

HIGH PERFORMANCE OF DIRECT TORQUE CONTROL FOR FIVE-PHASE INDUCTION MACHINE

LOGAN RAJ A/L LOURDES VICTOR RAJ

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

2016

HIGH PERFORMANCE OF DIRECT TORQUE CONTROL FOR FIVE PHASE INDUCTION MACHINE

LOGAN RAJ A/L LOURDES VICTOR RAJ

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

APPROVAL

I hereby declare that I have read this dissertation/report and in my opinion this dissertation/report is sufficient in terms of scope and quality as a partial fulfillment of Master of Science in Electrical Engineering (Power Electronics and Drives).

Signature	:	
Name	:	
Date	:	

DECLARATION

I declare that this thesis entitled "High Performance of Direct Torque Control for Five-Phase Induction Machine" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name		
Date	:	

DEDICATION

To my parents,

supervisor Dr Auzani bin Jidin, and friend Sundram Rahmalingam for their support, care and patience.

ABSTRACT

In recent years, research on multiphase AC drives has received great attention due to its several advantages over three-phase drives such as reducing the amplitude and increasing the frequency of torque pulsations, reducing the rotor harmonic currents, reducing the current per phase without increasing the voltage per phase, and lowering the DC-link current harmonics and higher reliability. Until now, however, neither a circular flux operation nor a decagonal flux operation in formulating an optimal switching strategy has been proposed to achieve high-torque control performance of Direct Torque Control (DTC) of five-phase induction machines. A few previous studies on DTC of five-phase induction machine are limited to analyze the effects of selecting different voltage vectors on torque and flux control performances, which do not facilitate the DTC to obtain fast torque dynamic control, reduced torque ripple and switching frequency. This thesis proposes an optimal switching strategy of DTC of five-phase induction machines for highperformance torque control. By employing a five-phase inverter in the proposed method, it provides a greater number of voltage vectors as compared to that offered in the three-phase inverter which gives more options to select the most optimal voltage vectors. The analysis of effects of selecting different voltage vectors on DTC performances are carried out to identify the most optimal vectors that can be chosen to improve torque control performances for every operating condition. The identification is made with the aid of vector diagrams and some equations which are, equations of torque rate, slip angular frequency and current dynamic. Once the identification is done, all optimal vectors are tabulated into a look up table, and the optimal switching of vectors is accomplished by providing appropriate error status and flux sector into the look up table. The appropriate error status are obtained from the hysteresis comparators which are reponsible to determine proper amplitude of vectors and flux control operations, either to form the flux trajectory into a circular or a decagonal locus. The improvements of the proposed method are verified via simulation and experimental results. The results have shown that the torque ripple and switching frequency in the proposed method are greatly reduced about 50 % and 40 %, respectively from that obtained in the DTC with non-optimal switching strategy of five phase inverter, particularly at low-speed operation. The results have also showed that the proposed DTC with decagonal flux control produces a faster torque dynamic response than the non-optimal switching strategy of five phase inverter DTC. These improvements offered are important features for the electrical drive applications that require highperformance torque control and reduced switching losses or high-efficiency.

ABSTRAK

Sejak kebelakangan ini, kajian tentang pemacu AC berbilang fasa telah menerima perhatian yang tinggi disebabkan oleh banyak kelebihan yang dimilikinya berbanding dengan pemacu tiga fasa seperti pengurangan amplitud dan peningkatan frekuensi bagi denyutan dayakilas, pengurangan harmonik arus angker, pengurangan arus per fasa tanpa peningkatan voltan per fasa, dan pengurangan harmonik arus penghubung-DC dan keboleharapan yang lebih tinggi. Namun begitu, sehingga sekarang, tiada pengoperasian fluks membulat mahupun pengoperasian fluks dekagon dalam memformulasikan sebuah strategi pensuisan optimal dicadangkan untuk mencapai prestasi tinggi kawalan dayakilas bagi Kawalan Dayakilas Langsung (DTC) motor aruhan lima fasa. Segelintir kajian terdahulu tentang DTC motor aruhan lima fasa dihadkan untuk menganalisis kesan-kesan bagi pemilihan vektor voltan yang berlainan terhadap prestasi kawalan dayakilas dan fluks, yang mana tidak menyediakan DTC untuk mendapatkan kepantasan kawalan dayakilas dinamik, pengurangan riak dayakilas dan frekuensi pensuisan. Tesis ini mencadangkan sebuah strategi pensuisan yang optimal bagi pemacu DTC motor aruhan lima fasa untuk prestasi tinggi kawalan dayakilas. Dengan menggunakan sebuah penyongsang lima fasa dalam kaedah cadangan, ia menyediakan bilangan vektor voltan yang lebih banyak berbanding dengan yang ditawarkan dalam pemacu tiga fasa yang memberikan lebih banyak pilihan untuk memilih vektor voltan yang paling optimal. Analisa bagi kesan-kesan pemilihan voltan vektor yang berlainan terhadap prestasi DTC telah dilakukan untuk mengenalpasti voltan vector yang paling optimal yang boleh dipilih untuk menambahbaik prestasi kawalan dayakilas untuk setiap keadaan operasi. Pengenalpastian ini dilakukan dengan bantuan rajah vektor dan beberapa persamaan, iaitu persamaan kadar dayakilas, frekuensi sudut gelinciran dan arus dinamik. Apabila pengenalpastian ini telah dilakukan, kesemua vektor-vektor yang optimal telah dijadualkan ke dalam sebuah jadual carian, dan pensuisan vektor optimal disempurnakan dengan menyediakan status-status ralat yang bersesuaian dan sektor fluks ke dalam jadual carian tersebut. Status-status ralat vang besesuaian diperoleh daripada pembandingpembanding histeresis yang bertanggungjawab menentukan amplitud vektor yang sesuai dan operasi kawalan fluks, sama ada untuk membentuk trajektori fluks dengan lokus membulat atau dekagon. Penambahbaikan-penambahbaikan bagi kaedah cadangan telah disahkan menerusi keputusan simulasi dan eksperimen. Keputusan tersebut telah menunjukkan bahawa riak dayakilas dan frekuensi pensuisan dengan kaedah cadangan dikurangkan sehingga 50 % dan 40 % daripada yang diperoleh dalam DTC dengan strategi pensuisan yang tidak optimal pemacu lima fasa, terutamanya pada operasi kelajuan rendah. Keputusan juga menunjukkan bahawa DTC cadangan dengan kawalan fluks dekagon menghasilkan sambutan dayakilas dinamik yang lebih cepat berbanding dengan DTC dengan strategi pensuisan yang tidak optimal pemacu lima fasa. Penambahbaikan-penambahbaikan ini merupakan ciri-ciri penting bagi aplikasi pemacuan elektrik yang memerlukan prestasi tinggi kawalan dayakilas dan pengurangan kehilangan pensuisan atau kecekapan yang tinggi.

ACKNOWLEDGEMENTS

I acknowledge, with gratitude, my debt of thanks to Dr. Auzani bin Jidin for his guidance, ancouragement and patience on assisting me throughout my research and towards the completion of this thesis.

I would also like to thank everyone who have contributed to this thesis particularly my friend and co-researcher Sundram Rahmalingam for their undisputed support and encouragament.

This research was fully supported by Universiti Teknikal Malaysia Melaka. I am grateful to this institution for providing me the platform and support through scholarship and sponsorship to complete this study.

Finally, I would like to thank my parents and family members for their moral support encouragement and tollerence throughout my study.

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF APPENDICES	xvii
LIST OF SYMBOL	xviii
LIST OF ABBREVIATIONS	XX
LIST OF ACHIVEMENTS	xxii

CHAPTER

1.	IN	TRODUCTION	1
	1.1	Research Background	1
	1.2	Motivation of Research	5
	1.3	Problem statement	5
		1.3.1 Large Torque Ripple	6
		1.3.2 High Switching Frequency/Losses	6
		1.3.3 Slow Torque Dynamic Control	7
	1.4	Objectives	7
	1.5	Methodology	8
	1.6	Contribution of Thesis	11
	1.7	Thesis organization	12
2.	LIT	ERATURE REVIEW	14
	2.1	Introduction	14
	2.2	Principle of Direct Torque Control (DTC) of Three-	
		Phase Induction Motors	14
		2.2.1 Mathematical Modelling of Three-phase	
		Induction Machines.	15
		2.2.2 Three-Phase Voltage Source Inverter	18
		2.2.3 Control Strategy of DTC	20
		2.2.3.1 Control of Flux	20
		2.2.3.2 Control of Torque	22
		2.2.3.3 Simultaneous Control of Torque and Flux	25
		2.2.4 Structure of Direct Torque Control	31
	2.3	Principle of Direct Torque Control with Hexagonal	
		Flux Control for Three-Phase Induction Motors	33
		2.3.1 Hexagonal Flux Control based on the Hysteresis	
		Controllers	33
		2.3.2 Hexagonal Flux Control based on the Modification of	
		Torque Error Status	37
		2.3.3 Performance Analysis of Torque Dynamic Control	44
		iv	

	2.4	Direct Torque Control of Five-Phase Induction Motors	48
		2.4.1 Comparison of DTC and FOC	49
		2.4.2 Conceptual of DTC of Five-Phase Induction Machines	53
	2.5	Conclusion	69
3.	RES	SEARCH METHODOLOGY	70
	3.1	Introduction	70
	3.2	Mapping of Voltage Vectors for Five-Phase Inverter	70
		3.2.1 Five-Phase Voltage Source Inverter	71
		3.2.2 Space Voltage Vector of Five-phase Voltage	74
		3.2.3 d- and q- Components of Stator Voltage	76
		3.2.4 Voltage Vectors of Five-phase Inverter on the	
		Voltage Vector Plane	78
	3.3	An Improved Switching Strategy	80
		3.3.1 Investigation on Effects of Selecting Different Switching	
		Voltage Vector Options on Torque Control Behaviour	80
		3.3.1.1 Analysis on Torque Dynamic Control using	
		Torque Rate Equation	81
		3.3.1.2 Analysis on Torque Control Capability based on	
		the Maximum Slip Angular Frequency	83
		3.3.1.3 Analysis on Torque Slopes for Various Motor	
		Operating Conditions	86
		3.3.2 Identification of Optimal Voltage Vectors	88
		3.3.2.1 Improvement 1: Reduction of Switching Frequency	92
		3.3.2.2 Improvement 2: Reduction of Torque Ripple	99
	2.4	3.3.2.3 Improvement 3: Fast Torque Dynamic Control	105
	3.4	Definition of Flux Sectors for Selecting Optimal Vectors	10/
	3.5	Look-up Table for Selecting Optimal Voltage Vectors	109
	3.6	Proposed Control Structure	112
	3.1	Simulation Model of DTC of Five-Phase induction Machine	114
		3.7.1 Five-Phase induction machine	11/
		3.7.2 Simulation Model of <i>I</i> and <i>z</i> Components of States Veltage	119
		3.7.5 Simulation Model of <i>d</i> and <i>q</i> -Components of Stator Voltage	122
		3.7.4 Simulation Model of <i>a</i> - and <i>q</i> -components of Stator Current	122
		5.7.5 Simulation Model of Flux and Torque Estimation for Eive Dhese Induction Machine	122
		2.7.6 Simulation Model of Five Dhase Sector Definition	125
	28	Description on Experimental Setup	124
	5.0	3.8.1 DS1104 R&D Controller Board	127
		$3.8.7$ EPGA_Altera DEO Board	120
		3.8.3 Hall Effect Current Sensor	132
		3.8.4 Gate Drivers	134
		3.8.5 Five Phase Voltage Source Inverter	134
		3.8.6 Five Phase Induction Machine	135
	3.9	Conclusion	137
	DD		100
4.	KE S	SULT AND DISCUSSION	138
	7.1		130

	4.2	Performance Analysis of Torque Ripple, Switching Frequency	
		and Torque Dynamic Control via Simulations	138
		4.2.1 Improvement 1: Reduction of Torque Ripple	140
		4.2.2 Improvement 2: Minimization of Switching Frequency	147
		4.2.3 Improvement 3: Fast Torque Dynamic Control	152
	4.3	Verification Improvements via Experimental Results	159
		4.3.1 Reduction of Torque Ripple and Switching Frequency	160
		4.3.2 Improved Torque Dynamic Control	171
	4.4	Conclusion	174
5.	COI	NCLUSION AND RECOMMENDATIONS	175
	5.1	Conclusions	175
	5.2	Constrains and Limitations of Research	177
	5.3	Future Works	178
REF	FERE	NCES	181
APP	END	ICES	193

LIST OF TABLES

TABLE	TITLE	PAGES
2.1	Selection of Voltage Vectors as Proposed in	
	(Takahashi and Noguchi, 1986)	30
2.2	Table 2.2 : The look up table proposed in (Toliyat and	
	Huangsheng, 2000) (a) Longgest Voltage Vector	
	(b) Medium Voltage Vector (c) Shortest Voltage Vector	56
2.3	Stator Flux and Torque Variation for Different Voltage Vectors	
	for Sector I, as Reported in (Mythili and Thyagarajah, 2005)	58
3.1	Classification of Voltage Vectors of Five-Phase Inverter	78
3.2	Look-up table of DTC with Circular Flux Control	
	(Optimal Vector Selection)	110
3.3	Look-up table of DTC with Decagonal Flux Control and with	
	Optimal Vector Switching	111
3.4	Parameters of 5-Phase Induction Machine	136
4.1	Parameters of Five-Phase Induction Motor	139

LIST OF FIGURES

TITLE PAGE	
DTC Structure Proposed in (Takahashi and Noguchi, 1986)	2
Control Structure of DTC of Five-Phase Induction Motor	4
Flow chart of Research Methodology	10
Block Diagram of the Mathematical Modelling of an Induction Machine	17
A Three-Phase Voltage Source Inverter	19
Voltage Vectors (including Switching States Information) on the Voltage Vector Plane	19
Trajectory of Stator Flux Vector in DTC	21
A Decoupled Control Structure with a Look-up Table for Establishing Simultaneous Control of Stator Flux and Torque	26
Production of Flux Error Status σ_{ϕ} and Torque Error Status σ_{T} using (a) 2-Level Hysteresis Comparator and (b) 3-level Hysteresis Comparator, Respectively	27
	TITLE PAGE DTC Structure Proposed in (Takahashi and Noguchi, 1986) Control Structure of DTC of Five-Phase Induction Motor Flow chart of Research Methodology Block Diagram of the Mathematical Modelling of an Induction Machine A Three-Phase Voltage Source Inverter Voltage Vectors (including Switching States Information) on the Voltage Vector Plane Trajectory of Stator Flux Vector in DTC A Decoupled Control Structure with a Look-up Table for Establishing Simultaneous Control of Stator Flux and Torque Production of Flux Error Status σ_φ and Torque Error Status σ_T using (a) 2-Level Hysteresis Comparator and (b) 3-level Hysteresis

2.7	Typical Waveforms of the Torque, the Torque Error, the Stator	
	Flux, the Flux Error, the Torque Error Status and the Flux Error	
	Status including Voltage Vectors Selection for Controlling the	
	Stator Flux and Torque in Sector III	29
2.8	Structure of Direct Torque Control (DTC) based Induction	
	Machine, as Proposed in (Takahashi and Noguchi, 1986)	31
2.9	Structure of Direct Self Control (DSC) based Induction	
	Machine, as Proposed in (Depenbrock, 1988)	35
2.10	Simulation Result of the Typical Waveforms in Direct Self Control	36
2.11	A Hexagonal Flux Shape obtained in DSC Scheme	37
2.12	Structure of DTC with Inclusion of Modification of Torque Error	
	Status, as Proposed in (Jidin et al., 2011a)	39
2.13	The Modification Block for Hexagonal Flux Operation	40
2.14	Modified Flux Error Status σ_{φ}^{new} for Every Sub Sector	
	(in Each Sector) for Hexagonal Flux Control	41
2.15	The Shrinking of Hexagonal Flux Locus	42
2.16	Flux Keeps the Increase as it Enters to Sub sector ii Until it	
	Reaches to the Point c. (i.e. path b-c) with the $\sigma_{\varphi}^{new} = 0$	43

2.17	State Diagram of Finite State Machine that Establishes the	
	Modified Flux Error Status for Proper Hexagonal Flux Locus	
	Operation (as Proposed in (Jidin et al., 2011a)).	44
2.18	Effects of Selecting Different Switching under Dynamic Condition.	
	(a) Stator Voltage Vector in Stator Flux (b) Comparison of the Load	
	Angle, δ_{sr} generated by the Same Magnitude of Appropriate	
	Voltage Vectors.	47
2.19	Structure of Field Oriented Control of Five-Phase Induction	
	Machine	51
2.20	Structure of Direct Torque Control of Five-Phase Induction	
	Machine	52
2.21	A Five-Phase Voltage Source Inverter Connected to a Five-Phase	
	Induction Machine	54
2.22	32 Voltage Vectors (on the voltage vector plane) offered in a	
	Five-Phase Inverter	54
2.23	Control of Torque is Directly Influenced by the Variation of	
	Angle δ_{sr} due to the Irregular Motion of Stator Flux Vector	
	(e.g. in Sector I).	58
2.24	Hysteresis Comparators for (a) Torque Controller with 7- Level	
	Hysteresis Band (b) Flux Controller with 2-Level Hysteresis Band	61

2.25	Simulation Results of Torque, Torque Error, Torque Error Status,	
	Stator Currents and Phase Voltage obtained in Five-Phase DTC	
	(Raj et al., 2013)	62
2.26	Zoomed Images for Simulation Results of Torque and Torque	
	Error as obtained in Fig. 2.24, for (a) Region 1, (b) Region 2	
	and (c) Region 3.	63
2.27	Simulation Results of Torque, Torque Error, Torque Error	
	Status, Stator Currents and Phase Voltage obtained in Five-	
	Phase DTC (Raj et al., 2013), at a Sampling Time 50 μ s	65
2.28	Zoomed Images for Simulation Results of Torque and Torque	
	Error as obtained in Fig. 2.26, for (a) Region 1, (b) Region 2	
	and (c) Region 3	66
2.29	Torque Dynamic Control with Selection of Non-Optimal Voltage	
	Vectors	68
3.1	Simplified Five-Phase Inverter Connected to a Five-Phase	
	Induction Machine	72
3.2	Simplified Five-Phase Inverter with Consideration only for any	
	Phase (or <i>x</i> -phase)	73
3.3	Definition of Phase Vectors in (3.4).	75
3.4	Vector Units for Each Phase on the Rectangular Coordinates	77

3.5	32 Voltage Vectors (on the Voltage Vector Plane) offered in a Five-	
	Phase Inverter, as shown in Fig. 2.20	79
3.6	Space Vectors of the Applied Voltage, the Stator Flux and the	
	Rotor Flux	82
3.7	Phasor Diagrams of Vectors of Stator Voltage, Ohmic Voltage	
	Drop and Back-Emf for (a) Low Speed Operation and (b) Base	
	Speed Operation	87
3.8	Analysis of Torque Dynamic or Slope based on Current Changes	
	for Different Switching of Voltage Vectors in Sector III	90
3.9	Control of Torque using the Proposed Method (Dotted Line) and	
	the Conventional DTC (Solid Line) at Low Speed Operations. (a)	
	the Selection of Voltage Vectors and (b) the Variation of Torque	
	inthe Hysteresis Band	96
3.10	Control of Torque using the Proposed Method (Dotted Line) and	
	the Conventional DTC (Solid Line) at Medium Speed Operations.	
	(a) the Selection of Voltage Vectors and (b) the Variation of	
	Torque in the Hysteresis Band	97
3.11	Control of Torque using the Proposed Method (Dotted Line) and	
	the Conventional DTC (Solid Line) at High Speed Operations.	
	(a) the Selection of Voltage Vectors and (b) the Variation of	
	Torque in the Hysteresis Band	98

3.12	Control of Torque using the Proposed Method (Dotted Line) and	
	the Conventional DTC (solid line) at Low Speed Operations. (a)	
	the Torque Waveforms (b) the Torque Error Waveforms, and (c)	
	the Torque Error Status Waveforms	102
3.13	Control of Torque using the Proposed Method (Dotted Line)	
	and the Conventional DTC (solid line) at Medium Speed	
	Operations. (a) the Torque Waveforms (b) the Torque Error	
	Waveforms, and (c) the Torque Error Status Waveforms	103
3.14	Control of Torque using the Proposed Method (Dotted Line)	
	and the Conventional DTC (solid line) at High Speed	
	Operations. (a) the Torque Waveforms (b) the Torque	
	Error Waveforms, and (c) the Torque Error Status Waveforms	104
3.15	Performance Comparison of Torque Dynamic Control for (a)	
	Conventional DTC with a Circular Flux Operation (b)	
	Proposed DTC with a Decagonal Flux operation	106
3.16	Flux Sector Definition and Optimal Voltage Vector Selection for	
	Circular Flux Locus	108
3.17	Flux Sector Definition and Optimal Voltage Vector Selection for	
	Decagonal Flux Locus	109
3.18	Control structure of the proposed circular flux DTC	113
3.19	Control structure of the proposed decagonal flux DTC	113
3.20	Complete simulation model of proposed circular flux DTC	115

3.21	Complete simulation model of proposed decagonal flux DTC	116
3.22	Simulation model of 5-Phase induction machine	117
3.23	Detailed simulation model of 5-Phase induction machine	118
3.24	Definition of Phase Voltage and Pole Inverter Voltage (e.g.	
	in Phase <i>a</i>) based on Simplified Five-Phase Inverter	120
3.25	Simulation Model of Five-Phase Inverter	121
3.26	Simulation Model of <i>d</i> - and <i>q</i> -Component of Voltage	122
3.27	Simulation Model of <i>d</i> - and <i>q</i> -Component of Current	123
3.28	Simulation model of flux and torque estimation	124
3.29	Simulation block of sector definition	124
3.30	Flow chart of sector definition for circular flux	125
3.31	Flow chart of sector definition for decagonal flux	126
3.32	Block diagram of Experimental Setup	127
3.33	Photography of Experimental setup of DTC for 5-Phase Induction	
	Machine	128
3.34	FPGA Altera DE0 board	130
3.35	Waveform with time delay applied	131
3.36	Current sensor	132
3.37	Schematic diagram of current sensor	133
3.38	Schematic diagram of gate driver	134
3.39	Five-Phase Voltage Source Inverter	135

xiv

3.40	Five Phase Induction Machine	136
4.1	Waveforms of Torque, Stator flux, Phase Stator Currents and Stator	
	Voltage at Low-Speed for (a) the DTC2, and (b) the DTC1	143
4.2	Waveforms of Torque, Stator flux, Phase Stator Currents and	
	Stator Voltage at Medium-Speed for (a) the DTC2, and (b)	
	the DTC1	144
4.3	Waveforms of Torque, Stator flux, Phase Stator Currents and Stator	
	Voltage at High-Speed for (a) the DTC2, and (b) the DTC1	145
4.4	Mapping of Switching Vectors on the d- and q-Axis Coordinate for	
	(a) the DTC1 at Every Different of Speed Operations, (b) the	
	DTC2at High-Speed, (c) the DTC2 at Medium-Speed, and (d)	
	the DTC2 at Low-Speed	146
4.5	Comparison of Switching Frequency Performance Resulted in	
	Torque and Currents Waveforms for (a) Low-Speed, (b) Medium-	
	Speed and (c) High-Speed	151
4.6	Waveforms of Torque, Stator flux and d- and q-Components of	
	Stator Currents when a Step Change of Reference Torque is	
	Applied, at Low-Speed for (a) DTC1, (b) DTC3, (c) DTC4	155
4.7	Comparison of Torque Dynamic Control Performance, when a Step	
	Change of Reference Torque is Applied, at Low-Speed for (a)	
	DTC1, (b) DTC3, and (c) DTC4	156

4.8	Waveforms of Torque, Stator flux and d- and q-Components of	
	Stator Currents when a Step Change of Reference Torque is	
	Applied, at High-Speed for (a) DTC1 and (b) DTC3	157
4.9	Comparison of Torque Dynamic Control Performance, when	
	a Step Change of Reference Torque is Applied, at High-Speed	
	for (a) DTC1, and (b) DTC3	158
4.10	Profiles of Current Components when a Step Change of Reference	
	Torque is Applied, at High-Speed for (a) DTC1, and (b) DTC3	158
4.11	Experimental result of Torque, Stator flux, and Stator Voltage at	
	Low-Speed for DTC1 and DTC2 (a) Overall, and (b) Zoomed	160
4.12	Experimental Results of Torque, Stator Flux and Stator Voltage	
	at Low-Speed for DTC1 and DTC3 (a) Overall and (b) Zoomed	162
4.13	Simulation Results of Torque, Stator Flux and Stator Voltage	
	at Low-Speed for DTC1 and DTC2 (a) Overall and (b) Zoomed	163
4.14	Simulation Results of Torque, Stator Flux and Stator Voltage	
	at Low-Speed for DTC1 and DTC3 (a) Overall and (b) Zoomed	164
4.15	Experimental Results of Torque, Stator Flux and Stator Voltage	
	at High-Speed for DTC1 and DTC2 (a) Overall and (b) Zoomed	167
4.16	Experimental Results of Torque, Stator Flux and Stator Voltage	
	at High-Speed for DTC1 and DTC3 (a) Overall and (b) Zoomed	168
4.17	Simulation Results of Torque, Stator Flux and Stator Voltage	
	at High-Speed for DTC1 and DTC2 (a) Overall and (b) Zoomed	169

xvi

4.18	Simulation Results of Torque, Stator Flux and Stator Voltage at	
	High -Speed for DTC1 and DTC3 (a) Overall and (b) Zoomed	170
4.19	Experimental Results of Torque, Stator Flux and Phase Voltage	172
	in DTC1	
4.20	Experimental Results of Torque, Stator Flux and Phase Voltage	172
	in DTC3	
4.21	Comparison of Torque Dynamic Control Performance Between	
	DTC1and DTC3	173
4.22	Trajectory of Stator Flux (a) Circular Locus in DTC1 and (b)	
	Decagonal Locus in DTC3	174

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Matlab source code listing	192
В	VHDL source code listing	202

xvii

LIST OF ABBREVIATIONS

- AC Alternating Current
- ADC Analog Digital Converter
- DAC Digital Analog Converter
- DC Direct current
- DSC Direct Self Control
- DSP Digital Signal Processor
- DT Sampling period
- DTC Direct Torque Control
- DTC1 Conventional DTC of Five Phase Inverter
- DTC2 DTC with Optimal Voltage Vector Selection
- DTC3 DTC with Decagonal Flux and Optimal Voltage Vector Selection
- FPGA Field Programmer Gate Array
- FOC Field Oriented Control
- IGBT Insulated gate bipolar transistor
- IM Induction Motor
- LB Lower band
- SVM Space vector modulated
- UB Upper band

XX