.39	Graph of peak values versus time for CAM 3	122
4.40	The subject start to move his waist because of body discomfort after	
	17 minutes of working	123
4.41	The subject start to have excessive sweating after 47 minutes of working	123
4.42	The subject started to exercise his back after 47 minutes of working	124
4.43	The histogram of number of subject versus body pain	127
4.44	Subject A	128
4.45	Subject B	128
4.46	Subject C	128
4.47	The workpiece done by Subject A	129
4.48	The workpiece done by Subject B	129
4.49	The workpiece done by Subject C	129

4.50	Superimposition of 10 histograms for CAM 1	132
4.51	Superimposition of 10 histograms for CAM 2	132
4.52	Superimposition of 10 histograms for CAM 3	133
4.53	Graph of peak values versus time for CAM 1	134
4.54	Graph of peak values versus time for CAM 2	134
4.55	Graph of peak values versus time for CAM 3	135
4.56	Subject A starting to move his hand back and forth	105
4.57	Subject A starting to move his hand back and forth. The sign of	
	body discomfort in his arm has occurred after 28 minutes	136
4.58	Manual of body discomfort analysis using RGB histogram	140
5.1	The relation between Trimata system with NMQ and cycle time	141

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Source code for one histogram	152
В	Source code for ten histogram	153
С	Source code for Trimata software	156
D	List of tables of picture frames	168
	Table 1: Picture frames of Subject B for fitting experiment	168
	Table 2: Picture frames of Subject C for fitting experiment	169
	Table 3: Picture frames of Subject B for lathe experiment	170
	Table 4: Picture frames of Subject C for lathe experiment	171
	Table 5: Picture frames of Subject B for milling experiment	172
	Table 6: Picture frames of Subject C for milling experiment	173
Е	List of table of histograms	174
	Table 1: Histograms of Subject B for fitting experiment	174
	Table 2: Histograms of Subject C for fitting experiment	175
	Table 3: Histograms of Subject B for lathe experiment	176
	Table 4: Histograms of Subject C for lathe experiment	177
	Table 5: Histograms of Subject B for milling experiment	178
	Table 6: Histograms of Subject C for milling experiment	179
F	List of superimposition histograms	180
	Figure 1: Superimposition of 10 histograms for CAM 1	
	(fitting experiment of Subject B)	180
	Figure 2: Superimposition of 10 histograms for CAM 2	
	(fitting experiment of Subject B)	180
	Figure 3: Superimposition of 10 histograms for CAM 3	
	(fitting experiment of Subject B)	180
	Figure 4: Superimposition of 10 histograms for CAM 1	
	(fitting experiment of Subject C)	181
	Figure 5: Superimposition of 10 histograms for CAM 2	
	(fitting experiment of Subject C)	181
	Figure 6: Superimposition of 10 histograms for CAM 3	
	(fitting experiment of Subject C)	181
	Figure 7: Superimposition of 10 histograms for CAM 1	
	(lathe experiment of Subject B)	182

Figure 8: Superimposition of 10 histograms for CAM 2	100
(lathe experiment of Subject B)	182
Figure 9: Superimposition of 10 histograms for CAM 3	100
(lathe experiment of Subject B)	182
Figure 10: Superimposition of 10 histograms for CAM 1	100
(lathe experiment of Subject C)	183
Figure 11: Superimposition of 10 histograms for CAM 2	102
(lathe experiment of Subject C)	183
Figure 12: Superimposition of 10 histograms for CAM 3	100
(lathe experiment of Subject C)	183
Figure 13: Superimposition of 10 histograms for CAM 1	104
(milling experiment of Subject B)	184
Figure 14: Superimposition of 10 histograms for CAM 2	
(milling experiment of Subject B)	184
Figure 15: Superimposition of 10 histograms for CAM 3	101
(milling experiment of Subject B)	184
Figure 16: Superimposition of 10 histograms for CAM 1	
(milling experiment of Subject C)	185
Figure 17: Superimposition of 10 histograms for CAM 2	
(milling experiment of Subject C)	185
Figure 18: Superimposition of 10 histograms for CAM 3	
(milling experiment of Subject C)	185
List of graph of peak values versus time	186
Figure 1: Graph of peak values versus time for CAM 1	
(fitting experiment of Subject B)	186
Figure 2: Graph of peak values versus time for CAM 2	100
(fitting experiment of Subject B)	186
Figure 3: Graph of peak values versus time for CAM 3	100
(fitting experiment of Subject B)	186
Figure 4: Graph of peak values versus time for CAM 1	105
(fitting experiment of Subject C)	187
Figure 5: Graph of peak values versus time for CAM 2	105
(fitting experiment of Subject C)	187
Figure 6: Graph of peak values versus time for CAM 3	
(fitting experiment of Subject C)	187
Figure 7: Graph of peak values versus time for CAM 1	100
(lathe experiment of Subject B)	188
Figure 8: Graph of peak values versus time for CAM 2	100
(lathe experiment of Subject B)	188
Figure 9: Graph of peak values versus time for CAM 3	100
(lathe experiment of Subject B)	188
Figure 10: Graph of peak values versus time for CAM 1	100
(lathe experiment of Subject C)	189
Figure 11: Graph of peak values versus time for CAM 2	100
(lathe experiment of Subject C)	189
Figure 12: Graph of peak values versus time for CAM 3	100
(lathe experiment of Subject C)	189
Figure 13: Graph of peak values versus time for CAM 1	100
(milling experiment of Subject B)	190

G

Figure 14: Graph of peak values versus time for CAM 2	
(milling experiment of Subject B)	190
Figure 15: Graph of peak values versus time for CAM 3	
(milling experiment of Subject B)	190
Figure 16: Graph of peak values versus time for CAM 1	
(milling experiment of Subject C)	191
Figure 17: Graph of peak values versus time for CAM 2	
(milling experiment of Subject C)	191
Figure 18: Graph of peak values versus time for CAM 3	
(milling experiment of Subject C)	191
Photographs of body discomfort happen on subject	192
Figure 1: After 6 minutes, the subject still continues	
with a normal position	192
Figure 2: The subject started to feel some leg discomfort	
after 6 minutes	192
Figure 3: The subject put back her leg down after 24 minutes	
of working	192
Figure 4: The subject put back her feet on the table after	
24 minutes	193
Figure 5: The subject changes her position after 28 minutes	193
Figure 6: The subject put her feet on the table again after	
29 minutes	193
Figure 7: The subject start to move around her hand after	
12 minutes of working	194
Figure 8: The subject start to put her feet on the table after	
22 minutes	194
Figure 9: The subject moves her hand and put her feet on	
the table after 33 minutes	194
Figure 10: The subject moves her hands many times at	
the 33rd minute	195
Figure 11: The subject put back her feet on the table	
after 35 minutes	195
Figure 12: The subject put back her feet on the table	
after 41 minutes	195
Figure 13: Subject A is moving his waist right and left	
after 1 hour 47 minutes	196
Figure 14: Subject A is moving his waist right and left	
after 2 hours	196
Figure 15: The subject started to move around the workstation	
and moving her hand up and down after 20 minutes of working	196
Figure 16: The subject started to move her neck after 41 minutes	197
Figure 17: The subject started to move and massage her arm	
after 41 minutes	197
Figure 18: The subject started to move and massage her arm	
after 41 minutes	197
Figure 19: The subject started to move and massage her head	100
after 54 minutes	198
Figure 20: Subject B is starting to massage her neck.	
The sign of body discomfort has happened in his arm after	100
38 minutes	198

Н

Figure 21: Subject B is starting to move her hand	
back and forth.	
The sign of body discomfort has happened in her arm	
after 42 minutes	198
Figure 22: Subject C is started to feel very hot after	
7 minutes	199
Figure 23: Subject C is started to have excessive sweating	
and looking uncomfortable to continue his work	
after 15 minutes	199
Figure 24: Subject C is continuously having excessive sweating	
after 21 minutes	199

LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE

ABBREVIATIONS

LBP	-	Lower back pain
sEMG	-	Surface electromyography
CCTV	-	Closed-circuit television
WRMSDs	-	Work-related musculoskeletal disorders
eiLBP	-	Exercise-induced lower back pain
WBV	-	Whole-body vibration
RGB	-	Red-Green-Blue
AVI	-	Audio Video Interleaved
MIG	-	Metal inert gas
SimpleCV	-	Simple Computer Vision
OpenCV	-	Open Computer Vision
NMQ	-	Nordic Musculoskeletal Questionnaire
STS	-	Sit-to-stand
ICF	-	International Category of Functioning Disability and Health
VAS	-	Visual Analog Scale
ODI	-	Oswestry Disability Index
TFA	-	Trans-femoral amputation
WBV	-	Whole-body vibration
LTA	-	Leisure-time activities
2D	-	Two- dimensional
3D	-	Three- dimensional
GDP	-	Gross domestic product
UK	-	United Kingdom

MRI	-	Magnetic Resonance Imaging
СТ	-	Computed tomography
MHI	-	Motion History Image
DADCG	-	Detection of Abnormal Behaviour in Dynamic Crowded
		Gatherings
OF	-	Optical flow
IP	-	Internet Protocol
MIG	-	Metal Inert Gas
D	-	Diameter
JPEG	-	Joint Photographic Experts Group

NOMENCLATURE

EQ5D	-	A standardised instrument for use as a measure of health outcome
Trimata	-	Name of the vision system
Н	-	Unit of Motion History Image
Img	-	Image (Python code)
Len	-	Length (Python code)
Matplotlib	-	Plot module (Python code)
CAM 1	-	Camera 1
CAM 2	-	Camera 2
CAM 3	-	Camera 3
P0-P9	-	Point 0 to Point 9

SYMBOLS

τ	-	constant 255 corresponding to 8 bit pixel representation
Δ	-	Delta
Х	-	x-axis
У	-	y-axis
t	-	Time