

Faculty of Mechanical Engineering

MODELLING AND CONTROL OF A SEMI-ACTIVE MAGNETORHEOLOGICAL DAMPER FOR ENGINE MOUNTING SYSTEMS

Mohamad Zaharudin Bin Sariman

Master of Science in Mechanical Engineering

2016

MODELLING AND CONTROL OF A SEMI-ACTIVE MAGNETORHEOLOGICAL DAMPER FOR ENGINE MOUNTING SYSTEMS

MOHAMAD ZAHARUDIN BIN SARIMAN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this thesis entitled "Modelling and Control of a Semi-Active Magnetorheological Damper for Engine Mounting Systems" is the result of my own research except as cited in the references. This thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	MOHAMAD ZAHARUDIN BIN SARIMAN
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering.

Signature	:	
Supervisor Name	:	DR. AHMAD KAMAL BIN MAT YAMIN
Date	:	

DEDICATION

To my beloved father, mother, wife, brothers, sisters, friends, lecturers and Allah S.W.T.

ABSTRACT

Multiple operating modes in advanced automotive powertrain technologies such as hybrid propulsion and cylinder deactivation require adaptable engine mounting systems. The use of magnetorheological (MR) fluid dampers for semi-active engine mounting systems offers the prospect of reducing the engine vibration by providing controllable damping forces. Controlling the semi-active engine mounting systems is challenging. The control should not only adequately provide the desired damping forces but also account for the vibration reduction. The aim of this study are to develop a force tracking control for a MR fluid damper model based on the characteristics obtained from the measurements and to assess the effectiveness of the vibration reduction control applied to the semi-active engine mounting system. The MR fluid damper unit was built in-house and was characterized using a damping force test rig. Based on the empirical data, the force tracking control was modelled based on the PI controller in Matlab Simulink software to provide desired damping forces. With sinusoidal forces generated by an electric motor, a scale model of three-degree-of-freedom (3-DOF) passive engine mounting system was built in-house to verify a mathematical model developed using the software. Then the 3-DOF model was added with the MR fluid damper model and the vibration attenuation control was applied to the semi-active engine mounting system using the Fuzzy-Tuned-PID controller. The results show the controller gives improvements in terms of Root mean square (RMS) and maximum peak variation as compared to the passive system.

ABSTRAK

Kepelbagaian mod operasi dalam teknologi sistem kuasa automotif termaju seperti penggerak hibrid dan penyah-aktifan silinder memerlukan sistem pelekap enjin boleh suai. Penggunaan peredam bendalir magnetorheological (MR) pada sistem pelekap enjin separa-aktif menawarkan prospek untuk mengurangkan getaran enjin dengan menyediakan daya peredam yang boleh dikawal. Pengawalan sistem pelekap enjin separaaktif adalah mencabar. Kawalan itu bukan sekadar memberikan daya redaman yang secukupnya tetapi perlu juga mengambil kira pengurangan gangguan. Tujuan kajian ini adalah untuk membangunkan kawalan penjejakan daya untuk model peredam bendalir MR berdasarkan ciri-ciri yang diperolehi daripada pengukuran dan menilai keberkesanan kawalan pengurangan gangguan yang digunakan untuk pelekap enjin separa-aktif. Satu model unit perendam bendalir MR dibina di makmal dan dicirikan menggunakan sebuah pelantar ujian daya peredam. Berdasarkan data mengukuran tersebut, kawalan penjejakan daya berasaskan kawalan PI dibangunkan dengan menggunakan perisian Matlab Simulink bagi memberikan daya redaman yang diingini. Dengan menggunakan daya sinusoidal yang dijana daripada elektrik motor, satu model tiga darjah kebebasan (3-DOF) sistem pelekap enjin pasif juga dibina bagi mengesahkan model matematik yang dibangunkan menggunakan perisian tersebut. Model peredam bendalir MR telah dimasukkan ke dalam model 3-DOF dan kawalan pengurangan gangguan telah digunakan untuk sistem pelekap enjin separa-aktif menggunakan kawalan Fuzzy-Tuned PID. Keputusan menunjukkan kawalan tersebut memberikan peningkatan pada "Root mean square" (RMS) dan variasi puncak maksimum berbanding dengan sistem pasif.

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to my Principal supervisor Dr. Ahmad Kamal Bin Mat Yamin and Co-supervisor Ir. Mohamad Hafiz Bin Harun for their guidance, support, and constant encouragement during my study. I also would like to thank Mr. Fauzi Bin Ahmad and Mr. Md Razali Bin Yunos for their advices in this research. I gratefully acknowledge Universiti Teknikal Malaysia Melaka (UTeM) for their financial support via Short Term Grant Project (PJP/2013/FTK(3C)/S01156) in this research activity.

I would like take this opportunity to thank my colleagues at the Faculty of Mechanical Engineering, UTeM, Abdurahman Dwijotomo and Mohd Sabirin Bin Rahmat for their outstanding collaboration in the experimental works and also for being a very good sharing partner during my research. Thanks also to my other colleagues at Taman Tasik and Bukit Beruang for providing an enjoyable study environment.

Finally, my deepest grateful and thanks go to my parents, Sariman Bin Aris and Kamisah Binti Basiron, my dear siblings and my dear friends, Abdul Muhaimin Bin Mohd Shafie, Mohd Syahir Bin Ali, Mohd Zaini Bin Jamaludin, Mohd Hazrin Bin Ismail and Ashafi"e Bin Mustaffa . Their continuous prays and moral supports have been brought me here.

iii

TABLE OF CONTENTS

COVER PAGE	
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF APPENDICES	xii
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xvi
LIST OF PUBLICATION	xviii
CHAPTER	PAGE
1. INTRODUCTION	1
1.1 Introduction	1

TIAT		1
1.1	Introduction	1
1.2	Problem statement	4
1.3	Aim and objectives	8
1.4	Scope	8
1.5	Research flow	9
1.6	Thesis outlines	11

2.	LITERATURE REVIEW	

3.

2.1	Overview	13
2.2	Control structures for vibration attenuations	13
	2.2.1 Control structure for force tracking	17
2.3	Operational modes of MR fluid	19
2.4	Types of MR engine mounts	21
	2.4.1 Flow mode	22
	2.4.2 Squeeze Mode	27
	2.4.3 Mix mode	29
2.5	MR damper model	33
	2.5.1 Formulation model	33
	2.5.2 Empirical model	37
2.6	Parameter Optimization tools, Genetic Algorithm (GA)	38
2.7	Summary	41
EXP	ERIMENTAL APPARATUS AND SETUPS	42
3.1	Overview	42
3.2	Prototype development of an MR damper unit	42
3.3	Operating principle of the MR damper	44
3.4	Damping force test rig	46

13

		3.4.1 Drive unit	48
		3.4.2 Sensors	52
		3.4.3 Software	56
	3.5	3-DOF engine mounting test rig	58
	3.6	Summary	62
4.	DEV	ELOPMENT OF FUZZY-PID CONTROLLER FOR A SEMI-AC	TIVE
	ENG	INE MOUNTING SYSTEM	64
	4.1	Overview	64
	4.2	Control structure of the semi-active engine mounting system	64
	4.3	Mathematical model of the engine mounting system	65
	4.4	Mathematical model of the MR damper	71
	4.5	Force tracking control of the MR damper	75
	4.6	Vibration attenuation	77
		4.6.1 PID controller	77
		4.6.2 Fuzzy-tuned PID controller	78
	4.7	Summary	83
5.	RES	ULTS AND DISCUSSIONS	84
	5.1	Overview	84
	5.2	The Effect of magnetic fields on damping force of the MR	
		damper	84
	5.3	Formulation of the MR damper	87
	5.4	Force tracking control	88
	5.5	Verification of the mathematical model of the 3-DOF passive system	91
	5.6	Vibration attenuation of the semi-active system	93
	5.7	Summary	98
6.	CON	CLUSIONS AND RECOMMENDATION FOR FUTURE WORK	. 9 9
	6.1	Conclusions	99
		6.1.1 Verification of the mathematical model of the	00
		(1.2) The number of the former tracking control	99
		6.1.2 The performance of the force tracking control	100
	60	0.1.5 The performance of the vibration attenuation controllers	101
	6.2	Recomendation for future work	102
	0.3	Contributions	102
REF	EREN	CES	104
APP	PPENDICES 118		

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	Specifications of asynchronous motor.	49
_3.2	Specifications of variable-frequency drive.	50
3.3	Specifications of gear reduction unit.	52
3.4	Load cell sensor specifications.	54
3.5	Bridge amplifier specifications.	55
3.6	Wire transducer specifications.	56
3.7	Experimental parameters.	60
3.8	Electric motor specification.	60
3.9	Accelerometer specification.	61
3.10	Gyrometer specification.	62
4.1	Simulink model parameters.	70
4.2	Positive and negative acceleration equation.	73
4.3	Coefficient of the sixth order polynomial model.	75
4.4	Ziegler-Nichols tuning rule based on critical gain K_{cr} and	
	critical period P_{cr} (Second Method). (Ogata, (2010)).	78
4.5	Constant values of membership function for output.	82
4.6	Fuzzy logic rule for K_{p} .	82
4.7	Fuzzy logic rule for K_{i} .	82
4.8	Fuzzy logic rule for K_{d} .	83

vi

5.1	The optimised parameters for PID controller.	94
5.2	Maximum peak variation of semi-active systems with respect to passive	
	system.	97
5.3	RMS values of simulation results on PID and Fuzzy Tuned PID control	
	compared to passive system.	97

LIST OF FIGURES

FIGURE	TITLE	AGE
1.1	Schematic of a Semi-Active vibration control.	2
1.2	Research methodology.	10
2.1	Basic close-loop control systems.	14
2.2	The structure of force tracking control of MR damper	
	(Ubaidillah <i>et al.</i> , (2011)).	17
2.3	The controller structure of semi-active suspension system	
	(Hudha et al., (2005)).	18
2.4	Schematic of the MR-damper-based semi-active system	
	(Wang and Liao, (2005)).	19
2.5	MR Fluid operation (a) Flow mode, (b) Shear mode,	
	(c) Squeeze mode (Olabi and Grunwald,(2007)).	20
2.6	MR Fluid operation named "gradient pinch mode"	
	(Imaduddin <i>et al.</i> , (2013)).	21
2.7	(a) Typical single pumper hydraulic engine mount (Tikani et al., (2010))))
	(b) Double pumper hydraulic engine mount (Vahdati (1998)).	23
2.8	Simplistic model of a (a) single and (b) double pumper fluid mount	
	(Vahdati, (1998)).	23
2.9	(a) Variable spring rate fluid mount design (b) Simplistic model	
	(Vahdati, (2005)).	24

2.10	(a) Double notch passive hydraulic propose by Tikani et al. (2010)	
	(b) Variable bottom chamber volumetric stiffness fluid mounts design	
	by Vahdati and Heidari (2010).	25
2.11	Hydraulic mount with controllable inertia track: (a) cross section of a	
	hydraulic mount and (b) assembly components (Truong and Ahn, (2010)).26
2.12	Configuration of prototype mounts experiment (Barszcz et al., (2012)).	
	(a) Schematic diagram with inertia track and orifice. (b, c, d and e)	
	design that use in the experiment (top view).	27
2.13	MR Fluid elastomers (Wang and Gordaninejad, (2009)).	28
2.14	Mixed mode semi-active engine mount squeeze and flow mode (A)	
	Schematic diagram (B) Physical Model (Wang et al., (2010)).	31
2.15	MR fluid cell (El Wahed and Mcewan, (2011)).	31
2.16	Mixed mode design proposed by Choi et al. (2008).	32
2.17	Viscos-plastic models often used to describe MR fluids.	34
2.18	Idealized biviscous constitutive relationship (Stanway et al., (1996)).	36
2.19	Control strategy for integrated fuzzy logic and genetic algorithms	
	(Yan and Zhou, (2006)).	39
3.1	Schematic of MR damper.	43
3.2	Prototype of MR damper.	43
3.3	Flow mode operation in MR damper (not to scale).	45
3.4	Prediction magnetic field of MR damper.	46
3.5	Magnetic field along the orifice slit.	46
3.6	Schematic diagram for experimental setup for the measurement of	
	damping force.	47
3.7	Damping force test rig.	48

3.8	Asynchronous motor.	49
3.9	Variable-frequency drive.	50
3.10	Power transmission belt.	51
3.11	Gear reduction unit.	51
3.12	Crank-slider assembly.	52
3.13	Location for sensors attached to the test rig.	53
3.14	FUTEK LCF 451 load sensor.	54
3.15	Bridge amplifier.	55
3.16	Celesco MT2A wire transducer.	56
3.17	DAQ Board device PCI-6221.	57
3.18	I/O connector block.	57
3.19	Experimental setup description.	59
3.20	Prototype of the test rig.	60
3.21	KISTLER 8312B accelerometer.	61
3.22	Gyrometer.	62
4.1	Control structure model.	65
4.2	Free Body Diagram Engine Mounting System (EMS).	67
4.3	Simulink representation of MR damper model.	71
4.4	Hard points of experimental data and linearization between two	
	hard points (Hudha et al., (2005)).	73
4.5	Example of the linear regression of the coefficients a_i correspond to	
	the input current (refer more on Appendix D).	74
4.6	Structure of force tracking control of MR damper.	76
4.7	PID control structure.	78
4.8	Fuzzy Tuned PID control structure.	79

4.9	Input and Output channel of Fuzzy logic control.	80
4.10	Input membership function of chasis body vertical acceleration V_{acc} .	81
4.11	Input membership function of relative velocity of the chassis, V_{vel} .	81
5.1	Damping forces at a range of electrical currents.	86
5.2	Force-displacement diagram at a range of electrical currents.	86
5.3	Force-velocity diagram at a range of electrical currents.	86
5.4	Force-velocity characteristics comparison.	87
5.5	Force-displacement characteristics comparison.	88
5.6	Simulation results of force tracking control at the excitation frequency	
	of 1 Hz: (a) Sinusoidal, (b) Saw-tooth and (c) Square function.	90
5.7	Comparison between the simulation and experiment data for the vertical	
	acceleration.	91
5.8	Comparison between the simulation and experimental data for the pitch	
	moment acceleration.	92
5.9	Comparison between the simulation and experiment data for the roll	
	moment acceleration.	92
5.10	Vibration attenuations at 5 Hz.	95
5.11	Vibration attenuations at 10 Hz.	96
5.12	Vibration attenuations at 20 Hz	96

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Detail drawing for MR engine mounting.	118
В	Calculation for determine the moment inertia	135
	rolling and pitching and COG.	
С	Detail drawing for test rig.	146
D	Linear regression of coefficient a_i correspond to the	149
	input current.	

LIST OF SYMBOLS

$\dot{x}(t)$	-	Control state vector
A	-	The control system matrix,
В	-	The control input matrix,
u(t)	-	The control system input,
Q	-	State weighting semi positive matrix.
R	-	Input weighting positive matrix.
Κ	-	State feedback gain matrix.
Р	-	Solution of an algebraic Riccati equation.
ż	-	Absolute velocity of engine.
$(\dot{x}-\dot{z})$	-	Relative velocity between the engine and the chassis.
τ	-	Shear stress in the fluid,
$ au_{ m y}$	-	Yielding shear stress controlled by the applied field H ,
η	-	Newtonian viscosity of the applied magnetic field,
γ [·]	-	Shear strain rate
$sgn(\cdot)$	-	Signum function
$\eta_{ m r}$	-	elastic fluid properties
η	-	viscous fluid properties
<i>k</i> , <i>m</i>	-	Fluid parameters for Herschel–Bulkley model.
Ζ	-	Time derivative in hysteresis loop, and the

xiii

β , γ , A and n	-	Parameters shape in the hysteresis loop
F _{mr}	-	Damper force,
$a_i b_i c_i$	-	Polynomial coefficients
n	-	Order of the polynomial
I^i	-	Current applied to MR dampers
v	-	Damper velocity.
$x_i(t)$	-	Relative displacement over the entire response.
x^{\max}	-	Maximum displacement response.
$d_i(t)$	-	Inter-storey
J_1, J_2, J_3	-	Evaluation criteria
$lpha_{c}$	-	Weighting coefficient
C_p ,	-	Fitness value is positive.
μ	-	Penalty constant to scale the fitness function.
Z_s	-	Vertical displacement
θ	-	Moment pitch
α	-	Moment roll
Z_{sr}	-	Vertical displacement at right side of the frame structure.
Z_{sl}	-	Vertical displacement at left side of the frame structure.
Z_{sb}	-	Vertical displacement at back side of the frame structure.
Z_{sf}	-	Vertical displacement at front side of the frame structure.
\dot{Z}_{sf}	-	Velocity at front side of the frame structure.
\dot{Z}_{sb}	-	Velocity at back side of the frame structure.

xiv

\dot{Z}_{sl}	-	Velocity at left side of the frame structure.
\dot{Z}_{sr}	-	Velocity at right side of the frame structure.
\ddot{Z}_{sf}	-	Acceleration at front side of the frame structure.
\ddot{Z}_{sb}	-	Acceleration at back side of the frame structure.
\ddot{Z}_{sl}	-	Acceleration at left side of the frame structure.
\ddot{Z}_{sr}	-	Acceleration at right side of the frame structure.
<i>P</i> , <i>L</i>	-	Width and Length of the frame structure.
<i>a</i> , <i>b</i>	-	Distance of the unbalance mass from center of gravity.
M_e	-	Mass of engine
M_u	-	Mass of unbalance mass
C _s	-	Damper
k_s	-	Spring
K_p	-	Proportional gain, a tuning parameter
K_i	-	Integral gain, a tuning parameter
K_{d}	-	Derivative gain, a tuning parameter
e(t)	-	$\operatorname{Error} = y_{(sp)}(t) - y(t)$
t	-	Time or instantaneous time (the present)

LIST OF ABBREVIATIONS

ABS	-	Antilock braking systems
AMB	-	Active Magnetic Bearing
AUV	-	Autonomous underwater vehicle
DAQ	-	Data Acquisition
DOF	-	Degree of Freedom
ER	-	Electrorheological
FAMNN	-	Fuzzy associative memory neural network
FGS-PID	-	Fuzzy gain scheduling of PID
FFNN	-	Feed forward neural networks
FNN	-	Fuzzy Neural Network controller
FPIDC	-	Fuzzy PID type controller
GA	-	Genetic Algorithm
HVAC	-	Heating, Ventilation and Air-Conditioning
LOG	-	Linear quadratic Gaussian
MF	-	Membership function
MIMO	-	Multi-Input-Multi-Output
MPPT	-	Maximum power point tracking.
MR	-	Magnetorheological
OSTFPID	-	Online smart tuning fuzzy PID
PID	-	Proportional Integrate Derivative

xvi

PV-PhotovoltaicRMS-Root Means SquareRNN-Recurrent neural networksSIMO-Single-Input-Multi-Output

xvii

LIST OF PUBLICATIONS

M. Z. Sariman, M. Hafiz Harun, A. K. Mat Yamin, F. Ahmad, M. R. Yunos, *Magnetorheological Fluid Engine Mounts: A Review on Structure Design of Semi-Active Engine Mounting*, International Journal of Materials, ISSN: 2313-0555, Volume 2, 2015, pg. 6-16.

M. Z. Sariman, M. Hafiz Harun, A. K. Mat Yamin, F. Ahmad, M. R. Yunos, *Vibration Control of a Passenger Car Engine Compartment Model Using Passive Mounts Systems*. ARPN Journal of Engineering and Applied Sciences, ISSN 1819-6608 (Online), Volume 10, 2015, No. 17

M. Z. Sariman, M. Hafiz Harun, A. K. Mat Yamin, F. Ahmad, M. R. Yunos, *Vibration Control of a Passenger Car Engine Compartment Model Using Passive Mounts Systems*. International Conference On Automotive Innovation Green Energy Vehicle Conference on 26-27 August 2014, Swiss Garden resort & Spa, Kuantan, Malaysia

xviii

CHAPTER 1

INTRODUCTION

1.1 Introduction

The engine mounting system in vehicles consists of engine, engine mounts and chassis. The primary functions of the engine mounting system are to support the weight of the engine and to reduce the transmission of engine vibration to the chassis. The motion of the engine block is strongly dependent upon the excitation forces from the engine.

There are two primary causes of the excitations. Firstly is due to the gas pressure forces associates with combustion and expansion of the fuel-air mixture. Secondly is attributed to the variable inertia associated with the reciprocating components within the engine. The gas pressure yields the principal force of disturbance at low engine speeds, while the inertia forces may be considerably larger at higher speeds. The use of engine mounts with low stiffness and high damping can attenuate the disturbance at low frequency and vice versa.

The engine mount system can be passive, semi-active or active. The active system is expensive since it requires an actuator, adequate sealing, moving parts, and possibly large amount of energy for the actuator. The semi-active mount offers significant improvements over passive isolator. The system benefits from the advantages of active systems with the reliability of the passive system. On the other hand, in case of failure on control system, the semi-active mount is able to work in the passive mode. In addition, the