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ABSTRACT 

 

 

In recent years, research on multiphase AC drives has received great attention due to its 
several advantages over three-phase drives such as reducing the amplitude and increasing 
the frequency of torque pulsations, reducing the rotor harmonic currents, reducing the 
current per phase without increasing the voltage per phase, and lowering the DC-link 
current harmonics and higher reliability. Until now, however, neither a circular flux 
operation nor a decagonal flux operation in formulating an optimal switching strategy has 
been proposed to achieve high-torque control performance of Direct Torque Control 
(DTC) of five-phase induction machines. A few previous studies on DTC of five-phase 
induction machine are limited to analyze the effects of selecting different voltage vectors 
on torque and flux control performances, which do not facilitate the DTC to obtain fast 
torque dynamic control, reduced torque ripple and switching frequency.  This thesis 
proposes an optimal switching strategy of DTC of five-phase induction machines for high-
performance torque control. By employing a five-phase inverter in the proposed method, it 
provides a greater number of voltage vectors as compared to that offered in the three-phase 
inverter which gives more options to select the most optimal voltage vectors. The analysis 
of effects of selecting different voltage vectors on DTC performances are carried out to 
identify the most optimal vectors that can be chosen to improve torque control 
performances for every operating condition. The identification is made with the aid of 
vector diagrams and some equations which are, equations of torque rate, slip angular 
frequency and current dynamic. Once the identification is done, all optimal vectors are 
tabulated into a look up table, and the optimal switching of vectors is accomplished by 
providing appropriate error status and flux sector into the look up table. The appropriate 
error status are obtained from the hysteresis comparators which are reponsible to determine 
proper amplitude of vectors and flux control operations, either to form the flux trajectory 
into a circular or a decagonal locus. The improvements of the proposed method are verified 
via simulation and experimental results. The results have shown that the torque ripple and 
switching frequency in the proposed method are greatly reduced about 50 % and 40 %, 
respectively from that obtained in the DTC with non-optimal switching strategyof five 
phase inverter, particularly at low-speed operation. The results have also showed that the 
proposed DTC with decagonal flux control produces a faster torque dynamic response than 
the non-optimal switching strategy of five phase inverter DTC. These improvements 
offered are important features for the electrical drive applications that require high-
performance torque control and reduced switching losses or high-efficiency.    
 
 
 
 
 
 
 



 

 

ABSTRAK 

 

 

Sejak kebelakangan ini, kajian tentang pemacu AC berbilang fasa telah menerima 
perhatian yang tinggi disebabkan oleh banyak kelebihan yang dimilikinya berbanding 
dengan pemacu tiga fasa seperti pengurangan amplitud dan peningkatan frekuensi bagi 
denyutan dayakilas, pengurangan harmonik arus angker, pengurangan arus per fasa tanpa 
peningkatan voltan per fasa, dan pengurangan harmonik arus penghubung-DC dan 
keboleharapan yang lebih tinggi. Namun begitu, sehingga sekarang, tiada pengoperasian 
fluks membulat mahupun pengoperasian fluks dekagon dalam memformulasikan sebuah 
strategi pensuisan optimal dicadangkan untuk mencapai prestasi tinggi kawalan dayakilas 
bagi Kawalan Dayakilas Langsung (DTC) motor aruhan lima fasa. Segelintir kajian 
terdahulu tentang DTC motor aruhan lima fasa dihadkan untuk menganalisis kesan-kesan 
bagi pemilihan vektor voltan yang berlainan terhadap prestasi kawalan dayakilas dan 
fluks, yang mana tidak menyediakan DTC untuk mendapatkan kepantasan kawalan 
dayakilas dinamik, pengurangan riak dayakilas dan frekuensi pensuisan. Tesis ini 
mencadangkan sebuah strategi pensuisan yang optimal bagi pemacu DTC motor aruhan 
lima fasa untuk prestasi tinggi kawalan dayakilas. Dengan menggunakan sebuah 
penyongsang lima fasa dalam kaedah cadangan, ia menyediakan bilangan vektor voltan 
yang lebih banyak berbanding dengan yang ditawarkan dalam pemacu tiga fasa yang 
memberikan lebih banyak pilihan untuk memilih vektor voltan yang paling optimal. 
Analisa bagi kesan-kesan pemilihan voltan vektor yang berlainan terhadap prestasi DTC 
telah dilakukan untuk mengenalpasti voltan vector yang paling optimal yang boleh dipilih 
untuk menambahbaik prestasi kawalan dayakilas untuk setiap keadaan operasi. 
Pengenalpastian ini dilakukan dengan bantuan rajah vektor dan beberapa persamaan, 
iaitu persamaan kadar dayakilas, frekuensi sudut gelinciran dan arus dinamik. Apabila 
pengenalpastian ini telah dilakukan, kesemua vektor-vektor yang optimal telah 
dijadualkan ke dalam sebuah jadual carian, dan pensuisan vektor optimal disempurnakan 
dengan menyediakan status-status ralat yang bersesuaian dan sektor fluks ke dalam jadual 
carian tersebut. Status-status ralat yang besesuaian diperoleh daripada pembanding-
pembanding histeresis yang bertanggungjawab menentukan amplitud vektor yang sesuai 
dan operasi kawalan fluks, sama ada untuk membentuk trajektori fluks dengan lokus 
membulat atau dekagon. Penambahbaikan-penambahbaikan bagi kaedah cadangan telah 
disahkan menerusi keputusan simulasi dan eksperimen. Keputusan tersebut telah 
menunjukkan bahawa riak dayakilas dan frekuensi pensuisan dengan kaedah cadangan 
dikurangkan sehingga 50 % dan 40 %   daripada yang diperoleh dalam DTC dengan 
strategi pensuisan yang tidak optimal pemacu lima fasa, terutamanya pada operasi 
kelajuan rendah. Keputusan juga menunjukkan bahawa DTC cadangan dengan kawalan 
fluks dekagon menghasilkan sambutan dayakilas dinamik yang lebih cepat berbanding 
dengan DTC dengan strategi pensuisan yang tidak optimal pemacu lima fasa. 
Penambahbaikan-penambahbaikan ini merupakan ciri-ciri penting bagi aplikasi 
pemacuan elektrik yang memerlukan prestasi tinggi kawalan dayakilas dan pengurangan  
kehilangan pensuisan atau kecekapan yang tinggi.   
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