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ABSTRACT 

 

 

The wide use of non-linear loads, such as front-end rectifiers connected to the power 
distribution systems for DC supply or inverter-based applications, causes significant power 
quality degradation in power distribution networks in terms of current or voltage harmonics, 
power factor, and resonance problems. Many techniques have been proposed by the 
researchers to overcome these problems. One of the method is by using shunt active power 
filter (APF). This technique is an effective solution for reducing the current harmonics for 
low to medium power applications. Therefore, this research is targeted to design and 
implement a three-phase shunt APF employing Kalman filter estimator. The first step is 
designing the shunt APF circuit by deploying voltage source inverter (VSI). However, when 
using VSI the DC voltage needs to be maintained because its influence the real power 
conversion hence degrades the performance of the APF. Two methods are used to overcome 
this problem namely are conventional PI and PI-improved method. Both methods have been 
simulated under voltage variation and open circuit test. The results show that PI-improved 
voltage regulator produce better performance in reduction of the THD as the results reduce 
the surge current. On the other hands, three common controllers of the shunt APF for 
generation of reference current are compared and analysed to determine the best performance 
of THD reduction. Based on the results, the d-q reference current generator produces the 
lowest THD among others. Conventionally, low-pass filter (LPF) is used to filter out the 
unwanted DC component of the non-linear load to produce the sinusoidal waveform called 
reference current. However, when applying LPF it contribute with the phase shift and high 
transient at the supply current. Therefore, to reduce these problems, the digital Kalman filter 
estimator is used to replace the LPF for generating the reference current. Details 
investigation between conventional and proposed method under simulation based on Matlab 
simulink platform and experimental are made for three types of load namely three-phase 
rectifier with R-load, three-phase rectifier with RC-load and three-phase induction motor are 
presented. The performance criteria of the shunt APF are determined by the supply current 
waveform, THD, harmonics spectrum and power quality measurements were also obtained 
by simulation and experimental. In conclusion, by employing Kalman filter estimator for 
generating the reference current it reduce the time delay and high transient current at the 
power supply thus, improved the overall THD from 0.15% to 0.42% compared to the LPF.  
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ABSTRAK 

 

 

Penggunaan meluas beban tidak linear, seperti penerus hadapan dihubungkan dengan 
sistem pengagihan kuasa untuk bekalan DC atau aplikasi berasaskan inverter, menyebabkan 
kemerosotan kualiti kuasa ketara dalam rangkaian pengagihan kuasa dari segi harmonik 
pada arus atau voltan, faktor kuasa, dan masalah resonans. Banyak teknik yang digunakkan 
untuk mengatasi permasalahan ini. Salah satu teknik ialah dengan menggunakan penapis 
aktif jenis selari (APF). Teknik ini dianggap sebagai penyelesaian yang paling berkesan 
untuk mengurangkan arus harmonik bagi aplikasi kuasa rendah dan kuasa sederhana. Oleh 
itu, kajian ini disasarkan untuk mereka bentuk dan melaksanakan tiga fasa APF dalam 
keadaan selari menggunakan penganggar penapis Kalman. Kaedah penyelidikan ini adalah 
bermula dengan mereka bentuk APF selari menggunakan sumber voltan inverter (VSI). 
Walau bagaimanapun, apabila menggunakan VSI, voltan DC perlu dikekalkan kerana ianya 
mempengaruhi penukaran kuasa sebenar dengan itu merendahkan prestasi APF. Dua 
kaedah yang digunakan untuk mengatasi masalah ini. Pertama dengan menggunakan PI-
konvensional dan kaedah PI-penambahbaikan. Kedua-dua kaedah telah disimulasi di 
bawah keadaan perubahan voltan dan ujian litar terbuka. Keputusan menunjukkan bahawa 
kaedah PI-penambahbaikan pengatur voltan menghasilkan prestasi yang lebih baik dalam 
pengurangan THD serta mengurangkan lonjakan arus. Selain daripada itu, tiga jenis 
pengawal biasa untuk APF selari bagi penjanaan arus rujukan di bandingkan dan di analisis 
untuk menentukan jenis yang terbaik dalam menghasilkan THD yang paling rendah. 
Berdasarkan hasil keputusan, penjana semasa d-q telah menghasilkan THD paling rendah 
di kalangan yang lain. Penapis konvensional, laluan rendah (LPF) digunakan untuk 
menapis komponen DC yang tidak diingini bagi beban bukan linear bagi menghasilkan 
bentuk gelombang sinusoidal yang dipanggil arus rujukan. Walau bagaimanapun, LPF 
menyumbang kepada perubahan fasa dan lonjakkan arus yang tinggi pada arus bekalan. 
Oleh yang demikian, bagi mengurangkan masalah tersebut,  penapis digital penganggar 
Kalman digunakan bagi menggantikan LPF untuk menjana arus rujukan. Butiran siasatan 
antaranya kaedah konvensional dan dicadangkan di bawah simulasi berasaskan Matlab 
simulink platform dan eperimental dibuat untuk tiga jenis beban iaitu beban R, beban RC 
dan motor aruhan. Prestasi kriteria APF selari adalah ditentukan oleh bentuk gelombang 
arus bekalan, THD, spektrum harmonik dan pengukuran kualiti kuasa juga diperolehi oleh 
simulasi dan eksperimen. Kesimpulannya, dengan menggunakan penapis Kalman rujukan 
penganggar penjana arus ianya mengurangkan kelewatan masa dan lonjakkan arus pada 
bekalan dan secara langsung menambah baik keseluruhan THD antara 0.15 % sehingga 
0.42 % berbanding dengan LPF . 
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