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ABSTRACT 

The well-known approximate solution of harmonic balance is compared with one of the techniques of 

perturbation, the multiple scale method. Both chosen analytical method are compared in terms of degree of nonlinearity of 

a hardening base excitation system. The assumed solution in harmonic balance is taken to single mode while multiple scale 

solution is assumed to have the solution of a first order expansion. Both methods are solved to attain the frequency 

response equation and the response of both curves are plotted and compared to show the differences in each method with 

the same value of nonlinearity. In the chosen parameter of nonlinearity, � = Ͳ.Ͳ͵ and � = ͵.5, harmonic balance method 

appears to tilt at a higher degree than that of multiple scale method thus showing higher accuracy in terms of nonlinearity 

from the comparison. 
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INTRODUCTION 

Energy harvesting from ambient vibrations has 

been attracting researchers in recent few decades with its 

promising ability to power applications included and 

hostile environment. The energy harvesting device is 

modelled as single-degree-of-freedom mass-spring-

damper system either mass-excited or base-excited 

conventionally. In such model system, the energy 

harvested is equivalent to the energy dissipated and the 

performance is optimized when the natural frequency of 

the device is tuned to match the ambient frequency 

(Williams and Yates, 1996). This limit the performance of 

the system as the ambient frequency may not be tonal with 

time and a slight mistune would depreciate the 

performance of the device significantly. In order to cater 

this restriction, active tuning and passive tuning 

mechanism is implemented so as to ensure that the 

response of the device is insensitive to the change in 

frequency through altering the natural frequency of the 

device to the ambient frequency (Zhu et al., 2010; Tang et 

al., 2010). Another alternative that researchers are looking 

into is in altering the stiffness of the system, or in other 

words broadening the bandwidth of the system through the 

inclusion of nonlinearity (Ramlan et al., 2010). The 

stiffness nonlinearity is introduced by replacing a linear 

spring with a hardening nonlinear spring since it is capable 

to bend the response to the right and decrease the system’s 
sensitivity in terms of frequency variation. The preceding 

alternative appears to be promising as the spring itself 

already acts as a tuning mechanism without the need of 

any additional tuning mechanism.  

Regardless of the proven bandwidth widening 

ability presented by the hardening nonlinear spring, the 

closed form performance characteristics in terms of 

coupling strength has been presumed to converge to the 

linear system with the assumption that the degree of 

nonlinearity of the system is weak. A comparison of an 

analytical analysis approach is presented to quantify the 

degree of nonlinearity of a hardening nonlinear spring 

system. This would serve to determine the upper bound 

limits of the performance of the nonlinearly coupled 

device. 

 

LITERATURE REVIEW 

 

Base excitation system 

Energy harvesting device is commonly modelled 

as a base excited single-degree-of-freedom (SDOF) 

system as shown in Figure-1 where m represents mass of 

the system, k represents stiffness of the system, c 

represents damping of the system, x represents sinusoidal 

force applied to mass and y represents sinusoidal base 

force. 

 

 
 

Figure-1. SDOF base excitation system. 

 

Over the time, the study of a typical linear energy 

harvesting device has been carried out analytically and 

experimentally (Roundy, 2005; Stephen, 2006; Chitta et 

al., 2006; Niell and Alex, 2011; Evan et al., 2012) 

presenting the limit of a linear resonant generator, that is 

the performance of the system is at optimum when the 

natural frequency of the device is matched with ambient 

frequency but worsen when vice versa as shown in Figure-

2.  
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Figure-2. Frequency response curve of a linear SDOF 

base excitation system of an electromagnetic transducer 

with variation of resistive load [source: Evan et al., 2012]. 

 

The introduction of a hardening nonlinear 

stiffness to overcome the limitation prompted by the linear 

system has been studied analytically and experimentally 

too by (Brennan et al., 2008; Mann and Sims, 2009; 

Barton et al., 2010; Ramlan et al., 2010). Figure-3 shows 

the proven widening bandwidth of a nonlinear system with 

a hardening spring. 

 

 
 

Figure-3. Frequency response curve of a linear and 

hardening nonlinear base excitation system. Linear spring 

(solid line); linear bandwidth, ∆Ω௟, hardening spring with 

a weak nonlinearity (square); narrow bandwidth, ∆Ω௡� 

and hardening spring with a strong nonlinearity (circle); 

widen bandwidth, ∆Ω௡௦ [source: Ramlan et al., 2010]. 

 

Nonlinear oscillations - analytical approach 

Nonlinear oscillations are studied analytically 

through the approach of approximate solution and 

perturbation techniques. These analytical approach are 

discussed in (Nayfeh, 1979 and Nayfeh, 1981) explaining 

in details all the available methods. 

The approximate solution method is known as the 

harmonic balance method where one would solve the 

equation of motion of the system by expressing the 

periodic solution to be in the form of ݑ = � cos � (� is the 

steady state response amplitude) and this method is said to 

be not restricted to weakly nonlinear problems only by 

(Hamdan and Burton, 1992). 

A few perturbation techniques are available for 

solving the nonlinear oscillations and that involved the 

straightforward expansion, the Lindstedt-Poincare method, 

the multiple scales method and the averaging method. All 

these perturbation techniques have been applied by 

(Burton and Rahman, 1986; Cheung et al., 1991; Xu and 

Cheung, 1994) in analysing nonlinear oscillators system.  

 

METHODOLOGY 

The approximate solution of harmonic balance 

method and the multiple scales method from the 

perturbation techniques are chosen to perform the 

analytical analysis of a base excited hardening nonlinear 

system. Harmonic balance method is assumed to have the 

solution in terms of single mode as written in equation (4) 

while multiple scales method is solved up to first order 

expansion. Both method were expressed in the amplitude -

frequency relationship for comparison. 

The equation of motion of a base excitation 

system is written as  

ሷݏ�  + ሶݏ� + �ଵݏ + �ଷݏଷ = ሷݕ�−                    (1) 

 

whereݏ = ݔ −  is the relative displacementݕ

between the seismic mass,ݔ and the housing,ݕ, � is the 

damping coefficient, �ଵis linear stiffness and �ଷ is 

nonlinear stiffness. 

Equation (1) when expressed in the form of a 

non-dimensionless hardening nonlinear Duffing oscillator 

becomes 

ሷݑ  + ሶݑߞʹ + ݑ + ଷݑ� = � cos Ω(2)                   ݐ 

 

where ʹߞ = ௖௠��, � = ௞య�మ௞భ , � = �మ��మ  – � damping of the system, � – nonlinearity and‘– ߞ .

excitation given to the system. 

 

Harmonic balance method 

A new independent variable � = Ωݐ is introduced 

to (2) to gain 

 Ωଶݑሷ + Ωʹݑߞሶ + ݑ + ଷݑ� = � cosሺ� + �ሻ                  (3) 

 

where dots denote T derivatives and � is the 

phase angle between the excitation and response. 

Equation (3) is assumed to have the solution as 

follow: 

ሺ�ሻݑ  = � cos �                                   (4) 

 

Expressing equation (4) into equation (3) yield 

∆Ω௡௦ ∆Ω௡� ∆Ω௟ 
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−Ωଶ� cos � + � cos � + ଷସ ��ଷ cos � − �Ωߞʹ sin � = � cos � cos � − � sin � sin �                                                  (5) 

 

Equating coefficients of (5) gain 

 ሺͳ − Ωଶሻ� + ଷସ ��ଷ = � cos �                                 (6) 

�Ωߞʹ−  = � sin �                                  (7) 

 

Squaring and adding equation (5) and (6) gives  

 �ଶΩସ + ሺ�ଶ − ʹ�ଶ − ଷଶ ��ସ + ሺʹߞ�ሻଶሻΩଶ + ଷଶ ��ସ + ቀଷସ ��ଷሻଶ − �ଶቁ = Ͳ    (8) 

 

Solving for Ωଶ as a function of � yield 

 Ωଶ = ͳ + ଷସ ��ଶ + ଶߞʹ ± √ሺ��ሻଶ −  ଶ�ଶ                  (9)ߞ�͵

 

Multiple scales method 

Consider equation (2) where ߝ is introduced as a 

book keeping parameter and expressed as follow: 

ሷݑ  + ሶݑߞߝʹ + ݑ + ଷݑ�ߝ = �ߝ cos Ω(10)                 ݐ 

 

The assumed solution of (10) is written as a first 

order expansion 

;ݐሺݑ  ሻߝ = ሻݐ଴ሺݑ +  ሻ+..                               (11)ݐଵሺݑߝ

 

Where ݐ = ,ሺ�଴ݐ �ଵ, . . ሻ and �௡ =  so that the ݐ௡ߝ

derivatives are transformed according to  

 ௗௗ௧ = �଴ +  ଵ                               (12a)�ߝ

 

ௗమௗ௧మ = �଴ଶ +  ଴�ଵ                              (12b)�ߝʹ

 

Substituting equation (11) and (12) into equation 

(10) and sorting into orders of ߝ gives the following two 

linear equations 

଴ݑ଴: �଴ଶߝ  + ଴ݑ = Ͳ                              (13a) 

ଵݑଵ: �଴ଶߝ  + ଵݑ = −ʹ�଴�ଵݑ଴ − ଴ݑ଴�ߞʹ − ଴ଷݑ� + �ߝ cos Ωݐ         (13b) 

 

where the terms ofߝଶ and higher have been 

neglected as defined by equation (11). Solution of 

equation (13a) is assumed to be  

଴ݑ  = �ሺ�ଵሻ���బ + �̅ሺ�ଵሻ�−��బ                               (14) 

 

where�ሺ�ଵሻ and �̅ሺ�ଵሻ are complex conjugates 

that are functions of the higher time scale. Substituting 

equation (14) into equation (13b) brings 

 �଴ଶݑଵ + ଵݑ = −ʹ�ሺ�′ + ሻ���బ�ߞ − ሺ͵��ଶ�̅ሻ���బ + �ߝ cos Ωݐ + ��  (15) 

 

where the prime represents derivative with 

respect to �ଵ and �� represents the complex conjugates of 

the right hand side terms. A more accurate frequency 

response near resonance of such a system is of high 

interest and therefore the substitution of Ω = ͳ +  is �ߝ

introduced into (15) to describe the nearness of Ω to 

resonance. The term � is known as a detuning parameter 

and is use to describe the nearness of Ω to resonance. After 

substitution, equation (15) yield  

 �଴ଶݑଵ + ଵݑ = −ʹ�ሺ�′ + ሻ���బ�ߞ − ሺ͵��ଶ�̅ሻ���బ + ����బ����భ + ��                                                               (16) 

 

The coefficients of ���బ in equation (16) are 

known as secular terms and are set to zero to eliminate the 

unbounded solution cause by these terms. Setting them to 

zero bring 

 −ʹ�ሺ�′ + ሻ�ߞ − ሺ͵��ଶ�̅ሻ + ����భ = Ͳ                (17) 

 

Polar form of � = ଵଶ �ሺ�ଵሻ����భis introduced to 

(17) where � and � are functions of slow time scales �ଵ 

and upon simplification yield 

 −�ሺ�′ + ��� + ሻ�ߞ − ଷ଼ ��ଷ + ���ሺ��భ−�ሻ = Ͳ             (18) 

 

Substituting � = ��ଵ − � into equation (18) and 

separating the resulting equation into real and imaginary 

part gives  

��′ = �� − ଷ଼ ��ଷ + � cos �                             (19a) 

 �′ = �ߞ− + � sin �                              (19b) 

 

By setting �′ = Ͳ and �′ = Ͳ, the steady state 

solutions of equation (19a) and (19b) can be found. 

Squaring and adding these relationships results in the 

following equation 

 ሺ��ሻଶ − ଷସ ���ସ + ଽ6ସ �ଶ�6 + ሺߞ�ሻଶ = �ଶ                (20) 

 

Substituting Ω = ͳ + � where �ߝ = Ω−ଵ�  into 

equation (20) yield 

 �ଶΩଶ + ቀ−ʹ�ଶ − ଷସ ସቁ��ߝ Ω + �ଶ + ଷସ ସ��ߝ + ଽ6ସ ଶ�ଶ�6ߝ + ሺߝߞ�ሻଶ − ሺߝ�ሻଶ = Ͳ                                                              (21) 

 



                               VOL. 11, NO. 8, APRIL 2016                                                                                                                   ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                5317 

Solving Ω as a function of � results in the 

following equation 

 Ω = ͳ + ଷ଼ ଶ��ߝ ± ሺ��ሻଶ√ߝ −  ଶ                               (22)ߞ

 

RESULTS AND DISCUSSIONS 

 

Frequency response curve 

The frequency-amplitude relation obtained from 

the harmonic balance method and multiple scales method 

which is the equation (9) and equation (22) are presented 

in Figure-4 and Figure-5. Equation (9) and (22) are plotted 

with the following constant parameters, ߞ = Ͳ.Ͳ͹, � = Ͳ.ͺ 

and ߝ = Ͳ.ͳ while the value of �varied between Figure 4 

and Figure 5 so as to compare the degree of nonlinearity 

that can be presented by both methods.  

In Figure-4, graph of amplitude versus frequency 

is presented for both harmonic balance and multiple scales 

method. As can be seen from the graph, the frequency 

response curve attain from harmonic balance method tends 

to tilt to the right at a greater degree compared to the curve 

obtained from multiple scales method that only slant 

slightly to the right. This means that at the value of � =
 Ͳ.Ͳ͵, harmonic balance method can already shows the 

hardening nonlinear of the system obviously than multiple 

scales method that appears almost like a linear frequency 

response. 

Graph of Figure-5 is plotted with the value of � = ͵.5 in order to illustrate the results obtained by both 

method in a higher degree of nonlinearity. The 

characteristics of the graph appears to be similar to Figure-

4 where the frequency curve attained from harmonic 

balance method apt to tilt to the right at a higher degree 

than that of multiple scales frequency response curve. 

Though the frequency curve of the multiple scales method 

also tilted to the right in the graph in a noticeably way, the 

harmonic balance frequency response curve tilted more 

than the multiple scales one representing its capability to 

demonstrate the nonlinearity of the system. The results 

presented appears to be in line with the theory addressed 

by (Hamdan and Burton, 1992), which is to say that the 

harmonic balance method is not restricted to weakly 

nonlinear problems only. 

The results obtained indicate that the harmonic 

balance method is able to illustrate the nonlinearity of the 

system in a much sensitive level compared to the multiple 

scales method as the tendency of bending to the right 

represents the higher hardening nonlinear the system is 

possessing. The reason for such a result may be explained 

in such a way that the harmonic balance method equation 

is solved in Ωଶ(refer equation (9)) which is consistent with 

the governing differential equation that is of second order 

and thus offers a more accurate results. Multiple scales 

method on the other hand is solved in Ω (refer equation 

(22)) in a way that is not consistent with is second order 

governing differential equation and ended up presenting a 

much lower accuracy results than the harmonic balance 

method. 

A weak nonlinear system as presumed in Figure-

4 by multiple scales method, harmonic balance method 

illustrate that the system has actually possess enough 

nonlinearity and the consequences of assuming the 

coupling strength of the system to converge to the linear 

system may not be favourable at all. 

 

CONCLUSIONS 

Harmonic balance method appears to be capable 

of determining the degree of nonlinearity of a hardening 

system in a much accurate way than the multiple scales 

method. Regardless of a weakly nonlinear hardening 

system or a strong nonlinear hardening system, harmonic 

balance method just proves its way as shown in the results 

of Figure 4 and Figure 5. This is thus beneficial in 

determining the upper bound limit of a nonlinear 

hardening system. Once the upper bound limit is 

determined, the coupling strength of a weak nonlinear 

system would not be preferable to be assumed to converge 

to linear system any longer.  

In future work, the multiple scales method may 

be worked out to be in order of Ωଶ and then compared 

with harmonic balance method again to check on the 

accuracy of the results. Furthermore, the closed form 

performance of a weak nonlinear hardening system in 

terms of coupling strength can be studied by taking the 

weak nonlinear into account instead of assuming to 

converge with the linear one. Also, an energy harvesting 

device employing the hardening nonlinear characteristic 

could be fabricated to gather experimental results and then 

use to compare with the obtained analytical results. 
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Figure-4. Graph of amplitude, A versus frequency, Ω (non-dimensional) plottedfor� = Ͳ.Ͳ͵,ߞ = Ͳ.Ͳ͹, � = Ͳ.ͺ and ߝ = Ͳ.ͳ for harmonic balance method (dashed) and multiple scales method (solid) 

 

 
 

Figure-5. Graph of amplitude, A versus frequency, Ω(non-dimensional) plotted for � = ߞ ,5.͵ = Ͳ.Ͳ͹,  � = Ͳ.ͺ and ߝ = Ͳ.ͳ for harmonic balance method (dashed) and multiple scales method (solid). 
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