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ABSTRACT 

 

 

This thesis presents the design and analysis on the robust control of a X-Y ballscrew 
mechanism. In this research, a practical and robust controller for positioning control is 
discussed. The Continuous Motion Nominal Characteristic Trajectory Following (CM 
NCTF) controller is investigated in this research for tracking motion of an AC driven X-Y 
ballscrew mechanism. The CM NCTF controller has a simple control structure and 
straightforward design procedure that does not require an exact model parameter of a plant. 
In order to enhance the accuracy of the control system, a suitable input signal is designed 
to make sure the X-Y ballscrew mechanism attenuate smoothly in the deceleration motion. 
The CM NCTF controller consists of a Nominal Characteristic Trajectory (NCT) and a 
Proportional and Integral (PI) compensator. The NCT is constructed using the open-loop 
experimental responses while the PI compensator is designed based on a practical stability 
limit obtained experimentally. The CM NCTF controller has been evaluated in tracking 
motion performance. In order to examine the adaptability of the controller to the change of 
the input, experiments with various inputs is carried out. Besides that, the robustness of the 
controller is validated through the change of the load of the system. In order to examine the 
usefulness of the CM NCTF controller, a PI-D controller that has a similar control 
structure is designed and compared. The tracking performance of the CM NCTF controller 
is evaluated in maximum peak error Emax, percentage of error Epercent, and root mean square 
of error Erms. Emax is the difference between the output peak and the reference input, and 
Epercent is the percentage of the peak error with respect to the reference input. The 
experimental results proved that the CM NCTF controller has demonstrated better 
positioning response than the conventional NCTF controller and the PI-D controller by 
showing a two times smaller motion error. The robustness of the CM NCTF controller is 
clarified using X-axis, which has heavier load than the Y-axis. The experimental results 
have again proved that the CM NCTF controller demonstrates better tracking performance 
than the conventional NCTF controller and the PI-D controller in X-axis. As a conclusion, 
the CM NCTF controller has better positioning performance as compared to the 
conventional NCTF controller and PI-D controller. In future, the contour motion for X-axis 
and Y-axis will be done to evaluate accuracy of the controller. Besides that, the robustness 
performance in term of change of disturbance force will be considered. 
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ABSTRAK 

 

 

Tesis ini membincangkan rekabentuk dan analisis pengawal berciri mantap pada 

mekanisma skru bebola X-Y. Dalam penyelidikan ini, satu pengawal yang praktikal dan 

teguh untuk kawalan gerakan mekanisima telah dibincangkan. Pengawal gerakan 

berterusan mengikut ciri nominal trajektori (CM NCTF) disiasat dalam penyelidikan ini 

untuk gerakan pengesanan bagi mekanisma skru bebola X-Y yang digerakkan oleh motor 

AC. Pengawal CM NCTF mempunyai struktur kawalan yang mudah dan tatacara 

rekabentuk yang senang untuk difaham, di mana pengawal ini tidak perlu mengetahui 

parameter model yang tepat. Untuk mengetahui kejituan sistem kawalan, masukan yang 

sesuai untuk mekanisme skru bebola X-Y telah direka. Tujuan masukan ini direka adalah 

untuk memastikan mekanisma tidak menurun secara mendadak. Pengawal CM NCTF 

terdiri daripada ciri nominal trajektori (NCT) dan pemampas berkadaran serta kamiran 

(PI). NCT dibina menggunakan jawapan eksperimen yang diperolehi daripada sistem 

gelung terbuka manakala pemampas PI direka berdasarkan had kestabilan praktikal yang 

diperolehi secara eksperimen. Pengawal CM NCTF telah dinilai dengan menjejaki 

gerakan yang diusul. Bagi memeriksa kebolehsuaian pengawal dengan perubahan 

masukan, eksperimen dengan pelbagai jenis masukan telah dijalankan. Selain itu, 

keteguhan pengawal telah disahkan melalui perubahan beban sistem (paksi-Y dan paksi-

X). Bagi memeriksa keberkesanan pengawal CM NCTF, pengawal PI-D yang mempunyai 

struktur kawalan yang serupa telah direka bentuk dan dibandingkan. Ralat puncak 

maksimum Emax, peratusan ralat Epercent, and punca kuasa dua min ralat Erms telah 

digunakan untuk menyesahkan penyesuaian pengawal CM NCTF.  Emax ialah hasil 

pembezaan keluaran puncak dengan masukan rujukan, dan Epercent  ialah peratusan ralat 

puncak dengan masukan rujukan. Hasil percubaan eksperimen telah membuktikan bahawa 

pengawal CM NCTF menunjukkan kawalan gerakan yang dua kali lebih baik daripada 

pengawal konvensional NCTF dan pengawal PI-D dengan menunjukkan ralat usul lebih 

kecil. Keteguhan pengawal CM NCTF telah diuji pada paksi-X yang lebih berat 

berbanding dengan paksi-Y. Daripada keputusan eksperimen didapati bahawa pengawal 

CM NCTF lebih teguh berbanding dengan pengawal konvensional NCTF dan pengawal 

PI-D. Kesimpulannya, pengawal CM NCTF mempunyai prestasi yang lebih baik 

berbanding dengan konvensional NCTF dan pengawal PI-D. Pada masa akan datang, 

gerakan kontur untuk paksi-X dan paksi-Y akan dilakukan untuk menilai ketepatan 

pengawal. Selain itu, pretasi keteguhan dari segi perubahan daya gangguan akan 

dipertimbangkan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Positioning mechanism that widely used in manufacturing systems is always aiming 

high-precision positioning. Thus, positioning control system in industries has high 

demands on high-precision positioning in order to maintain the quality of the product. 

Most of the industrial mechanisms usually operate at high speed for high productivity. The 

demand of the controller, which is practical, easy to design, simple control structure, fast 

response, small or no overshoot, and high robustness performance is increasing from time 

to time. In reality, the engineers in industry prefer to use equipment which is able to 

produce good performance in order to maintain the high speed production. Hence, practical 

controller, which has a simple control structure, easy to design, high adaptivity, and robust 

to the change of plant parameters is always a solution that needed in industry. 

The controller plays an important role in a system, because one of the goals of the 

controller is to achieve stability and robustness in the system. Besides that, the controller 

also is functioned to make sure the system is able to obtain the desired output which set by 

the user. Since each mechanism will require a controller to make sure the process is 

smooth, therefore the structure of the controller should be simple and easy to understand 

by any engineer. As the controller has a simple structure and simple design procedure, the 

employer will not require to spend more budget to hire the supplier as the mechanism 

changes its function.  

Up to now many types of controllers have been proposed and evaluated for 

positioning systems; for example, proportional-integral-derivative (PID) controller. PID 
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controller is highly recommended and widely used by industrial field due to structural 

simplicity. With its three-term functionality, it is easy to be tuned and achieved 

effectiveness. However, PID controller has met the limitation when a higher positioning 

performance and robust systems are required. In order to achieve the better requirements, 

different types of controller have been proposed such as advance PID controller, 

disturbance observer (DOB), sliding mode control (SMC), and adaptive fuzzy controller. 

However, these advanced controllers require the exact model of the plant; which is time 

consuming to identify each parameter. It is difficult for engineer who is unfamiliar with 

advanced control to adjust and handle the control parameters in industrial. Besides that, 

these more complex advanced intelligent control methods such as disturbance observer 

based-filtered variable structure controller, friction compensation, adaptive back-stepping 

sliding mode controller, fuzzy-logic with deadzone compensator, and Chebyshev 

functional recurrent neuro-fuzzy network are less favourably under practical conditions 

and require high knowledge of control theory. 

Nominal Characteristic Trajectory Following (NCTF) controller is proposed to 

overcome the problems stated above (Wahyudi et al., 2001). NCTF controller highlights 

the easy design procedure and simple structure. Besides that, exact model parameters are 

not required when designing NCTF controller. Therefore, less knowledge of control theory 

is required when designing NCTF controller. 

In this research, X-Y ballscrew mechanism is used as an actuator to validate the 

effectiveness of the designed controller. The X-Y ballscrew mechanism is an automated 

machine which is able to provide a horizontal motion along X-axis and Y-axis. This 

application is commonly used in the fields like general machinery, pharmaceutical, 

manufacturing and semiconductor. In manufacturing field, X-Y ballscrew mechanism is 


