

MODELING, SIMULATION AND FEASIBILITY STUDY OF THE PARABOLIC DISH SYSTEM UNDER MALAYSIA ENVIRONMENT

ROSNANI BINTI AFFANDI

DOCTOR OF PHILOSOPHY

2016

🔘 Universiti Teknikal Malaysia Melaka

Faculty of Electrical Engineering

MODELING, SIMULATION AND FEASIBILITY STUDY OF THE PARABOLIC DISH SYSTEM UNDER MALAYSIA ENVIRONMENT

Rosnani Binti Affandi

Doctor of Philosophy

2016

🔘 Universiti Teknikal Malaysia Melaka

MODELING, SIMULATION AND FEASIBILITY STUDY OF THE PARABOLIC DISH SYSTEM UNDER MALAYSIA ENVIRONMENT

ROSNANI BINTI AFFANDI

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Modelling, Simulation and Feasibility Study of The Parabolic Dish System under Malaysia Environment" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: Rosnani Binti Affandi
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

 Signature
 :

 Supervisor Name
 :

 Date
 :

DEDICATION

To my beloved husband, mother, and children

ABSTRACT

The primilarly aim of this research is to carry out the fundamental investigation of the performance and feasibility of solar CSP, focusing on Parabolic Dish (PD) type in Malaysia environment. Three main components of the PD system that is under consideration, consists of the concentrator, the receiver, and the Stirling engine. By using a simulation approach and Matlab Simulink as the simulation tool; a background of the PD system is provided, along with a detailed description of the components model. Meanwhile, the performance for the three main components in PD system, is examined under three solar irradiance conditions that are low, medium and high. Besides that, the geometric design for the concentrator and receiver as well as the site location for this study is given through emphasis. Therefore, concentrator in PD system use reflective material with high efficiency to increase the PD concentrator efficiency, choose high value for the intercept factor to reduce loss for the solar intercept by the receiver and select a site with excellent solar irradiation in order to achieve high efficiency and as a result can produce high output power. Thus, by considering the highest Direct Solar Irradiance (DNI) and based on regions, five sites or locations has been chosen for this study. The site or locations with highest DNI in Malaysia are George Town at the Northern part of Peninsular Malaysia. Meanwhile, other locations are Subang in central of Peninsular Malaysia, Kuantan on the east coast of peninsular Malaysia, Senai in the Southern part of peninsular Malaysia and Kuching located in East Malaysia. To accomplish the research objectives, the performance of the PD system under Malaysia environment and the output from each of the main components were analyzed. In addition, the feasibility study in terms of technical and economic are thoroughly investigated. This includes defining the characteristics and constraints, as well as the overall system performance in monetary term. The PD system are considered feasible if the PD system reaches 54,750 kW of yearly output power, capacity factor reach the value around 25 - 28% and the Levelized Cost of Electricity (LCOE) lies between RM1.72/kWh and RM 0.7522/kWh. However, the result of this research has shown that the system is technically feasible but not economically feasible. The yearly output power, the annual energy and the capacity factor shows that the PD system in Malaysia are not capable of meeting the demand reliably. Thus, the new developed model for the 25kW PD system and the finding of this research can provide useful information for Malaysia regulators on the potential of CSP development in Malaysia or in other equator region countries.

ABSTRAK

Matlamat utama kajian ini adalah untuk menjalankan kajian asas terhadap kebolehlaksanaan teknologi CSP dengan memberi tumpuan kepada Parabolic Dish (PD) dalam persekitaran Malaysia. Tiga komponen utama bagi sistem PD yang diberi perhatian adalah penumpu, penerima, dan enjin Stirling. Dengan menggunakan pendekatan simulasi dan Matlab Simulink sebagai alat simulasi, latar belakang sistem PD disediakan bersamasama dengan penerangan terperinci mengenai model komponen. Prestasi bagi tiga komponen utama dalam sistem PD iaitu penumpu, penerima dan enjin Stirling, dianalisa mengikut tiga isyarat sinaran solar iaitu rendah, sederhana dan tinggi. Selain itu, reka bentuk geometri bagi penumpu dan penerima serta lokasi tapak untuk kajian ini diberikan penekanan . Oleh itu, penumpu dalam sistem PD menggunakan bahan reflektif dengan kecekapan yang tinggi. Ia bertujuan untuk meningkatkan kecekapan concentrator PD. Pemilihan nilai yang tinggi bagi faktor pintasan digunakan untuk mengurangkan kerugian terhadap pintasan tenaga solar oleh penerima. Manakala, kecenderungan memilih kawasan dengan sinaran solar yang sangat baik untuk mencapai kecekapan yang tinggi mampu menghasilkan kuasa keluaran yang tinggi. Oleh itu, dengan DNI tertinggi dan berdasarkan wilavah, lima tapak atau lokasi telah dipilih untuk kajian ini. Lokasi dengan DNI tertinggi di Malaysia ialah George Town yang terletak di utara Semenanjung Malaysia. Sementara itu, lokasi lain ialah di Subang, di tengah Semenanjung Malaysia, Kuantan di timur Semenanjung Malaysia, Senai di selatan Semenanjung Malaysia dan Kuching yang terletak di Malaysia Timur. Untuk mencapai objektif projek, pelaksanaan sistem PD di bawah persekitaran Malaysia, data pengeluaran dari setiap komponen utama telah dianalisis. Disamping itu, daya maju teknikal dan ekonomi sistem PD disiasat dengan teliti. Ini merangkumi penentuan ciri-ciri dan kekangan, dan prestasi keseluruhan sistem dalam bentuk kewangan. Sistem PD dianggap boleh dilaksanakan jika sistem PD mencapai 54,750 kW kuasa keluaran tahunan, faktor kapasiti mencapai nilai sekitar 25 -28% dan Levelised Cost of Electricity (LCOE) di antara RM1.72/kWj dan RM 0.7522/kWh. Namun, hasil daripada kajian ini telah menunjukkan bahawa sistem ini secara teknikal boleh dilaksanakan tetapi dari segi ekonomi ianya tidak dapat dilaksanakan. Kuasa keluaran tahunan, faktor kapasiti dan LCOE menunjukkan bahawa sistem PD di Malaysia tidak mampu memenuhi permintaan. Dengan itu, model baru bagi PD 25 kW yang dibangunkan serta hasil dari kajian ini, dapat memberikan maklumat yang berguna kepada Malaysia mengenai potensi pembangunan CSP di Malaysia atau di negara-negara vang terletak di rantau khatulistiwa.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisors for their continuous support despite the compressed time frame and long distance. Their guidance, instructions and advice were vital in producing this work. I would like to specifically thank to my supervisor Datuk Professor Dr. Mohd Ruddin Bin Ab Ghani and Assoc. Prof. Dr. Gan Chin Kim, co-supervisor of this project. Working with them was educational and inspiring. Their contribution was of great impact to this thesis.

This thesis was made possible by *Hadiah Latihan Persekutuan* Scholarship. I gratefully acknowledge the funding received towards my PhD from Ministry of Education of Malaysia. I also wish to thank to my peers and colleagues at the Energy and Power System Laboratory at Universiti Teknikal Malaysia Melaka, my friends as well as everyone who has inspired me, taught me and supported me. Thank you for the assistance and friendship.

Lastly but most importantly, I would like to give my heartfelt thanks to the closest people to my heart, my husband Zamali bin Omar, my children; Mohd Hadif Syahmi, Nur Syahzanani, Nur Syahindah, Muhammad Syakir Akmal and Muhammad Syahir, my mother Hjh Jamilah bt Hj Sujak and all my family members for their love, continuous support, motivation, patience, care, encouragement, tolerance and blessing prayers.

TABLE OF CONTENTS

DE AP	CLAH PROV	RATION /AL	
DE AB AC TA LIS LIS LIS LIS LIS LIS	DICA STRA STRA KNO BLE (ST OF ST OF ST OF ST OF ST OF	TION ACT AK WLEDGEMENTS OF CONTENTS OF CONTENTS TABLES TABLES FIGURES APPENDICES ABBREVIATIONS SYMBOLS PUBLICATION	i ii iv iv vii ix xiii xviii xx xxiii
CH	APTH		1
1.	1N1 1.1	Introduction	1
	1.2	Motivation of Research	3
	1.3	Problem Statement	9
	1.4	Research Objectives	12
	1.5	Research Scope	12
	1.6 1.7	Thesis Outline and Organization	13 14
2.	LIT	ERATURE REVIEW	16
	2.1	Introduction	16
	2.2	Concentrating Solar Power (CSP) Technologies	17
		2.2.1 Parabolic Trough	18
		2.2.2 Linear Fresnel 2.2.3 Power Tower	19
		2.2.5 Fower Tower 2.2.4 Parabolic Dish (PD)	20
	2.3	Comparison and Development of the CSP Technology	20
	2.4	CSP and Its Issues	23
	2.5	Cost and Levelized Cost of Electricity (LCOE) of the	28
	26	CSP Technologies	22
	2.0	The PD Model Development	33 35
	2.8	PD System	37
		2.8.1 Concentrator	38
		2.8.1.1 Concentrator Diameter	39
		2.8.1.2 Concentrator Aperture Area	40
		2.8.1.3 Rim Angle	41
		2.8.1.4 Focal Length	42
		2.6.1.5 Reflective material	42 43
		2.8.2.1 Receiver Aperture Area	44
		-	

iv

		2.8.2.2 Geometric Concentration Ratio	44
		2.8.2.3 Intercept Factor	45
		2.8.2.4 Receiver Temperature	45
		2.8.2.5 Receiver Losses	46
		2.8.3 Stirling Engine	48
	2.9	Meteorological Data	51
		2.9.1 Direct Normal Irradiance (DNI)	51
		2.9.1.1 Solar Irradiation in Malaysia	53
		2.9.2 Cloud Cover in Malaysia	54
		2.9.3 Rainfall in Malaysia	55
		2.9.4 Humidity in Malaysia	55
	2.10	0 Software for PD simulation	56
		2.10.1 TRNSYS Simulation package	56
		2.10.2 SAM (Solar Advisor Model for CSP)	57
		2.10.3 Greenius Simulation Environment (Green Energy System	58
		Analysis)	
		2.10.4 Matlab Simulink	58
		2.10.5 Meteonorm	59
	2.11	1 Chapter Summary	59
3.	DEV	VELOPMENT OF THE 25kW PARABOLIC DISH (PD) SYSTEM	
	MO	DDELLING	61
	3.1	Introduction	61
	3.2	Development of 25kW PD system modelling using Matlab Simulink	62
		and Meteonorm.	
	3.3	Site selection	64
	3.4	Direct Normal Irradiation (DNI) Data	65
		3.4.1 Yearly DNI data	66
		3.4.2 Monthly DNI Data	69
		3.4.3 Daily Solar Irradiance Data	70
	3.5	Geometric Design for 25kW PD System modelling under	71
		Malaysia Environment	
		3.5.1 Sizing the Concentrator Diameter	73
		3.5.2 Sizing the PD Concentrator Aperture Area	74
		3.5.3 The Efficiency of PD Concentrator	75
		3.5.3.1 Selecting the Reflective Material	76
		3.5.4 Focal Length and Focal Point Diameter	80
		3.5.5 Sizing the Receiver Aperture Area	82
	2.0	3.5.6 Geometric Concentration Ratio	82
	3.0 2.7	Stirling Engine Model	80
	5.7	Chapter Summary	0/
4.	SIM	MULATION AND PERFORMANCE OF THE 25KW PARABOLIC DI	SH
	(PD	D) SYSTEM	89
	4.1	Introduction	89
	4.2	Modeling and Simulation for the 25kW PD system	90
	4.3	Concentrator Subsystems	94
		4.3.1 Solar Power Incident on the Collector	95
		4.5.2 Kate of Heat 1 ransfer to the Keceiver	98

v

	4.4	Receiv	ver Subsystems	102
		4.4.1	Intercept Factor	102
		4.4.2	Solar Power Intercepted by receiver	103
		4.4.3	Receiver intercept losses	105
		4.4.4	Optical Efficiency	107
		4.4.5	Receiver Thermal Losses	109
		4.4.6	Receiver Temperature	112
	4.5	Stirlin	g Engine Subsystems	113
		4.5.1	Working Space	113
		4.5.2	Heat Exchanger	116
		4.5.3	Stirling Engine Pressure	118
		4.5.4	Output Power Stirling Engine	121
		4.5.5	Net Power Output	124
	4.6	Perfor	mance of the PD system under Malaysia environment	126
	4.7	Chapt	er Summary	127
5.	FEA	SIBIL	ITY OF THE 25kW PARABOLIC DISH (PD) UNDER	
	MA	LAYSI	A ENVIRONMENT	129
	5.1	Introd	uction	129
	5.2	Solar	to Electric Efficiencies	130
	5.3	Annua	al Energy	133
	5.4	Capac	ty Factor	134
	5.5	Capita	al Cost	136
	5.6	The L	evelized Cost of Electricity (LCOE)	136
	5.7	Feasib	bility of the PD system under Malaysia environment	137
	5.8	Sensit systen	ivity Analysis and Comparison on the result of 25kW PD n modelling	143
	5.9	Chapt	er Summary	149
6.	CO	NCLUS	SION AND RECOMMENDATIONS FOR FUTURE RESE	ARCH
				151
	6.1	Summ	nary of the Research	151
	6.2	Achie	vement of Research Objectives	153
	6.3	Signif	icance of Research Outputs	154
	6.4	Sugge	estions for Future Work	154
RE	FERE	NCES		157
AP	PEND	ICES		174

LIST OF TABLES

TABL	E TITLE	PAGE
2.1	Comparison on the different of CSP Technologies	21
2.2	Malaysia and list of countries with CSP Plant	26
2.3	PD model development	36
3.1	The latitude and longitude data for five Locations in Malaysia	65
3.2	Yearly DNI data and the latitude longitude for five Locations in Malaysia	66
3.3	The range of the daily solar irradiance for five locations in Malaysia	70
3.4	Reflectance of the concentrator	76
3.5	Rim angle $\phi_{\rm rim}$ and concentration ratio Cr	84
3.6	SES 25kW Stirling engine parameter values	87
4.1	Concentrator parameter for 25kW PD system modelling	91
4.2	Receiver and Stirling Engine parameter for 25kW PD system modelling	91
	under Malaysia solar irradiance	
4.3	The low, medium and high of daily solar irradiance data for George Town	95
	Penang, Malaysia	
4.4	Result for receiver intercept losses for 25kW PD system	106
4.5	Simulation result for the 25kW PD system optical efficiency	108
4.6	Performance of the components in 25kW PD system at highest daily solar	127
	irradiance in George Town	
5.1	Solar to electric efficiencies for five locations in Malaysia.	132

vii

5.2	The capacity factor for five locations in Malaysia	135
5.3	Output power and highest solar to electric efficiencies for five locations in	138
	Malaysia	
5.4	Total hours for solar irradiance 223 W/m^2 to 1000 W/m^2 in a year for five	140
	locations in Malaysia	
5.5	Total hours, days and month in a year of PD system to operate for five	139
	locations in Malaysia	
5.6	Annual energy, capacity factor and LCOE for five locations in Malaysia	142
5.7	Parameters for 25kW PD system modelling, The Solar Dish-Stirling system	143
	Model and SAM software	
5.8	Comparison on the annual energy result by using Matlab Modelling and	148

LIST OF FIGURES

FIG	URE TITLE	PAGE
1.1	Total for world energy primary supply (1971–2010)	3
	(Key World Energy Statistics 2012, 2012)	
1.2	World fuels consumption by sector (2008–2035)(Smith et al., 2011)	4
1.3	Total energy consumption by sector in Malaysia (2005 – 2009)	5
	(Saidura R. et al. 2007; Mohd Shahidan Shaari 2013)	
1.4	CO ₂ emissions by fuel (1971 – 2010) (Hoeven, 2012)	6
2.1	Parabolic trough systems. (http://www.eere.energy.gov)	18
2.2	Fresnel reflector systems (http://www.eere.energy.gov)	19
2.3	Power tower systems (http://www.eere.energy.gov)	20
2.4	Parabolic dish systems (http://www.eere.energy.gov)	21
2.5	World Direct Normal Irradiance (DNI)	23
2.6	Malaysia latitude and longitude map	25
2.7	Solar world map	25
2.8	Worldwide CSP project by country	27
2.9	Tariff/LCOE development over DNI level (Benz, 2010)	30
2.10	Projected tariff development for CSP plant by measure or	31
	over time (Benz,2010)	
2.11	Thermal storage and utility demand ("Concentrating Solar Power :	32
	Technologies, Cost, and Performance," 2012)	

ix

2.12	Parabolic Dish (PD)	38
2.13	The parabolic concentrator surface (William B. Stine, 1994)	39
2.14	Rim angle for PD concentrator	41
2.15	Losses of solar radiation from the concentrator to receiver (Fraser, 2008)	47
2.16	Five compartments inside Stirling engine (D. F. Howard, 2010)	49
2.17	PV diagram for ideal stirling cycle	49
2.18	Radiation from sun.	52
2.19	Annual average solar radiation (MJ/m ² /day) (Mekhilef et al., 2012)	54
3.1	Research framework for development of 25kW PD system under Malaysia	63
	environment	
3.2	Yearly irradiance data graph for George Town, Penang	67
3.3	Yearly irradiance data graph for Senai	67
3.4	Yearly irradiance data graph for Kuantan	68
3.5	Yearly irradiance data graph for Subang	68
3.6	Yearly irradiance data graph for Kuching	69
3.7	Monthly irradiance data for George Town, Senai, Kuantan, Subang	69
	and Kuching	
3.8	Flow chart for geometric design of the 25kW PD system	72
3.9	Schematic diagram for PD concentrator	73
3.10	PD concentrator diameter versus the aperture area	75
3.11	Concentrator efficiency for four different reflective material	77
3.12	Circular image with diameter d at centre of the PD concentrator	80
3.13	Focal length, rim angle and focal point diameter for PD system.	81
3.14	Rim angle versus geometric concentration ratio	83
4.1	Operational framework for Parabolic Dish (PD) performance simulation	90

х

4.2	The high, medium and low irradiance for George Town, Penang	92
4.3	Scope of simulations for the concentrator in the 25kW PD system modelling	95
4.4	Simulation result for solar power incident on the collector under high	96
	irradiance level in George Town, Penang, Malaysia	
4.5	Simulation result for solar power incident on the collector under medium	96
	irradiance level in George Town, Penang, Malaysia	
4.6	Simulation result for solar power incident on the collector under low	97
	irradiance level in George Town, Penang, Malaysia	
4.7	Scope of simulations for the rate of heat transfer to the receiver	99
	in the 25kW PD system modelling	
4.8	Simulation result for the rate of heat transfer to the receiver for high	99
	irradiance data in George Town Penang, Malaysia	
4.9	Simulation result for the rate of heat transfer to the receiver for medium	100
	irradiance data in George Town Penang, Malaysia	
4.10	Simulation result for the rate of heat transfer to the receiver for low	100
	irradiance data in George Town Penang, Malaysia	
4.11	Losses from the solar power incident on the collector to	101
	the rate of heat transfer from concentrator to the receiver	
4.12	Solar power intercepted by the receiver for intercept factor $(0.9-1.0)$ for low,	104
	medium and high irradiance data in George Town Penang, Malaysia	
4.13	Receiver intercept losses in PD system	105
4.14	Radiation and convection losses for low irradiance	110
4.15	Radiation and convection losses for medium irradiance	110
4.16	Radiation and convection losses for high irradiance	111
4.17	Simulation result for the expansion space and compression space volume xi	114

C Universiti Teknikal Malaysia Melaka

4.18	Distribution of working gas temperature throughout five engine compartments	116
4.19	Stirling engine pressure simulation result	119
4.20	Simulation output for P_cV_c	119
4.21	Simulation output for P_eV_e	120
4.22	Simulation result for compression space mass	120
4.23	Output power Stirling engine under low, medium and high solar irradiance	122
4.24	Monthly output power for Stirling engine from January to December in	123
	George Town, Penang, Malaysia	
4.25	PD Stirling engine gross power output over a year	124
4.26	Net power output Stirling engine for low, medium and high solar	125
	irradiance in George Town Penang, Malaysia	
4.27	Yearly net power output Stirling engine from January to December in	126
	George Town Penang, Malaysia	
5.1	Solar to electric efficiencies for 25kW PD system under low, medium and	131
	high solar irradiance data in George Town Penang, Malaysia	
5.2	Annual energy for five locations in Malaysia	134
5.3	Comparison on the performance of the PD system obtain from 25kW PD	145
	system modelling, The Solar Dish-Stirling system model and SAM software	
5.4	Output power for the 25kW PD system modelling, Solar Dish-Stirling system	147
	model and SAM software at 1000 W/m^2 solar irradiance	
5.5	Solar to electric efficiencies for 25kW PD system modelling, the Solar	147
	Dish-Stirling system model and SAM software	

xii

LIST OF APPENDICES

APPEND	DIX TITLE	PAGE
A1	Overall block diagram of the 25kW PD system	175
A2	Matlab simulink for concentrator, receiver and Stirling engine system	176
A3	Concentrator model	177
A4	Concentrator subsystem model	177
A5	Concentrator geometric design model	178
A6	Receiver model	179
A7	Receiver subsystem model	179
A.8	Compression space model	180
A9	Cooler model	181
A10	Regenerator model	182
A11	Heater model	183
A12	Expansion space model	184
B1	Solar irradiance data on 1 January in George Town, Penang	185
	(solar deviation from year 1986 – 2009)	
B2	Solar irradiance data on 1 January in Senai, Johor	186
	(solar irradiance deviation from year 1986 – 2009)	
B3	Solar irradiance data on 1 January in Kuantan, Pahang	187
	(solar irradiance deviation from year 1986 – 2009)	

B4	Solar irradiance data on 1 January in Subang, Selangor	188
	(solar irradiance deviation from year 1986 – 2009)	
B5	Solar irradiance data on 1 January in Kuching, Sarawak	189
	(solar irradiance deviation from year 1986 – 2009)	
C1	The performance result on 1 January in George Town, Penang	190
	(solar irradiance deviation from year 1986 – 2009)	
D1	Sample of the daily solar irradiance data for Senai, Johor, Malaysia	191
	(High solar irradiance on 2 December).	
D2	Simulation result for solar power incident on the collector	192
	for solar irradiance on the 2 December in Senai, Johor, Malaysia.	
	(solar irradiance deviation from year 1986 – 2009)	
D3	Simulation result for rate of heat transfer to the receiver	192
	for solar irradiance on the 2 December in Senai, Johor, Malaysia.	
	(solar irradiance deviation from year 1986 – 2009)	
D4	Solar power intercepted by the receiver for intercept factor $(0.9-1.0)$	193
	For Solar irradiance on the 2 December in Senai, Johor, Malaysia.	
	(solar irradiance deviation from year 1986 – 2009)	
D.5	Result for receiver intercept losses for solar irradiance on	193
	the 2 December in Senai, Johor, Malaysia (solar irradiance deviation	
	from year 1986 – 2009)	
D6	Simulation result of the 25kW PD system optical efficiency for solar	194
	irradiance on the 2 December in Senai, Johor, Malaysia (solar irradiance	
	deviation from year 1986 – 2009)	
D7	Output power Stirling engine for solar irradiance on the 2 December	195
	in Senai, Johor, Malaysia (solar irradiance deviation from year xiv	

C Universiti Teknikal Malaysia Melaka

1986–2009).

D8	Sample of the daily solar irradiance data for Kuantan, Pahang,	196
	Malaysia on the 2 April (solar irradiance deviation from year	
	1986 – 2009).	
D9	Simulation result for solar power incident on the collector for solar	197
	irradiance on the 2 April in Kuantan, Pahang, Malaysia (solar	
	irradiance deviation from year 1986 – 2009)	
D10	Simulation result for rate of heat transfer to the receiver for solar	197
	irradiance on the 2 April in Kuantan, Pahang, Malaysia (solar	
	irradiance deviation from year 1986 – 2009).	
D11	Solar power intercepted by the receiver for intercept factor (0.9-1.0)	198
	for Solar irradiance on the 2 April in Kuantan, Pahang, Malaysia (solar	
	irradiance deviation from year 1986 – 2009)	
D12	Result for receiver intercept losses for solar irradiance on the 2 April	198
	in Kuantan, Pahang, Malaysia (solar irradiance deviation from	
	year 1986–2009)	
D13	Simulation result of the 25kW PD system optical efficiency for solar	199
	irradiance 2 April in Kuantan, Pahang, Malaysia (solar irradiance	
	deviation from year 1986–2009)	
D14	Output power Stirling engine for solar irradiance on the 2 April in	200
	Kuantan, Pahang, Malaysia (solar irradiance deviation from year	
	1986–2009).	
D15	Sample of the daily solar irradiance data for Subang, Malaysia	201
	on the 4 April (solar irradiance deviation from year 1986–2009).	
D16	Simulation result for solar power incident on the collector for solar	202
	XV	

irradiance on the 4 April in Subang, Malaysia (solar irradiance deviation from year 1986–2009).

D17 Simulation result for rate of heat transfer to the receiver for solar 202 irradiance on the 4 April in Subang, Malaysia (solar irradiance deviation from year 1986–2009). D18 Solar power intercepted by the receiver for intercept factor (0.9-1.0)203 for Solar irradiance on the 4 April in Subang, Malaysia (solar irradiance deviation from year 1986–2009). D19 Result for receiver intercept losses for solar irradiance on the 4 April 203 in Subang, Malavsia (solar irradiance deviation from year 1986–2009). D20 Simulation result of the 25kW PD system optical efficiency for solar 204 irradiance 4 April in Subang, Malaysia (solar irradiance deviation from year 1986–2009). D21 Output power Stirling engine for solar irradiance on the 4 April in 205 Subang, Malaysia D22 Sample of the daily solar irradiance data for Kuching, Sarawak, 206 Malaysia on the 18 April (solar irradiance deviation from year 1986-2009). D23 Simulation result for solar power incident on the collector for solar 207 irradiance on the 18 April in Kuching, Sarawak, Malaysia (solar irradiance deviation from year 1986–2009). D24 Simulation result for rate of heat transfer to the receiver for solar 207 irradiance on the 18 April in Kuching, Sarawak, Malaysia (solar irradiance deviation from year 1986–2009). D25 208 Solar power intercepted by the receiver for intercept factor (0.9-1.0)

for Solar irradiance on the 18 April in Kuching, Sarawak, Malaysia (solar irradiance deviation from year 1986–2009).

- D26 Result for receiver intercept losses for solar irradiance on the 18 April 208 in Kuching, Sarawak, Malaysia (solar irradiance deviation from year 1986–2009).
- D27 Simulation result of the 25kW PD system optical efficiency for solar 209 irradiance 18 April in Kuching, Sarawak, Malaysia (solar irradiance deviation from year 1986–2009).
- D28 Output power Stirling engine for solar irradiance on the 18 April in 210 Kuching, Sarawak, Malaysia (solar irradiance deviation from year 1986–2009)

LIST OF ABBREVIATIONS

- CF Capacity factor CO_2 Carbon dioxide CSP Concentrating Solar Power Diffuse Horizontal Irradiance DHI DIR **Direct Illuminated Receivers** DNI **Direct Normal Irradiation** GHI Global Horizontal Irradiance HTF Heat Transfer Fluid IIR Indirect Illuminated Receivers IEA International Energy Agency LCOE Levelized Cost of Electricity NREL National Renewable Energy Laboratory NPV Net Present Value O&M **Operating and Management** PD Parabolic Dish PV Photovoltaic PCU Power Conversion Unit RE **Renewable Energy** R&D Research and Development
- SAM Solar Advisor Model

xvii