

Faculty of Electronic and Computer Engineering

DESIGN OF HIGH GAIN ANTENNA WITH HARMONIC SUPPRESSION USING T-SHAPE DGS AND SPURLINE

Nurzaimah Binti Zainol

Master of Science in Electronic Engineering

2016

DESIGN OF HIGH GAIN ANTENNA WITH HARMONIC SUPPRESSION USING T-SHAPE DGS AND SPURLINE

NURZAIMAH BINTI ZAINOL

1.1

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this thesis entitle "Design of High Gain Antenna with Harmonic Suppression using T-Shape DGS and Spurline" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:	JUMAN -
Name	;	NURZAIMAH BINTI ZAINOL
Date	:	31/10/2016

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

		0
Signature	:	Sentager
Name	:	ASSOC. PROF. DR. ZAHRILADHA BIN ZAKARIA
Date	:	31/10/2016

DEDICATION

I dedicate this thesis to ALLAH S.W.T, my loving family, my lover, and my beloved friends for their constant support and unconditional love.

1 love you all dearly.

ABSTRACT

The use of novel antenna with harmonic suppression is an attractive idea. There are many applications that could benefit from this such as cellular mobile radio, factory monitoring and biomedical applications. The potential for highly efficient of harmonic suppression at harmonic frequency is offered by antenna itself. Conventionally, defected ground structure (DGS), electromagnetic band gap (EBG) and stub have been used for stop band characteristics. However, there are also challenges that arise from these antenna with harmonic suppression. One of them is the problem of fabricating the antenna which increase the cost and the other one they require large amount of circuit size and consequently require similar stop band characteristics which restrict their use in many important applications. The resulting antenna with harmonic suppression was ordinary one and have low gain at resonant frequency. Thus, a high gain antenna with harmonic suppression have gained a considerable interest over the past few years due to their advantages such as low cost, ease of fabrication and not complex. Therefore, this thesis presents a high gain antenna with harmonic suppression which produce broadband harmonic suppression with capability to suppress undesired harmonic signals from 3 GHz. up to 8 GHz. These antenna with harmonic suppression are based on microstrip structure of T-shape DGS and spur line low pass filters by employing the perturbation theory, in which the dielectric properties of the substrate used affect the radiation characteristics of antenna. The antenna are designed at operating frequency of 2.45 GHz with harmonic suppression entirely second and third order. As a results, the final design of antenna has achieved a very good return loss which peaked up to -33.44 dB at 2.45 GHz operating frequency. In addition, it has an extremely high gain which achieved a 14.20 dB with a strong directional radiation pattern; and total efficiency achievement of the 2x2 antenna array is up to 98.86%. Besides that, the harmonic signals have been suppressed effectively from -29.19 dB to -7.77 dB at frequency of 3.24 GHz and achieved a broadband harmonic suppression. Experimentally, the measured and simulated results are found in an excellent agreement and achieved high gain compared to those in literatures whic has an average gain of 1 dB to 6 dB for the same applications. The antenna is designed and simulated by using Computer Simulation Technology (CST) Studio Suite. The presented work in this thesis consists of defining the characterizations for all subsystems which are preceded with optimized design process. It is believed that these high gain antenna with harmonic suppression would lead for a promising solution for RF/Microwave energy transfer particularly in suppressing the harmonic that degrade the system performance.

ABSTRAK

Penggunaan antena novel dengan penindasan harmonik adalah satu idea yang menarik. Terdapat banyak aplikasi yang boleh mendapat manfaat daripada ini seperti radio mudah alih selular, pemantauan kilang dan aplikasi bioperubatan. Potensi yang sangat berkesan penindasan harmonik pada frekuensi harmonik ditawarkan oleh antena sendiri. Konvensional, berpaling tadah struktur tanah (DGS), jurang elektromagnet band (EBG) dan puntung telah digunakan untuk ciri-ciri stop band. Walau bagaimanapun, terdapat juga cabaran yang timbul daripada antena ini dengan penindasan harmonik. Salah seorang daripada mereka adalah masalah-reka antena yang meningkatkan kos dan satu lagi mereka memerlukan sejumlah besar saiz litar dan seterusnya memerlukan sama ciriciri stop band yang mengehadkan penggunaan mereka dalam banyak aplikasi penting. Antena terhasil dengan penindasan harmonik adalah biasa dan mempunyai keuntungan rendah pada frekuensi salunan. Oleh itu, keuntungan antena tinggi dengan penindasan harmonik telah mendapat minat yang besar sejak beberapa tahun kebelakangan ini kerana kelebihan seperti kos rendah, kemudahan fabrikasi dan tidak kompleks. Oleh itu, tesis ini membentangkan keuntungan antena tinggi dengan penindasan harmonik yang menghasilkan penindasan harmonik jalur lebar dengan keupayaan untuk menyekat isyarat harmonik yang tidak diingini dari 3 GHz sehingga 8 GHz. Antena ini dengan penindasan harmonik adalah berdasarkan kepada struktur mikrostrip daripada T-bentuk DGS dan merangsang penapis lulus garis rendah dengan menggunakan teori usikan, di mana sifatsifat dielektrik substrat yang digunakan memberi kesan kepada ciri-ciri sinaran antena. antena direka pada frekuensi operasi 2.45 GHz dengan penindasan harmonik sepenuhnya kedua dan ketiga. Dengan itu, reka bentuk muktamad antena telah mencapai kehilangan pulangan yang sangat baik yang memuncak sehingga -33.44 dB pada 2.45 GHz kekerapan operasi. Di samping itu, ia mempunyai keuntungan yang sangat tinggi yang mencapal 14.20 dB dengan corak sinaran arah yang kuat; dan jumlah pencapaian kecekapan pelbagai 2x2 antena sehingga 98.86%. Selain itu, isyarat harmonik telah ditindas berkesan dari -29.19 dB untuk -7.77 dB pada frekuensi 3.24 GHz dan mencapai penindasan harmonik jalur lebar. Uji kaji, hasil yang diukur dan simulasi terdapat dalam perjanjian yang sangat baik dan mencapai keuntungan tinggi berbanding dalam kesusasteraan yang mempunyai keuntungan purata 1 dB hingga 6 dB untuk aplikasi yang sama. Antena direka dan simulasi dengan menggunakan Computer Simulation Technology Suite (CST) Studio. Kerja-kerja yang dibentangkan di dalam tesis ini terdiri daripada mendefinisikan pencirian untuk semua subsistem yang didahului dengan proses reka bentuk dioptimumkan. Adalah dipercayai bahawa keuntungan antena tinggi dengan penindasan harmonik akan membawa untuk penyelesaian menjanjikan untuk pemindahan tenaga RF / Microwave terutamanya dalam membenteras harmonik yang menjejaskan prestasi sistem.

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Associate Professor Dr. Zahriladha Bin Zakaria for the opportunity of working in his research group and on this project. This thesis would have never been completed without his guidance, patience, and expertise in the field of antenna and microwave circuits. I also want to thank him for the time and effort in reviewing and giving me feedback about my work.

I am very thankful to my co supervisor, Dr. Maisarah Binti Abu for her advices, critical guidance and moral support. I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) particularly to Mr. Mohd Sufian Bin Abu Talib and Mr. Imran B. Mohamed Ali, technicians from Faculty of Electronic and Computer Engineering (FKEKK) who always helps me with their assistance throughout laboratory tests.

Besides that, I want to dedicate a valuable thankful to my postgraduate colleagues, Adibah, Nadia, Afiqah, Hafiza, Rammah and Sam for their help. Finally, I would like to express my special thanks for my lovely dad and mom, Zainol Bin Ibrahim and Che Nolia Binti Abdul Kadir for their never-ending love and support in my life. I could not have finished my MSc degree without their support. Dear lover, Alif Ilman Bin Perma Suria, thanks for your unconditional love. Thanks Lord for this happiness and blessed them all with your Almighty.

TABLE OF CONTENTS

DE	CLARA	TION	TAGE
AP	PROVA	I	
DE	DICATI	ION	
AB	STRAC	T	
AD	STDAK		
AC	VNOW	EDCEMENTS	
TA	RIFOF	CONTENTS	in
LIA	ST OF T	ADLES	IV NIL
LE	ST OF T	ADLES	vii
LI	ST OF FI	DDENDLOES	IX
	ST OF A	PREVIATIONS	xv
LIG	ST OF A	VMBOLS	XVI
LIG	ST OF DI	INDULS	XVII
	VADD	UBLICATIONS	XVIII
Av	VARD		XX
CH	IAPTER		1
1.	INT	RODUCTION	1
	1.0	Research Background	1
	1.1	Problem Statement	9
	1.2	Objectives	10
	1.3	Scope of Research	11
	1.4	Original Contribution of the Thesis	11
	1.5	Thesis Organization	12
2.	LIT	ERATURE REVIEW	14
	2,0	Introduction	14
	2.1	Antenna with Harmonic Suppression	14
	2.2	Microstrip Patch Antenna	15
		2.2.1 Harmonic Suppression Techniques	15
	2.3	Feed Techniques	17
		2.3.1 Inset Feed	17
		2.3.2 Coaxial Feed	18
		2.3.3 Aperture Coupled Feed	19
		2.3.4 Proximity Coupled Feed	20
	2.4	Method of Analysis	21
		2.4.1 Transmission Line Model	21
		2.4.2 Formulas for Effective Dielectric Constant Characteristi	ic.
		Impedance and Attenuation	23
	25	Resonant Circuit Theory of Antenna	25
	26	Antenna Parameters	26
	210	2.6.1 Return Loss	26
		2.6.7 Bandwidth	20
		2.6.2 Datawidan	27
		2.6.4 Gain	27
		2.6.5 Impedance Matching	27
	27	Eastern That Affect Antenna's Derformer	28
	2.1	2.7.1 Chains of Antonna's Performance	28
		2.7.1 Choice of Antenna Substrate	28

ίΫ

C Universiti Teknikal Malaysia Melaka

PAGE

		2.7.2	Choice of Antenna Type	29
		2.7.3	Choice of Fabrication Method	30
			2.7.3.1 Chemical Etching	30
	2.8	Low P	ower Energy Transfer	31
		2.8.1	Low Power Topologies	31
	2.9	Harmo	onic Control for Microstrip Antennas	32
		2.9.1	A Selection of Antenna with Harmonic Suppression Technique	33
		2.9.2	Polarization of Antenna Design	50
	2.10	The Ef	ficient Harmonic Suppression Techniques as Band-Reject	53
		2.10.1	Design Utilizing of Defected Ground Structure	53
		2.10.2	Design Utilizing of RF Choke or Stub	57
		2.10.3	Design Utilizing of Spur-Line for Microstrip Patch Antenna	59
	2.11	High G	Jain Antenna with Harmonic Suppression	61
	2.12	Summa	ary	62
3.	MET	HODO	LOGY	64
	3.0	Introdu	iction	64
	3.1	Flow c	hart	64
	3.2	Design	of Antenna Based on Circuit Theory	66
		3.2.1	Single-mode Rectangular Patch Antenna	66
	3.3	Antenn	a with Harmonic Rejection Property	69
		3.3.1	Design 1: Circular Microstrip Antenna (CMA) with Planar	
			Configuration	71
		3.3.2	Design 2: Proximity Coupled of Circular Microstrip Antenna	73
		3.3.3	Design 3: Rectangular Microstrip Antenna in Stacked	
			Configuration	74
		3.3.4	Design 4: Microstrip 2x2 Antenna Array	78
	3.4	Genera	lized Low Pass Filter Design	82
		3.4.1	Design Low Pass Filter Utilizing Defected Ground	
			Structure with T-Slot Structure	83
	3.5	Fabrica	ation Process	85
	3.6	Measur	rement process	86
		3.6.1	Antenna Under Test (AUT)	86
	3.7	Summa	iry	87
4.	RESU	ULTS A	ND DISCUSSIONS	88
	4.0	Introdu	etion	88
	4.1	Results	of Antenna Based on Circuit Theory	88
		4.1.1	Single-Mode Antenna	88
	4.2	Results	of Antenna Design with Harmonic Suppression	91
		4.2.1	Design 1: Circular Microstrip Antenna (CMA) with Planar	
			Configuration	91
			4.2.1.1 Harmonic Rejection Techniques using Stub, Slit	
			and DGS	91
			4.2.1.2 Measurement Results of CMA with Harmonic	
			Property	99

		4.2.2	Design 2	: Proximity Coupled of Circular Microstrip	100	
			Antenna	Homania Delection Techniques using	100	
			4.2.2.1	Linkslanged Circular Slot	100	
			1222	Magazine and Begulta of CMA with Unhalanced	100	
			4.2.2.2	Slot Techniques	106	
		122	Darian 2	Bastangular Microstrin Antonno in Staakad	100	
		4.2.3	Design 5	Rectangular Microstrip Antenna in Stacked		
			Conngur	ation	107	
			4.2.3.1	Harmonic Rejection Techniques using U-Slot and		
				Symmetrical Arm of Inverted U-Stub	107	
			4.2.3.2	Measurement Results of Rectangular patch with		
				Harmonic Suppression	114	
		4.2.4	Design 4	: Microstrip 2x2 Antenna Array	117	
			4.2.4.1	Harmonic Rejection Techniques using T-Shape		
				DGS and spur line	117	
			4.2.4.2	Measurement Results of High Gain 2x2 Array		
				with Harmonic Suppression	121	
	4.3	Result	Compariso	n	126	
	4.4	Summa	ary		128	
5.	CON	CLUSI	ON AND F	UTURE WORKS	130	
14	5.0	Conclu	ision		130	
	5.1	Sugges	tions for Fu	iture Works	131	
	10,10	00				
REFE	RENG	ES			133	
APPE	NDIC	ES			144	
	10000				0.010	

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Characteristics of different Wireless Power Transfer	2
2.1	Summarized technique used for antenna harmonic suppression at 2.45	
	GHz	49
2.2	Various antennas for circularly polarization	52
2.3	Summarized of significance techniques used as band-reject	62
3.1	Single-mode equivalent circuit antenna specification	67
3.2	Impedance scaling network element values for single-mode antenna	68
3.3	Design material of antenna using FR-4 substrate	69
3.4	Optimized design parameter of circular microstrip antenna	72
3.5	Design parameter for proximity coupled circular microstrip antenna	74
3.6	Optimized design parameter of rectangular patch antenna in stack	
	configuration	78
3.7	Performances comparison between conventional antenna and proximity	
	coupled	78
3.8	Optimized design parameter of 2x2 antenna array with harmonic	
	suppression	80
3.9	L-C values of low pass filter at cut off frequency 2.7 GHz	84
4.1	Optimized value antenna with slits and stub	96
4.2	Performances comparison of the initial antenna and proposed antenna	97
4.3	The comparison of antenna gain between simulated and measurement	100
4.4	Parametric studies on two slots	103
4.5	Total gain both in simulated and measurement	107
4.6	Parametric studies on Lu2 of U-slot on the feed line	109
4,7	Parametric studies on Lu3 of U slot on the patch element	111
4.8	Comparison of total gain between simulated and measurement result of	117

single and 2x1 antenna array

4.9	The performance of 2x2 arrays without and with T-slot DGS	120
4.10	The performance of 2x2 arrays without and with T-slot DGS and	
	spurline	121
4.11	Simulated antenna performance for constant air gap configurations at 5	
	mm	123
4.12	Minimum reflection coefficients both in simulated and measurement	125
4.13	Power received by the microstrip 2x2 array at D=100 cm	126
4.14	Comparison with previously published works	128

viii

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Types of Wireless Power Transfer (WPT)	2
1.2	Example of wireless technology powered using ambient radiation	3
1.3	Potential RF harvesting sources	4
1.4	Biomedical implantable devices	5
1.5	Block Diagram of Ambient RF Energy Harvesting	6
1.6	Components of rectenna: antenna, input low-pass filter, Voltage-	
	doubler rectifier, Bypass capacitor, and resistive load	7
1.7	Architecture of RF Energy Harvesting System	9
2.1	Various DGS structure	16
2.2	Various EBG structure	17
2.3	Microstrip line inset feed	18
2.4	Coaxial feed network	19
2.5	Aperture coupled feed	20
2.6	Proximity coupled feed	21
2.7	Microtrip patch (a) Microstrip line (b) Electric field lines (c)	
	Effective dielectric constant	22
2.8	Geometry of microstrip patch antenna	23
2.9	E-fields distribution for mode $t=1$	24
2.10	Low-pass prototype of single-mode antenna	26
2.11	Equivalent circuit of single-mode antenna	26
2.12	Flow of chemical etching (photolithography) process	31
2.13	CPW-fed circular slot antenna with an arc-shaped slot on a ground	
	conductor (a) Fabricated antenna (b) Return loss characteristics	
	without slot on ground conductor	35

2.14	Geometry of unbalanced slot (a) Single element (b)Photograph of	
	fabricated 2x2 antenna array	36
2.15	Return loss of 2x2 arrays	37
2.16	Proposed Design (a) Geometry of circular patch antena with slits	
	and stub (5(b)) Return loss characteristics (a) Without slits and	
	stubs (b) With stub and without slits (c) With slit and without stub	
	(d) With slits and stubs	38
2.17	Proposed design (a) Front view (b) Return loss (c) Measured	
	copolarization radiation pattern in the xz-plane (i) proposed	
	antenna (ii) reference circular microstrip disk antenna	40
2.18	Geometry of design antenna (a) Circular patch antenna (i) Top	
	view (ii) Bottom view (b) Return loss	41
2.19	Rectangular patch antenna (a) Proposed design (i) Top view (ii)	
	Bottom view (b) Return loss	43
2.20	Proposed antenna design (a) Geometry of CP nearly-square patch antenna (b) Front view (c) Back view	44
2.21	Surface current plot of the proposed antenna	44
2.22	Minimum reflection coefficient (a) Simulated result (b)	
	Measurement result	45
2.23	Proposed antenna design (a) 3x3 slotted patches array (b)	
	Directivity	46
2.24	Proposed antenna design (a) Front view (b) Simulated and	
	measurement return loss of CRSA and proposed antenna	47
2.25	Various antennas designed for circularly polarization	51
2.26	Geometry of plus shape fractal slot antenna in proximity coupled	56
2.27	Evolution of plus shape fractal slot (a) First iteration (b) Second	
	iteration (c) Third iteration	56
2.28	Design geometry of H-shape defected ground structure (a) Back	
	view of antenna design (b) Equivalent LC model of H-shape DGS	
	(c) S_{21} parameter of LC equivalent model compared with that of	
	H-DGS	57
2.29	Distribution of surface current (a) Desired Frequency at 5.8 GHz	
	(b) Harmonic signals at 11.6 GHz	58

2.30	Simulated S21 characteristics compared for different DGS and stub	
	configurations	59
2.31	Geometry of proposed antenna (a) Front view (b) Geometry of	
	spur-line on the feed line (c) Simulation results of the reference	
	antenna and the proposed antenna	60
3.1	Flow chart of the project	65
3.2	Circuit representation of a single-mode antenna	68
3.3	Design layout for basic Circular Microstrip Antenna (CMA)	72
3.4	Geometry of Proximity Coupled Circular Microstrip Antenna (a)	
	Front view (b) Feed line view on the bottom substrate	73
3.5	Design geometry (a)Conventional microstrip rectangular patch antenna; (b) Improvement for the conventional patch antenna with proximity coupling for overall size reduction; (c) Layer stack-up in bottom view	75
3.6	View of transmission feed line; (a) Initial feed line, (b) Feed line with U slot, and (c) Combination of U slot and symmetrical arm of	75
3.7	Harmonic Suppression Antenna with Circularly Polarization	76
3.8	Geometry of 2x2 Antenna Array (a) Single element (b) Feed line	
	view (c) Front view (d) Back view with T-slot DGS	80
3.9	Basic LC structure of Butterworth filter (a) Lumped element (b)	
	Frequency response of the low pass filter (c) Microstrip structure	84
3.10	Fabricated 2x2 Antenna Array with Harmonic Suppression	
	Property (a) Front view (b) Back view	85
3.11	Measurement setup (a) Antenna gain (b) Radiation pattern	87
4.1	The simulated response of the single-mode antenna	89
4,2	EM Simulation results of microstrip patch antenna for single-mode	
	(2.45GHz)	89
4.3	Simulation results of equivalent ideal circuit antenna for single mode (2.45GHz)	00
11	Smith chart of single made antenns through EM simulation	90
4.5	Varying the length of the microstrin patch antenna through EM	90
7.2	simulation	00
46	Design Jayout for basic Circular Microstrin Antonna (CMA)	90
4.0	Botum lang a Etha bagia Circular Microstrip Antenna (CMA)	92
4.1	Return loss of the basic Circular Microstrip Antenna (CMA)	92

4.8	Reflection coefficients performances of initial antenna and antenna	
	with stub	94
4.9	Geometry of circular microstrip patch antenna with slits and stub	95
4.10	Reflection coefficients performances of the proposed antenna	95
4.11	Variation of width of slit	96
4.12	Impedance matching of circular microstrip antenna with slits and	
	stub	96
4.13	Directivity	97
4.14	Realized Gain	97
4.15	Antenna radiation pattern	98
4.16	Electric current distribution in antenna with harmonic suppression	
	(a) 2.45 GHz (b) 4.9 GHz (c) 7.35 GHz	98
4.17	Final printed circular microstrip antenna with harmonic	
	suppression (a) Front view (b) Back view	99
4.18	Measured and simulated reflection coefficient S11 for the CMA	
	with harmonic suppression	100
4.19	Geometry of Proximity Coupled Circular Microstrip Antenna (a)	
	Front view (b) Feed line view on the bottom substrate	102
4.20	Harmonic suppression performance with combination of two slots	102
4.21	Parametric studies on radius of patch	102
4.22	Optimization on width of feed line	103
4.23	Electric current visualization in proposed antenna harmonic	
	suppression (a) 2.45 GHz (b) 4.9 GHz (c) 7.35 GHz	104
4.24	Antenna Performance (a) Directivity (b) Realized gain	105
4.25	Antenna radiation pattern	105
4.26	Axial Ratio	105
4.27	The fabricated proximity coupled of circular patch antenna with	
	unbalanced slot	106
4.28	The comparison of minimum reflection coefficient S11 between	
	simulated and measurement result	106

4.29	Design geometry (a) Conventional microstrip rectangular patch	
	antenna (b) Improvement for the conventional patch antenna with	
	proximity coupling for overall size reduction (c) Layer stack-up in	
	bottom view	107
4.30	View of transmission feed line; (a) Initial feed line, (b) Feed line	
	with U slot, and (c) Combination of U slot and symmetrical arm of inverted U stub	100
4.31	Minimum reflection coefficients performances of the rectangular	103
-	patch in stacked configuration with harmonic rejection techniques	
	adopted on the feed line	110
4,32	Harmonic Suppression Antenna with Circularly Polarization	111
4.33	The simulated axial ratio of the proposed design	111
4.34	Minimum reflection coefficient of the proposed antenna harmonic	
	suppression with circularly polarization	113
4.35	Electric current distribution in proposed antenna structure (a) 2.45	1000
	GHz (b) 4.9 GHz (c) 7.35 GHz	113
4.36	Radiation pattern of the antenna design	113
4.37	Directivity and the gain of antenna design	114
4.38	Fabricated layout of antenna design (a) Single element (b) 2x1	
	array	115
4.39	Comparison of return loss S11 between simulation and	
	measurement result (a) Single element (b) 2x1 array antenna	116
4.40	Radiation Pattern of single element (a) Comparison of radiation	
	pattern both in simulation and measurement results at 2.45 GHz	
	(b) Measurement result at fundamental modes, second order and	
	third order	116
4.41	Bottom view of 2x2 antenna array	118
4.42	Configuration of 2x2 antenna array	118
4.43	Return Loss of Simulation Result	119
4.44	Electric current visualization at (a) 2.45 GHz (b) 3.24 GHz (c) 4.9	
	GHz (d) 7.35 GHz	119
4.45	Minimum Reflection Coefficient of 2x2 Arrays	120

xiii

4.46	The return loss of initial 2x2 arrays and array with T-slot DGS and		
	spurline	120	
4.47	Antenna Performance (a) Directivity (b) Total gain	121	
4.48	Prototype of the proposed antenna (a) Front view (b) Back view	122	
4.49	The simulated antenna performance with and without slot when air		
	gap configurations at 5 mm	123	
4.50	Simulated and measured return loss curves of the proposed		
	antenna	124	
4.51	Radiation Pattern for E-plane	126	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Spectrum Allocations in Malaysia	144
В	Data Sheet FR-4-86 UV Block	146

LIST OF ABBREVIATIONS

AIA	-	Active Integrated Antenna
AR	4	Axial Ratio
AUT	4	Antenna Under Test
CMA	÷	Circular Microstrip Antenna
СР	÷	Circular Polarization
DGS	÷	Defected Ground Structure
EM	÷	Electromagnetic
ISM	-	Industrial, Scientific and Medical
LHCP	÷	Left Hand Circular Polarization
RF	÷	Radio Frequency
RHCP	÷	Right Hand Circular Polarization
WPT	-	Wireless Power Transfer

xvi

LIST OF SYMBOLS

≅	~	Approximation	
α	÷	Bandwidth scaling factor	
С	-	Capacitance	
fo	-	Centre frequency	
λο	9	Centre frequency wavelength	
f_c	-	Cut-off frequency	
ε	-	Dielectric constant	
К		Impedance inverter	
L	-	Inductance	
δ	-	Loss tangent	
N	-	Number of order(s)	
R	-	Resistance	
fr	~	Resonant frequency	
с	-	Speed of light	
h	-	Substrate thickness	
λ	1	Wavelength	

xvii

LIST OF PUBLICATIONS

The research papers produced and published during the course of this research are as follows:

Journals:

Zainol, N., Zakaria, Z., Abu, M., and Mohamed Yunus, M., 2016. Harmonic Suppression Rectangular Patch Antenna with Circularly Polarized. *TELKOMNIKA (Telcommunication. Computing, Electronics and Control)*, 14(2). *(Scopus)*

Zainol, N., Zakaria, Z., Abu, M., Jawad, M.S., and Mohamed Yunus, M., 2016. A Compact Circular Microstrip Antenna with Harmonic Suppression at 2.45 GHz. *ARPN Journal of Engineering and Applied Sciences*, 11(6), pp. 3861-3865. (Scopus)

Zainol, N., Zakaria, Z., Abu, M., and Mohamed Yunus, M., 2016. A Circularly Polarized Harmonic-Rejecting Antenna at 2.45 GHz for Wireless Power Transfer. *ARPN Journal of Engineering and Applied Sciences*, 11(5), pp. 3143-3146. (Scopus)

Zainol, N., Zakaria, Z., Abu, M., Jawad, M.S., and Mohamed Yunus, M., 2015. A Review of Antenna Designs with Harmonic Suppression for Wireless Power Transfer. *ARPN Journal of Engineering and Applied Sciences*, 10(11), pp. 4842-4851. (Scopus)

xviii

Zainol, N., Zakaria, Z., Abu, M., and Mohamed Yunus, M., 2015. Current Development of Antenna Designs with Harmonic Suppression for Wireless Power Transfer. *Journal of Telecommunication, Electronic and Computer Engineering (JTEC)*, 7(2), pp. 7-12. (Scopus)

Jawad, M.S., Zainol, N., and Zakaria, Z., 2015. Energy-Harvesting Antenna Aids Wireless Sensors. *Microwaves and RF*, 54(7), pp. 49-54. (Scopus)

Conference paper:

Zainol, N., Zakaria, Z., Abu, M., and Mohamed Yunus, M., 2015. Stacked Patch Antenna Harmonic Suppression at 2.45 GHz for Wireless Power Transfer. In: *Proceedings of International Conference on Control System, Computing and Engineering, (ICCSCE)*, Penang, Malaysia, 27-29 November 2015. IEEE.