

Faculty Of Electronics and Computer Engineering

FAULT ANALYSIS AND TEST FOR BRIDGE DEFECT IN RESISTIVE RANDOM ACCESS MEMORY

Norsuhaidah binti Arshad

Master of Science in Electronic Engineering

2016

C Universiti Teknikal Malaysia Melaka

FAULT ANALYSIS AND TEST FOR BRIDGE DEFECT IN RESISTIVE RANDOM ACCESS MEMORY

NORSUHAIDAH BINTI ARSHAD

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this entitled "Fault Analysis and Test for Bridge Defect In Resistive Random Access Memory" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	:
Date	:

APPROVAL

I hereby declare that I have read this thesis and my opinion this thesis is sufficient in term of scope and quality for the award of Master of Science in Electronic Engineering.

Signature	·
Supervisor Name	·
Date	·

DEDICATION

To my charming husband

To my beloved mother, father and sister

To my supportive late supervisor

ABSTRACT

Resistive Random-Access Memory (ReRAM) is one of the potential candidates of emerging semiconductor memory to replace the conventional memory technologies. Besides, ReRAM offers many attractive advantages, such as non-volatile, scalable, low power consumption, and fast data access. Due to the infancy stage of this emerging memory, ReRAM is prone to have bridge defects that could lead to test escape and reliability issues. Moreover, with the lack of electrical model for ReRAM, this research presents an electrical ReRAM model that was designed with SILVACO Electronic Design Automation (EDA) software. All ReRAM elements designed used 22nm Complementary Metal Oxide Semiconductor (CMOS) transistors and a novel non-CMOS device, known as memristor, as the memory cell array. The optimal memristor model that had been proposed by D. Biolek was chosen among three published memristor SPICE models. The selection was made based on the performance analysis. Furthermore, simulation of 2x2 cell ReRAM was executed in order to prove the functionality of the design. The designed ReRAM model functioned as desired based on the simulation results. In addition, the defective behaviors of the faulty ReRAM that were impacted by the three types of bridge defects, (bridge between wordlines; BW, bridge between bitlines; BB and bridge between bitlines and wordlines; BBW) had been studied in this work. The faulty ReRAM model was established by injecting the defects into the designed electrical ReRAM model. As this ReRAM employed a non-CMOS device as its memory cells, the defect that occurred might behave differently than that happens in conventional memories. This could cause the faulty ReRAM to escape from the available memory test. The simulation of the faulty ReRAM model showed that the bridge defects had been due to the Undefined State Faults (USFs) during reading operation. Besides, any faulty in ReRAM caused by USF makes setting the cell to the desired logical value a challenging task, and this fault is difficult to be detected. Hence, a new Design-for-Testability (DfT) technique was proposed to detect these USFs. This technique, known as Adaptive Sensing Read Voltage (ASRV), had been developed based on the mechanism of memristor, as well as the function of sense amplifier. Apart from that, a slight circuit modification was done to implement the DfT circuitry. Based on the simulation results during the DfT implementation, the proposed DfT technique successfully detects the USFs that occurred when $0\Omega \le R_{BW} \le 50\Omega$ for BW injection, $36\Omega \le R_{BB} \le 372\Omega$ for BB injection and $140\Omega \le R_{BBW} \le 210\Omega$ for BBW injection. However, this DfT technique might not suitable for BBW injection as it might kill the healthy cell.

i

ABSTRAK

Memori rintangan Random Access (ReRAM) adalah salah satu calon potensi memori semikonduktor baru yang muncul untuk menggantikan teknologi memori konvensional. ReRAM menawarkan banyak kelebihan menarik seperti tidak meruap, boleh skala, penggunaan tenaga yang rendah, dan akses data yang cepat. Oleh kerana memori baru ini masih di peringkat awal, ReRAM ini mempunyai kecacatan jambatan yang boleh memyebabkannya terlepas daripada ujian dan masalah kebolehpercayaan. Disebabkan oleh kekurangan model elektrik untuk ReRAM, kajian ini membentangkan model ReRAM elektrik yang direka menggunakan perisian SILVACO Elektronik Design Automation (EDA). Semua unsur-unsur ReRAM direka menggunakan transistor 22nm Oksida Logam Pelengkap Semiconductor transistor dan peranti baru yang bukan CMOS dikenali sebagai memristor pelbagai sel memori. Optimum model memristor yang dicadangkan oleh D. Biolek dipilih daripada tiga memristor model SPICE yang telah diterbitkan. Pemilihan dibuat berdasarkan analisis prestasi. Simulasi sel 2x2 ReRAM dilaksanakan untuk membuktikan fungsi rekabentuk. Model ReRAM yang direka berfungsi seperti yang dikehendaki berdasarkan keputusan simulasi. Tingkah laku yang cacat bagi ReRAM cacat yang terkesan oleh tiga jenis kecacatan jambatan (jambatan antara wordlines; BW, jambatan antara bitline; BB, dan jambatan antara bitlines dan wordlines; BBW) dikaji dalam kerja-kerja ini. Model ReRAM cacat ditubuhkan dengan menyuntik kecacatan dalam model ReRAM elektrik yang direka. Memandangkan ReRAM ini menggunakan alat bukan CMOS sebagai sel-sel ingatan, kecacatan yang berlaku mungkin berkelakuan berbeza daripada yang berlaku dalam memori konvensional. Ini boleh menyebabkan terlepasnya ReRAM cacat dari ujian memori yang tersedia. Simulasi untuk model ReRAM yang cacat menunjukkan bahawa kecacatan jambatan menyebabkan timbulnya Kerosakan Keadaan Tidak Ditakrif (USFs) semasa operasi dibaca. USFs akan menyebabkan sel ReRAM yang cacat sukar untuk ditetapkan kepada nilai logik yang dikehendaki dan kerosakan ini adalah sukar untuk dikesan. Oleh itu, rekabentuk untuk kebolehujian teknik (DfT) yang baru dicadangkan untuk mengesan USFs ini. Teknik ini dinamakan sebagai Penyesuaian Penderiaan Bacaan Voltan (ASRV) yang dibangunkan berdasarkan mekanisme memristor dan fungsi pengesan penguat. Sedikit pengubahsuaian litar dilakukan untuk melaksanakan litar DfT. Berdasarkan keputusan simulasi semasa pelaksanaan DfT, teknik DfT yang dicadangkan berjaya mengesan USFs apabila $0\Omega \leq R_{BW} \leq 50\Omega$ untuk suntikan BW, $36\Omega \leq R_{BB} \leq 372\Omega$ untuk suntikan BB dan $140\Omega \leq R_{BBW} \leq 210\Omega$ untuk suntikan BBW. Walau bagaimanapun, teknik DfT ini mungkin tidak sesuai untuk suntikan BBW kerana ia mungkin membunuh sel yang sihat.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful, all praises and thanks to Allah as I have finally completed this thesis successfully. First of all, I would like to express my appreciation to my late supervisor, Allayarham Dr Nor Zaidi bin Haron, for his kindness, encouragement, and guidance throughout the journey of this research. His willingness to educate me the art of well-organized technical writing, as well as showering wisdom in giving ideas to solve problems earned my admiration. It was indeed a great pleasure to have had the opportunity to conduct this research under his supervision. May his soul rest in peace. On the other hand, I would like to acknowledge my new supervisor, Dr Fauziyah binti Salehuddin, who had been so supportive towards me to complete my thesis. Thank you for your time to read and to review my thesis. On top of that, my appreciation also goes to my new co-supervisor, En Sani Irwan bin Salim; and project's mentor, PM Norhayati binti Soin from Universiti Malaya who also encouraged and spent some time to review my thesis.

Next, I would like to acknowledge the Faculty of Electronics and Computer Engineering for providing me the facilities for this research. Also, thanks to KPT for supporting this project financially under the Fundamental Research Grant Scheme (FRGS). Last but not least, my deepest appreciation goes to my charming husband, Muhammad Fadhle Ikram; parents, Arshad and Nor Rizan; and my beloved siblings, for their understanding, prayers, love, and support that expressively led to my achievement. Not to forget my colleagues in the laboratory for their kind help and opinion throughout the preparation of this thesis. Lastly, many thanks to all who have helped directly or indirectly upon the accomplishment of this research.

TABLE OF CONTENT

26

DEC	LAR	ATION		
APPI	ROV	4L		
DED	ICAT	TION		
ABS	FRAC	CT		i
ABS	ſRAŀ	K		ii
ACK	NOW	/LEDG	MENT	iii
TAB	LE O	F CON	TENT	iv
LIST	OF 1	ГАВLE	S	vii
LIST	OF I	FIGUR	ES	viii
LIST	OF A	ABBRE	CVIATIONS	xi
LIST	OF I	PUBLIC	CATIONS	xii
СНА	ртеі	R		
1.			CTION	1
	1.1		rch Background	1
			em Statement	2
		Object		4
			of Research	
	1.5	-	ibutions	4 5 5
		1.5.1	ReRAM Electrical Model	5
		1.5.2	Faulty Models for Bridge Defect in ReRAM	6
			Dft Technique for Bridge Defect in ReRAM	6
	1.6		s Organizations	6
2.	LIT	ERATI	URE REVIEW	8
	2.1			8
	2.2		bry Technologies	8
			Memory Concept	9
			Memory Technology Classification	10
	2.3		entional Memory Technology	11
			SRAM	12
		2.3.2	DRAM	13
			Masked ROM	13
			OTP PROM	14
		2.3.5	EPROM	14
		2.3.6	EEPROM	14
		2.3.7	Flash	15
	2.4	Emerg	ging Memory Technologies	15
			FRAM	16
		2.4.2	MRAM	17
			STTRAM	18
			PCRAM	19
			ReRAM	21
			ORAM	22
		2.4.7	Summary of Emerging Memory Technologies	23

2.5 Potentials and Challenges of ReRAM

	2.5.1	Potentials	8		26
	2.5.2	Challenge	es		29
2.6	Backg	round of R			30
	-	Memory			31
			al ReRAM N	Model	33
			ReRAM M		34
		2.6.3.1			34
		2.6.3.2	2	Memristor Model	38
			2.6.3.2.1	Memristor Model Proposed by	38
			2.0.0.2.1	Joglekar <i>et al.</i>	20
			2.6.3.2.2	Memristor Model Proposed by	38
				Prodromakis <i>et al</i> .	
			2.6.3.2.3	Memristor Model Proposed by Biolek	39
			2.0.0.2.2	et al.	57
		2.6.3.3	Peripheral		40
2.7	Classif	fication of	-		40
,	2.7.1		n Memory C	Cell Array	42
	2.,.1	2.7.1.1	-	ects in ReRAM Memory Cells	42
		2.7.1.2	1	efects in ReRAM Memory Cells	43
2.8	Testin	g Concepts	•		44
2.0		Key Tern			44
	2.0.1	-	Defect		45
		2.8.1.2			45
		2.8.1.3			46
			Failure		46
		2.8.1.5	Quality		47
		2.8.1.6	Reliability		47
		2.8.1.7	Testing		47
	2.8.2		Manufacturi	ng Flow	48
	2.8.3	Memory			49
		2.8.3.1	-	Test	50
			March Test		50
			Structural 7		51
			Defect-orie		51
		2.8.3.5	Parametric		51
		2.8.3.6	Dynamic T		52
		2.8.3.7	Burn-in Te		52
	2.8.4		or-Testabilit		52
		2.8.4.1		e Time (SWT) based DfT	52
		2.8.4.2		Voltage (LWV) based DfT	53
2.9	Summ				54
ME	ГНОДО	DLOGY			55
3.1	Introdu	uction			55
3.2	Flowe	hart of Pro	ject		55
3.3	Optim	ization of l	Memristor S	PICE Model	59
3.4	Develo	opment of]	ReRAM Ele	ectrical Model	64
3.5	Develo	opment of]	Faulty ReRA	AM Electrical Model	71
3.6	Develo	opment of]	DfT Technie	que	77
3.7	Summ	ary			82
				V	

3.

4.	RES	SULTS .	AND DISCUSSION	83		
	4.1	1 Introduction				
	4.2	Result	Results of Memristor SPICE Model Optimization			
		4.2.1	Joglekar's Memristor Model	85		
		4.2.2	Prodromakis's Memristor Model	87		
		4.2.3	Biolek's Memristor Model	87		
		4.2.4	Summary of Memristor Model	89		
	4.3	Result	ts of ReRAM Simulation Model Development	89		
			Memory Array	90		
			Row/column Decoder	91		
		4.3.3	Write/read Circuit	92		
		4.3.4	Sense Amplifier	93		
			Defect-free Simulation	95		
	4.4		ts of Simulation in Fault Modeling	99		
			BW Injection	99		
			BB Injection	102		
			BBW Injection	105		
			Simulation Analysis for Faulty ReRAM Model	108		
	4.5		ts of DfT Implementation	110		
			DfT Implementation for BW Injection	110		
		4.5.2	DfT Implementation for BB Injection	113		
			DfT Implementation for BBW Injection	116		
		4.5.4	5 1	120		
	4.6	Summ	lary	121		
5.	CO	NCLUS	ION AND FUTURE WORKS	122		
	5.1	Conclu	usion	122		
	5.2	Future	Works	123		
REI	FERE	NCES		125		
APF	PENDI	XA	- SYMBOL FOR MEMRISTOR MODEL	133		
APF	PENDI	XB	- 22NM CMOS TECHNOLOGY	136		
APF	PENDI	XC	- SIMULATION RESULTS DURING BRIDGE INJECTION	141		
APF	PENDI	X D	- SIMULATION RESULTS DURING DFT	149		
			IMPLEMENTATION			

LIST OF TABLES

TITLE

PAGE

TABLE

2.1	Summary of emerging memory technologies	25
2.2	Features of conventional and emerging memory technologies	27
2.3	Classification of defects	41
2.4	Summary of DfT technique in ReRAM	54
3.1	Observation of simulation results for resistive (R_{bidge}) value	74
3.2	Test algorithm	76
3.3	Parameter for DfT circuitry	81
4.1	Summary for performance analysis among three memristor model	89
4.2	Observed faults for BW injection	101
4.3	Observed faults for BB injection	104
4.4	Observed faults for BBW injection	107
4.5	Observed fault models for bridge defects	109
4.6	Results of R_{BW} before and after implementation of DfT	112
4.7	Results of R_{BB} before and after implementation of DfT	115
4.8	Results of R_{BBW} before and after implementation of DfT	117
4.9	Comparison between ASRV technique and LWV technique	120

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

FIGU	TRE TITLE	PAGE
1.1	Problem in conventional and potential in emerging memories	3
2.1	Memory cell	9
2.2	Classification of memory technology	10
2.3	Electrical cell structure of SRAM	12
2.4	Electrical cell structure of DRAM	13
2.5	Structure of FRAM memorycell	16
2.6	Basic MRAM based on pre-charge sense amplifier	18
2.7	Schematic cross-section of PCRAM cell	20
2.8	Electrical cell structure of ReRAM	22
2.9	Memory cell structure of ORAM	23
2.10	ReRAM structure	28
2.11	Potentials of ReRAM	29
2.12	Challenges of ReRAM	29
2.13	Abstraction levels of memory model	32
2.14	Published functional diagram of ReRAM	34
2.15	The I-V curve for memristor	35
2.16	Memristor	36

2.17	Changes in memristance due to voltage versus time	37
2.18	Possible open defects in ReRAM memory cells	43
2.19	Possible bridge defects in ReRAM memory cells	44
2.20	Key terminologies related to testing	45
2.21	The manufacturing flow for memory production	49
2.22	Classification of memory testing	50
3.1	Flowchart of the research	58
3.2	Workflow for memristor optimization	59
3.3	Steps for the implementation of the SPICE memristor model in Silvaco	60
	EDA simulation tools	
3.4	SPICE code of the Joglekar's memristor model	61
3.5	SPICE code of the Prodromakis's memristor model	62
3.6	SPICE code of the Biolek's memristor model	62
3.7	Setup of the simulation	63
3.8	Workflow for development of ReRAM electrical model	65
3.9	Signal voltages and timing diagram for ReRAM operation	68
3.10	Spice commands	70
3.11	22nm CMOS logic levels	71
3.12	Workflow for development of faulty ReRAM electrical model	72
3.13	Location for bridge defects in simulations	75
3.14	Workflow for development of DfT technique	78
3.15	DfT circuitry	79
4.1	Simulation circuit for Joglekar's memristor model	84
4.2	Simulation results for Joglekar's memristor model	85
4.3	Simulation set up and result for Prodromakis's memristor model	87

4.4	Simulation set up and result for Biolek's memristor model	88
4.5	The proposed functional block of ReRAM	90
4.6	2x2 memory array of ReRAM	91
4.7	Schematic of row/column decoder	92
4.8	Schematic or write/read circuit	93
4.9	Schematic of hybrid SA	94
4.10	Modified Sense Amplifier	95
4.11	Full view of ReRAM simulation model	96
4.12	Result of defect-free simulation (Case 1)	97
4.13	Result of defect-free simulation (Case 2)	98
4.14	Simulation results during BW injection	100
4.15	Logical state for aggressor cell and victim cell (BW injection)	102
4.16	Logical state for aggressor cell and victim cell (BB injection)	105
4.17	Logical state for aggressor cell and victim cell (BBW injection)	108
4.18	Simulation result before and after DfT implementation when R_{BW} =30 Ω	111
4.19	Output voltage (V _{out}) during bridge injection (R_{BW}) and DfT enable	112
4.20	Simulation result before and after DfT implementation when $R_{BB} = 100\Omega$	114
4.21	Output voltage (V_{out}) during bridge injection (R_{BB}) and DfT enable	115
4.22	Simulation result before and after DfT implementation during	116
	$R_{BBW} = 170\Omega$	
4.23	Output voltage (V_{out}) at victim cell during bridge injection (R_{BBW}) and	118
	DfT enable	
4.24	Output voltage (V _{out}) at adjacent cell during bridge injection (R_{BBW}) and	119
	DfT enable	

LIST OF ABBREVIATIONS

RAM	-	Random Access Memory
ReRAM	-	Resistive Random Access Memory
CMOS	-	Complementary Metal-Oxide Semiconductor
GND	-	Ground
DfT	-	Design-for-Testability
EDA	-	Electronic Design Automation
USFs	-	Undefined State Faults
SAF	-	Stuck-at-Faults
BL	-	Bitlines
WL	-	Wordlines
NBL	-	Nano bitlines
NWL	-	Nano wordlines
W/R	-	Write/read
wl	-	Write 1 operation
w0	-	Write 0 operation
rl	-	Read 1 operation
r0	-	Read 0 operation
SA	-	Sense Amplifier
OC	-	Open in cell
OW	-	Open in wordlines
OB	-	Open in bitlines
BB	-	Bridge between NBLs
BW	-	Bridge between NWLs
BBW	-	Bridge between NBLs and NWLs
ASRV	-	Adaptive Sensing Read Voltage
LWV	-	Low Write Voltage

LIST OF PUBLICATIONS

- Arshad, N., Salehuddin, F., Salim, S. I. and Soin, N., 2015. Defect-oriented Test and Design-for-Testability Technique for Resistive Random Access Memory. *Journal of Telecommunication, Electronic and Computer Engineering (JTEC)*, will be published in vol 8. (Scopus)
- Arshad, N., Haron, N.Z. and Salehuddin, F., 2014. Resistive Bridge Fault Simulation and Analysis for Resistive RAM. In *Malaysian Technical Universities Conference on Engineering & Technology (MUCET 2014)*.
 pp. 1 – 5. (Scopus)
- Arshad, N., Haron, N.Z, Salehuddin, F, and Soin, N., 2014. Development of Resistive RAM Simulation Model for Defect Analysis and Testing. *Advanced Science Letters*, 20(10-12), pp.1745–1750. (*Proceedings Scopus*)
- Haron, N.Z., Arshad, N. and Salehuddin, F., 2014. Performance Analysis of Memristor Models for RRAM Cell Array Design using SILVACO EDA. Jurnal Teknologi, 3(68), pp.1–6. (Scopus)
- Haron, N.Z., Salehuddin, F., Arshad, N and Zakaria, Z., 2013. A New Test Scheme for Process Variation-Induced Faults in Resistive RAM. Australian Journal of Basic and Applied Sciences, 7(13), pp.43–50. (*Predatory journal*)

 Haron, N.Z., Arshad, N., and Herman, S.H., 2013. Detecting Resistive-Opens in RRAM using Programmable DfT Scheme. In 5th Asia Symposium on Quality Electronic Design. pp. 22–26. (Proceedings Scopus)

CHAPTER 1

INTRODUCTION

1.1 Research Background

Nowadays, almost all electronic systems use memories for data storage. The speed of the changing technology that has led to existing of several emerging memory technologies in replacing conventional semiconductor memories, such as Static Random Access Memory (RAM), Dynamic RAM, and Flash, in future computer and embedded systems. The emerging memory technologies such as ferroelectric RAM (FRAM), magnetic RAM (MRAM), spin-torque transfer RAM (STTRAM), phase-change RAM (PCRAM), resistive RAM (ReRAM), and organic RAM (ORAM) (Chung et al. 2010).

In addition, Chung *et al.* (2010) identified that ReRAM has the densest data storage, non-volatility, and fast data access features. Compared to the conventional semiconductor memories and other emerging memory technologies, ReRAM cells can be fabricated without access transistors. Moreover, Crossbar Inc. (Anonymous, 2014) mentioned that the simple structure enables ReRAM to be integrated in crossbar arrays and stacked in multiple layers to form three-dimension (3D) memories. With such novel devices and advanced circuit architecture, ReRAM offers attractive potentials, such as an enormous storage capacity, low power consumption, and simple fabrication, for memory cell array. In fact, the academic researchers at UC Santa Barbara (Lastras-Montano *et al.*, 2015), Imperial College (Vallace, 2012), and TU Delft (Zaidi, 2012) have been intensively studying this emerging memory. On top of that, semiconductor

companies, such as Hewlett-Packard (HP) at USA, Crossbar Inc. in California, Hynix in South Africa, and Interuniversity Microelectronics Centre (IMEC) in Belgium, have been expected to market ReRAM as a product in the next few years.

1.2 Problem Statement

Based on Moore's Law, the number of transistors in a chip was roughly become double per two years. As a result of this downscaling of complementary metal-oxide semiconductor (CMOS) transistor technology, Haron *et al.* (2007) mentioned that CMOS was prone to have several challenges that include physical, material, powerthermal, technological, and economic challenges. Hence, the quality and the reliability of CMOS memories were affected. Figure 1.1 displayed some problems that have been found in conventional memory technologies that have paved way to the existence of the emerging memory technologies. Besides, it cannot be denied that based on Moore's Law, conventional memories have become denser and downscaling overtime, but their quality and reliability have been affected due to the rapid changes of technology development.

Figure 1.1 also reflected the relationship between the conventional memory technology and the emerging memory technology, where the problems inherent in the conventional memory technology have led to the existence of the emerging memory technology like ReRAM. Thus, it is believed that the target memory, ReRAM, is expected to suffer from quality problems. In general, these problems arise due to the size of the components used to form the memory, which was very tiny and closely structured. At the same time, fabricating such tiny and dense structure requires very precise and mature fabrication techniques. Furthermore, the fundamental operation and the types of memristors used as ReRAM cells have not been fully understood and are

2

still debatable. Moreover, in the perspective of quality improvement of ReRAM, very limited work has been published so far. Apart from that, understanding the faulty behavior of the memory devices in the presence of defects enables the development of appropriate faulty models and efficient test schemes; thus, improve the quality of outgoing product.

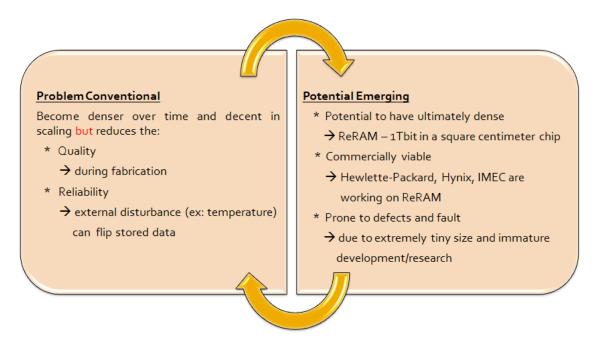


Figure 1.1: Problems in conventional and potential in emerging memories.

Furthermore, it has been proven by Hamdioui (2001) that fast analysis of quality improvement can be eased by using electrical model. However, ReRAM electrical models are still not reliable as this memory technology is still in infancy stage. Therefore, developing an electrical model for ReRAM had been necessary in this research. This model serves as the starting points for faulty ReRAM electrical model development and quality testing for bridge defect development.

In addition, previous work published by Haron *et al.* (2011) revealed that when ReRAM cells were impacted by resistive open defects (due to insufficient dopant), the write operation might fail. For example, writing logic 1 to an impacted ReRAM cell that stores logic 0 will set the cell to an undefined state; when a read operation is performed to this faulty cell, an arbitrary logic output will be returned. Nevertheless, such faulty behavior is hard to be detected by the existing test schemes, which are based on either logic 1 (V_{dd}) or 0 (GND). Therefore, defective ReRAMs might escape the manufacturing test and cause computers, as well as embedded systems installed with such memories, fail to function properly.

1.3 **Objectives**

The main goal of this research was to propose a new design-for-Testability (DfT) technique in detecting a unique fault that could occur in faulty ReRAM cell. The following were specific objectives for this research.

- i. To design an electrical model of ReRAM.
- To establish electrical faulty models for bridge defects between ReRAM cells.
- iii. To develop DfT technique to test the bridge defects that had an impact on ReRAM cell.

1.4 Scope of Research

Several limitations of this research need to be acknowledged. This research was conducted by running simulation using a simulation tool known as SILVACO Electronic Design Automation (EDA) software. During the ReRAM modeling stage, the memristor model that was considered for this device only consisted of the memristor SPICE model. In addition, the ReRAM model that was developed had been based on electrical level. The design of memory array for this ReRAM only involved 2x2 array. The 2x2 ReRAM array had been sufficient for this simulation as there was high potential for bridge defects to occur between two adjacent ReRAM cells.

Besides, this research had focused on testing the faulty ReRAM that was induced by bridge defect that occurred in the memory array. During simulation, the data collections for the simulation results concentrated on the values of output voltage that were measured at sense amplifier. Lastly, the most important scope in this research is the proposed DfT technique, which was developed to detect Undefined State Faults (USFs) that occur during bridge injection.

1.5 Contributions

This research is motivated by some potential characteristics and challenges in this emerging memory technology of ReRAM. Hence, it is believed that this research can improve the quality and the reliability of ReRAM. The outcomes of this research are summarized in several contributions, which are ReRAM electrical model, faulty models for bridge defect in ReRAM, and DfT technique for bridge defect in ReRAM.

1.5.1 ReRAM Electrical Model

The modeling for ReRAM electrical model had been based on the functional model of memory technology. The optimal memristor model that was published in Jurnal Teknologi publication played an important role in modelling this ReRAM. Furthermore, the simulation of defect-free ReRAM model ensured its functionality. In fact, this modeling was presented in International Conference on Internet Services Technology and Information Engineering (ISTIE 2014) and published in Advanced Science Letters publication.

1.5.2 Faulty Models for Bridge Defect in ReRAM

The development of the defect-free ReRAM model was adopted to model the faulty models. The faulty models that were comprised of bridge defect had been important for defect analysis and testing. Besides, this work was presented in the Malaysian Technical Universities Conference on Engineering and Technology (MUCET 2014).

1.5.3 DfT Technique for Bridge Defect in ReRAM

The DfT technique was introduced to detect the faulty models. The technique was developed by adopting the idea on how sense amplifier works and the concept of memristor operation. The DfT technique that namely as Adaptive Sensing Read Voltage (ASRV) technique could be applied for off-line and on-line tests at the manufacturing plant in order to improve the product quality and reliability. The proposed DfT technique was accepted for Journal of Telecommunication, Electronic, and Computer Engineering (JTEC) publication.

1.6 Thesis Organization

This thesis was organized in five chapters: introduction, literature review, methodology, results and discussion, conclusion and future work. Chapter 1 presented the introductory for understanding the research background. It provided the research background, the problem statement, the objectives, the scope of research, the methodology, and the contributions of this research.

Chapter 2 reviewed the research background of the study. Firstly, it presented a review on memory technologies for memory concept, memory technology classification, conventional memory technologies, and emerging memory technologies.