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ABSTRACT 

 

 

Multiple operating modes in advanced automotive powertrain technologies such as hybrid 
propulsion and cylinder deactivation require adaptable engine mounting systems. The use 
of magnetorheological (MR) fluid dampers for semi-active engine mounting systems offers 
the prospect of reducing the engine vibration by providing controllable damping forces. 
Controlling the semi-active engine mounting systems is challenging. The control should 
not only adequately provide the desired damping forces but also account for the vibration 
reduction. The aim of this study are to develop a force tracking control for a MR fluid 
damper model based on the characteristics obtained from the measurements and to assess 
the effectiveness of the vibration reduction control applied to the semi-active engine 
mounting system. The MR fluid damper unit was built in-house and was characterized 
using a damping force test rig. Based on the empirical data, the force tracking control was 
modelled based on the PI controller in Matlab Simulink software to provide desired 
damping forces. With sinusoidal forces generated by an electric motor, a scale model of 
three-degree-of-freedom (3-DOF) passive engine mounting system was built in-house to 
verify a mathematical model developed using the software. Then the 3-DOF model was 
added with the MR fluid damper model and the vibration attenuation control was applied 
to the semi-active engine mounting system using the Fuzzy-Tuned-PID controller. The 
results show the controller gives improvements in terms of Root mean square (RMS) and 
maximum peak variation as compared to the passive system.  
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ABSTRAK 

 

 

Kepelbagaian mod operasi dalam teknologi sistem kuasa automotif termaju seperti 
penggerak hibrid dan penyah-aktifan silinder memerlukan sistem pelekap enjin boleh suai. 
Penggunaan peredam bendalir magnetorheological (MR) pada sistem pelekap enjin 
separa-aktif menawarkan prospek untuk mengurangkan getaran enjin dengan 
menyediakan daya peredam yang boleh dikawal. Pengawalan sistem pelekap enjin separa-
aktif adalah mencabar. Kawalan itu bukan sekadar memberikan daya redaman yang 
secukupnya tetapi perlu juga mengambil kira pengurangan gangguan. Tujuan kajian ini 
adalah untuk membangunkan kawalan penjejakan daya untuk model peredam bendalir MR 
berdasarkan ciri-ciri yang diperolehi daripada pengukuran dan menilai keberkesanan 
kawalan pengurangan gangguan yang digunakan untuk pelekap enjin separa-aktif. Satu 
model unit perendam bendalir MR dibina di makmal dan dicirikan menggunakan sebuah 
pelantar ujian daya peredam. Berdasarkan data mengukuran tersebut, kawalan penjejakan 
daya berasaskan kawalan PI dibangunkan dengan menggunakan perisian Matlab Simulink 
bagi memberikan daya redaman yang diingini. Dengan menggunakan daya sinusoidal 
yang dijana daripada elektrik motor, satu model tiga darjah kebebasan (3-DOF) sistem 
pelekap enjin pasif juga dibina bagi mengesahkan model matematik yang dibangunkan 
menggunakan perisian tersebut. Model peredam bendalir MR telah dimasukkan ke dalam 
model 3-DOF dan kawalan pengurangan gangguan telah digunakan untuk sistem pelekap 
enjin separa-aktif menggunakan kawalan Fuzzy-Tuned PID. Keputusan menunjukkan 
kawalan tersebut memberikan peningkatan pada „Root mean square‟ (RMS) dan variasi 
puncak maksimum berbanding dengan sistem pasif.   
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  CHAPTER 1

 

 

INTRODUCTION  

 

 

 Introduction 1.1

 The engine mounting system in vehicles consists of engine, engine mounts and 

chassis. The primary functions of the engine mounting system are to support the weight of 

the engine and to reduce the transmission of engine vibration to the chassis. The motion of 

the engine block is strongly dependent upon the excitation forces from the engine.  

 There are two primary causes of the excitations. Firstly is due to the gas pressure 

forces associates with combustion and expansion of the fuel-air mixture. Secondly is 

attributed to the variable inertia associated with the reciprocating components within the 

engine. The gas pressure yields the principal force of disturbance at low engine speeds, 

while the inertia forces may be considerably larger at higher speeds. The use of engine 

mounts with low stiffness and high damping can attenuate the disturbance at low frequency 

and vice versa. 

The engine mount system can be passive, semi-active or active. The active system 

is expensive since it requires an actuator, adequate sealing, moving parts, and possibly 

large amount of energy for the actuator. The semi-active mount offers significant 

improvements over passive isolator. The system benefits from the advantages of active 

systems with the reliability of the passive system. On the other hand, in case of failure on 

control system, the semi-active mount is able to work in the passive mode. In addition, the 


