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ABSTRACT 

 

 

The Space Vector Modulation (SVM) technique has gained wide acceptance for many AC 
drive applications, due to a higher DC bus voltage utilization (higher output voltage  
compared with the Sinusoidal Pulse Width Modulation (SPWM)), lower harmonic 
distortions and easy digital realization. In recent years, the SVM technique was extensively 
adopted in multilevel inverters since it offers greater numbers of switching vectors for 
obtaining further improvements of AC drive performances. However, the use of multilevel 
inverters associated with SVM increases the complexity of control algorithm (or 
computational burden), in obtaining proper switching sequences and vectors. The 
complexity of SVM computation causes a microcontroller or digital signal processor 
(DSP) to execute the computation at a larger sampling time. This consequently may 
produce errors in computation and hence degrades the control performances of AC motor 
drives. This thesis reports the performance evaluation of SVM for two-level of VSI, three-
level and five-level of Cascaded H-Bridge Multilevel Inverter (CHMI) and analyse in-
depth the accuracy performances of SVM computation and the performance evaluation in 
variable speed drive systems (i.e. Direct Torque Control (DTC) using SVM). The SVM 
modulator is implemented using a hybrid controller approach, i.e. with combination 
between the DS1104 Controller Board and FPGA. In such way, the computational burden 
can be minimized as the SVM tasks are distributed into two parts, in which every part is 
executed by a single controller. This allows the generation of switching gates performed by 
FPGA at the minimum sampling time ܦ ଶܶ ൌ  to obtain precise desired output ݏ݊	360
voltages, as verified via simulation and experimental results. Based on the accuracy 
performance analysis, it has revealed that the error of SVM computation in five-level 
inverter, even with a larger sampling time ܦ ଵܶ ൌ  can be restricted at 6.25% from  ,ݏߤ	200
that obtained in two-level inverter. This allows the use of low-speed microcontroller or 
DSP to have satisfactory control performances, however, with the suggestion to use higher 
levels of inverters.  
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ABSTRAK 

 

 

Teknik Modulasi Vektor Ruang (SVM) telah mencapai penerimaan yang luas bagi 
kebanyakan aplikasi pemacu ulang-alik AC, disebabkan penggunaan voltan arus terus DC 
yang lebih tinggi (keluaran voltan yang lebih tinggi berbanding dengan SPWM), herotan 
harmonik yang rendah dan memudahkan pembangunan perkakasan secara digital. Tahun-
tahun kebelakangan ini, teknik SVM secara meluasnya telah digunapakai dalam 
penyongsang bertingkat kerana ia menawarkan bilangan pensuisan vektor yang banyak 
untuk mencapai lanjutan penambahbaikan bagi prestasi pemacuan AC. 
Walaubagaimanapun, penggunaan penyongsang bertingkat dikaitkan dengan SVM 
meningkatkan kerumitan bagi algoritma kawalan (atau beban pengiraan), dalam 
mendapatkan aturan dan vektor pensuisan yang baik. Kerumitan bagi pengiraan SVM 
mengakibatkan sebuah pengawal mikro atau pemproses isyarat digital (DSP) 
melaksanakan pengiraan pada pensampelan masa yang lebih tinggi. Ini seterusnya boleh 
menghasilkan ralat dalam pengiraan dan kemudiannya menurunkan prestasi kawalan bagi 
pemacu motor AC. Tesis ini melaporkan penilaian prestasi bagi SVM untuk dua-
peringkatan penyongsang VSI, tiga-peringkatan dan lima-peringkatan CHMI dan analisa 
secara mendalam prestasi ketepatan bagi pengiraan SVM dan prestasi penilaian kawalan 
laju motor AC (iaitu Kawalan Langsung Dayakilas (DTC) menggunakan SVM). Pemodulat 
SVM dibangunkan menggunakan sebuah pendekatan pengawal hibrid, iaitu dengan 
kombinasi papan pengawal DS1104 dan FPGA. Dengan cara ini, beban pengiraan boleh 
diminimakan oleh kerana tugasan SVM diagihkan kepada dua bahagian, yang mana setiap 
bahagian dilaksanakan oleh satu pengawal. Ini membenarkan penghasilan bagi get-get 
pensuisan yang dilakukan oleh FPGA pada pensampelan masa yang minimum	ܦ ଶܶ ൌ
 untuk mendapatkan kejituan keluaran voltan yang dikehendaki,  seperti yang  ݏ݊	360
disahkan menerusi keputusan simulasi dan ujikaji. Berpandukan kepada analisa prestasi 
kejituan, ia telah mendedahkan bahawa ralat bagi pengiraan SVM dalam penyongsang 
lima peringkatan, walaupun dengan pensampelan masa yang besar ܦ ଶܶ ൌ  boleh ,ݏߤ	200
dihadkan pada 6.25% daripada yang diperoleh dalam penyongsang dua peringkatan. Ini 
membenarkan penggunaan bagi pengawal mikro atau DSP yang berkelajuan rendah untuk 
mempunyai kawalan prestasi yang memuaskan, tetapi dengan cadangan, kepada 
penggunaan penyongsang dengan peringkatan yang lebih tinggi.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research Background 

Voltage Source Inverters (VSI) have evolved as the most popular power conversion 

for many AC drive applications. The evolvement of VSI is in line with the development of 

various Pulse Width Modulation (PWM) algorithms supported by the advent of solid state 

switching device technologies, fast digital signal processors, Field Programmable Gate 

Arrays (FPGA) and microcontrollers. Since a few decades ago, several PWM algorithms 

were developed to improve some performances of VSI such as high-power efficiency (Abu 

Bakar Siddique et al., 2015, Edpuganti and Rathore, 2015, Tong et al., 2015, Youssef et 

al., 2016), high-output voltage (Carrasco and Silva, 2013, Chai et al., 2016, Jana et al., 

2013), and low-total harmonic distortion (THD) (Pramanick et al., 2015, Prieto et al., 

2014). Apparently, the research about VSI has not reach to state of saturation up till now, 

as novel or simplified PWM methods is still continue to emerge for various topology 

inverter circuits and multilevel inverters (Gupta et al., 2016, Liu et al., 2016, Lopez et al., 

2016, Narimani et al., 2016, Sakthisudhursun et al., 2016, Tan et al., 2016, Yi et al., 

2016)]. Among various modulation strategies or PWM methods, the Space Vector 

Modulation (SVM) technique has received wide acceptance due to several advantages such 

as higher output voltages, lower THD, high-efficiency and flexible to be implemented in 

vector control systems (Chai et al., 2016, Kai et al., 2016, Liu et al., 2016, Thomas et al., 

2015, Zheng et al., 2016, Zhifeng et al., 2010). 


