

Faculty of Electrical Engineering

SHUNT ACTIVE POWER FILTER EMPLOYING KALMAN FILTER ESTIMATOR FOR HARMONICS REDUCTION

Ahmad Shukri Bin Abu Hasim

Doctor of Philosophy

2016

C Universiti Teknikal Malaysia Melaka

SHUNT ACTIVE POWER FILTER EMPLOYING KALMAN FILTER ESTIMATOR FOR HARMONICS REDUCTION

AHMAD SHUKRI BIN ABU HASIM

A thesis submitted in fulfilment of the requirements for the degree of Doctor Philosophy

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Shunt Active Power Filter Employing Kalman Filter Estimator for Harmonics Reduction" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	•	Ahmad Shukri Bin Abu Hasim
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	:	
Supervisor Name	:	Prof. Dr. Zulkifilie Bin Ibrahim
Date	:	

DEDICATION

Dedicated to my beloved parents, wife and family members for their love, patience and support throughout my life

ABSTRACT

The wide use of non-linear loads, such as front-end rectifiers connected to the power distribution systems for DC supply or inverter-based applications, causes significant power quality degradation in power distribution networks in terms of current or voltage harmonics. power factor, and resonance problems. Many techniques have been proposed by the researchers to overcome these problems. One of the method is by using shunt active power filter (APF). This technique is an effective solution for reducing the current harmonics for low to medium power applications. Therefore, this research is targeted to design and implement a three-phase shunt APF employing Kalman filter estimator. The first step is designing the shunt APF circuit by deploying voltage source inverter (VSI). However, when using VSI the DC voltage needs to be maintained because its influence the real power conversion hence degrades the performance of the APF. Two methods are used to overcome this problem namely are conventional PI and PI-improved method. Both methods have been simulated under voltage variation and open circuit test. The results show that PI-improved voltage regulator produce better performance in reduction of the THD as the results reduce the surge current. On the other hands, three common controllers of the shunt APF for generation of reference current are compared and analysed to determine the best performance of THD reduction. Based on the results, the d-q reference current generator produces the lowest THD among others. Conventionally, low-pass filter (LPF) is used to filter out the unwanted DC component of the non-linear load to produce the sinusoidal waveform called reference current. However, when applying LPF it contribute with the phase shift and high transient at the supply current. Therefore, to reduce these problems, the digital Kalman filter estimator is used to replace the LPF for generating the reference current. Details investigation between conventional and proposed method under simulation based on Matlab simulink platform and experimental are made for three types of load namely three-phase rectifier with R-load, three-phase rectifier with RC-load and three-phase induction motor are presented. The performance criteria of the shunt APF are determined by the supply current waveform, THD, harmonics spectrum and power quality measurements were also obtained by simulation and experimental. In conclusion, by employing Kalman filter estimator for generating the reference current it reduce the time delay and high transient current at the power supply thus, improved the overall THD from 0.15% to 0.42% compared to the LPF.

ABSTRAK

Penggunaan meluas beban tidak linear, seperti penerus hadapan dihubungkan dengan sistem pengagihan kuasa untuk bekalan DC atau aplikasi berasaskan inverter, menyebabkan kemerosotan kualiti kuasa ketara dalam rangkaian pengagihan kuasa dari segi harmonik pada arus atau voltan, faktor kuasa, dan masalah resonans. Banyak teknik yang digunakkan untuk mengatasi permasalahan ini. Salah satu teknik ialah dengan menggunakan penapis aktif jenis selari (APF). Teknik ini dianggap sebagai penyelesaian yang paling berkesan untuk mengurangkan arus harmonik bagi aplikasi kuasa rendah dan kuasa sederhana. Oleh itu, kajian ini disasarkan untuk mereka bentuk dan melaksanakan tiga fasa APF dalam keadaan selari menggunakan penganggar penapis Kalman. Kaedah penyelidikan ini adalah bermula dengan mereka bentuk APF selari menggunakan sumber voltan inverter (VSI). Walau bagaimanapun, apabila menggunakan VSI, voltan DC perlu dikekalkan kerana ianya mempengaruhi penukaran kuasa sebenar dengan itu merendahkan prestasi APF. Dua kaedah yang digunakan untuk mengatasi masalah ini. Pertama dengan menggunakan PIkonvensional dan kaedah PI-penambahbaikan. Kedua-dua kaedah telah disimulasi di bawah keadaan perubahan voltan dan ujian litar terbuka. Keputusan menunjukkan bahawa kaedah PI-penambahbaikan pengatur voltan menghasilkan prestasi yang lebih baik dalam pengurangan THD serta mengurangkan lonjakan arus. Selain daripada itu, tiga jenis pengawal biasa untuk APF selari bagi penjanaan arus rujukan di bandingkan dan di analisis untuk menentukan jenis yang terbaik dalam menghasilkan THD yang paling rendah. Berdasarkan hasil keputusan, penjana semasa d-q telah menghasilkan THD paling rendah di kalangan yang lain. Penapis konvensional, laluan rendah (LPF) digunakan untuk menapis komponen DC yang tidak diingini bagi beban bukan linear bagi menghasilkan bentuk gelombang sinusoidal yang dipanggil arus rujukan. Walau bagaimanapun, LPF menyumbang kepada perubahan fasa dan lonjakkan arus yang tinggi pada arus bekalan. Oleh yang demikian, bagi mengurangkan masalah tersebut, penapis digital penganggar Kalman digunakan bagi menggantikan LPF untuk menjana arus rujukan. Butiran siasatan antaranya kaedah konvensional dan dicadangkan di bawah simulasi berasaskan Matlab simulink platform dan eperimental dibuat untuk tiga jenis beban iaitu beban R, beban RC dan motor aruhan. Prestasi kriteria APF selari adalah ditentukan oleh bentuk gelombang arus bekalan, THD, spektrum harmonik dan pengukuran kualiti kuasa juga diperolehi oleh simulasi dan eksperimen. Kesimpulannya, dengan menggunakan penapis Kalman rujukan penganggar penjana arus ianya mengurangkan kelewatan masa dan lonjakkan arus pada bekalan dan secara langsung menambah baik keseluruhan THD antara 0.15 % sehingga 0.42 % berbanding dengan LPF.

ACKNOWLEDGEMENTS

All praise to Allah S.W.T., the creator and sustains of the universe and blessing and peace upon our prophet and leader, Prophet Muhammad SAW. It is my greatest experience to have an opportunity to complete my project.

First of all I would like to thank and acknowledge my supervisor, Professor Dr. Zulkifilie Bin Ibrahim for valuable guidance, help, patience, input, advice and support meant which proved to be invaluable as to the completion of this project.

I also want to thank my beloved laboratory friends, Mr. Md Hairul Nizam B. Talib, Mrs. Jurifa Bt. Mat Lazi, Mrs. Nurazlin Bt. Mohd Yaakop, Mrs. Siti Noormiza Bt. Mat Isa, Miss Raihana Bt. Mustafa, and Dr. Syed Mohd Fairuz B. Syed Mohd. Dardin for their encouragement, opinion, assistance, and patience throughout this research project. A million thanks to the lab technician, Mr. Sahril B. Bahar for helping for my hardware setup.

I would like to express gratitude to Universiti Pertahananan Nasional Malaysia (UPNM) and Ministry of Education for sponsor and giving me an opportunity to pursue my study. I would like to dedicate my special mention and acknowledgment to my beloved parents, Abu Hasim B. Ahmad and Jumalia Bt. Mat Hashim, and to my beloved wife, Norliza Bt. Md Yunus and all the family members who have been (and still are) giving constant support and encouragement during my study.

Finally, I also would like to thank all those helping and supporting me directly and indirectly during my project.

TABLE OF CONTENT

38

i
ii
iii
iv
vii
ix
xvii
xviii
XX
xxiii

CHAPTER

1	INT	RODUCTION	1
	1.0	Introduction	1
	1.1	Harmonics Filtering	1
		1.1.1 Another Technique for Harmonics Control	2
		1.1.2 Shunt Active Power Filter	4
	1.2	Background of Kalman Filter	4
	1.3	Motivation	5
	1.4	Problem Statement	5
	1.5	Research Objectives	6
	1.6	Contribution of Research	7
	1.7	Research Scope	7
	1.8	Organization of Thesis	8
2 LI	LIT	ERATURE REVIEW	10
	2.0	Introduction	10
	2.1	Power Quality Problem	10
	2.2	Harmonics	11
		2.2.1 Harmonics Distortion	12
		2.2.2 Source of Harmonics	15
		2.2.3 Effect of Harmonics	17
	2.3	Harmonic Minimization and Elimination Technique	19
		2.3.1 Passive Filter	20
		2.3.2 Active Power Filter	22
		2.3.3 Other types of techniques	27
	2.4	Harmonics Extraction and Estimation Techniques	30
		2.4.1 Harmonics Extraction Technique	30
		2.4.2 Estimation Approach	33
	2.5	Soft Computing Techniques	37

Soft Computing Techniques 2.5

2.5.1 Fuzzy Logic Algorithm

		2.5.2 Genetic Algorithm	39
	2.6	Pulse width Modulation (PWM) Control Scheme	40
		2.6.1 Carrier Control	40
		2.6.2 Hysteresis Current Control	41
		2.6.3 Space Vector Modulation	42
	2.7	Summary	43
3	RES	EARCH METHODOLOGY	44
	3.0	Introduction	44
	3.1	Research Methodology Flow Chart	44
	3.2	Standard Shunt Active Power Filter (APF)	47
		3.2.1 Types of Non-linear Loads	48
		3.2.2 Pulse Width Modulation (PWM) Schemes	51
		3.2.3 DC Voltage Regulation	57
		3.2.4 Reference Current Generation	67
	2.2	3.2.5 Three-phase shunt Active Power Filter	72
	3.3	Kalman Filter Condition	82
	3.4	Proposed Kalman Filter based Reference Current Generator	83
	2.5	3.4.1 Mathematical Expression of Kalman Filter	84
	3.5	Experimental Investigation	98
		3.5.1 Software Implementation	99
		3.5.2 MATLAD SIMULIIK MODEL 3.5.2 Control Dock	99 100
		2.5.4 Hardwara Implementation	100
	3.6	Summarv	101
4	SIM	ULATION AND EXPERIMENTAL INVESTIGATIONS	110
	4.0	Introduction	110
	4.1	Current Reference Generator	110
	4.2	Computational time	
	4.3	Simulation Result for Non-linear Loads	112
		4.3.1 Three-phase rectifier with R-load	113
		4.3.2 Inree-phase rectifier with RC-load	11/
	4 4	4.3.3 Shunt APF operation with induction motor drives	120
	4.4	Experimental Results	123
		4.4.1 Experimental result for three phase rectifier with PC load	124
		4.4.2 Experimental result for three-phase rectifier with KC-load	120
	4.5	Summary	132
_			
5	DISC	CUSSION OF RESULTS	139
	5.0	Introduction	139
	5.1	Low-Pass Filter Performance and Validation	139
		5.1.1 Harmonic spectrum	139
		5.1.2 I Otal Harmonics Distortion	143
	5 0	5.1.5 FOWER Quality Kalman Filter Estimator Derformance and Varification	144
	3.2	Nannan Filter Estimator Performance and Verification	151 151
		5.2.1 Transition 5.2.2 Total Harmonic Distortion	151 157
			154

		5.2.3 Power Quality	155
	5.3	Experimental Results: Low-Pass Filter versus Kalman Filter Estimator	160
		5.3.1 Harmonic Spectrum	161
		5.3.2 Total Harmonic Distortion	165
		5.3.3 Power Quality	165
	5.4	Summary	167
6	CON	ICLUSION AND SUGGESTIONS	169
	6.0	Conclusion	169
	6.1	Achievement of Research Objectives	171
	6.2	Significance of Research Outputs	173
	6.3	Suggestions for Future Work	174
REI	REFERENCES		176
API	PPENDICES		197

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Harmonics component	11
2.2	IEEE Standard 519 Limits for Harmonics Currents	14
2.3	Advantages and disadvantages of passive filter	20
2.4	Advantages and disadvantages of ANN-based methods	35
3.1	Hysteresis current controller for first leg inverter	55
3.2	Hysteresis current controller for second leg inverter	56
3.3	Hysteresis current controller for third leg inverter	56
3.4	THD at transition time for supply variation	64
3.5	THD for open circuit test	65
3.6	THD for extraction techniques	78
3.7	Percentage of THD of dynamic loads	80
3.8	THD analysis for fault system	81
3.9	Parameter of Kalman filter estimator	88
4.1	THD before and after compensation for three-phase rectifier with R-load.	117
4.2	THD before and after for three-phase rectifier with RC-load	120
4.3	THD before and after for induction motor load	123
4.4	THD of load current for three-phase rectifier with R-load	126
4.5	THD of supply current for non-linear RC-load	131
4.6	Comparison values between specification and measurement for stator inductance	134
4.6	THD of supply current for induction motor drive application	136

5.1	THD for low-pass filter in various types of loads	144
5.2	Power quality for three-phase rectifier with R-load	146
5.3	Power quality results for RC-load	148
5.4	Power quality results for induction motor	150
5.5	THD for Kalman filter estimator in various types of loads	155
5.6	Power quality for three-phase rectifier with R-load	156
5.7	Power quality results for RC-load	158
5.8	Power quality results for induction motor	159
5.9	Experimental result for low-pass filter and Kalman filter	165
5.10	Power quality for three-phase rectifier with R-load	166
5.11	Power quality results for RC-load	166
5.12	Power quality results for induction motor	167

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Fundamental with third harmonics	12
2.2	Combination between fundamental and third harmonics	12
2.3	Non-sinusoidal current waveform	13
2.4	Harmonics current source; (a) Thyristor rectifier, (b) Typical	16
	supply voltage and current waveform of thyristor rectifier	
2.5	Harmonics voltage source, (a) Full-wave diode rectifier, (b)	17
	Typical supply voltage and current of diode rectifier	
2.6	Passive tuned filters (a) Single tuned (b) Double tuned	21
2.7	Passive high-pass filters (a) First order (b) Second order (c) Third	21
	order	
2.8	Basic diagram of series APF	23
2.9	Basic diagram of parallel APF	24
2.10	Hybrid connection, (a) Series APF and parallel passive filter, and	26
	(b) Combination of APF in series with parallel passive filter	
2.11	Combination of parallel active and parallel passive filter	26
2.12	Basic circuit of unified power quality conditioner (Universal AF)	27
2.13	Block diagram for harmonics estimation using Adeline	36
2.14	Carrier Switching Generation	41
2.15	Hysteresis Switching Generation	42
3.1	Flow chart of the research methodology	45

3.2	Standard structure of Shunt APF	47
3.3	Three-phase rectifier with linear load	48
3.4	Figure 3.4: Harmonics spectrum of supply current, ISa	49
3.5	Three-phase rectifier with RLC-load	50
3.6	Harmonics spectrum of supply current, <i>I</i> _{Sa}	50
3.7	Three-phase inverter feeding induction motor	51
3.8	Harmonic spectrum of supply current, <i>I</i> _{Sa}	51
3.9	Modulation of Carrier Signal	53
3.10	Hysteresis current control for first leg of VSI	54
3.11	Three-phase voltage source inverter	55
3.12	Hysteresis band versus THD	56
3.13	Capacitor voltage step response for different values of K_p at	58
	<i>K</i> _{<i>i</i>} =0.3	
3.14	Shunt active power filter with PI-improve voltage regulator	59
	model	
3.15	Capacitor voltage step response at $K_p = 4$ and $K_i = 91$	60
3.16	Simulation result for supply voltage variation using conventional	62
	PI voltage regulator	
3.17	Simulation result for supply voltage variation using PI-improve	64
	voltage regulator	
3.18	Open circuit test for shunt active power filter with PI-improve	65
	voltage regulator model	
3.19	Open circuit test for PI-improve voltage controller	66
3.20	Design of <i>p</i> - <i>q</i> based reference current generator	68
3.21	Simulink model of <i>p</i> - <i>q</i> based reference current generator	68

x C Universiti Teknikal Malaysia Melaka

3.22	Design of modified <i>p</i> - <i>q</i> based reference current generator	70
3.23	Simulink model of modified <i>p-q</i> based reference current	70
	generator	
3.24	Design of $d-q$ based reference current generator in stationary	71
	reference frame	
3.25	Simulation model of d-q based reference current generator	72
3.26	Typical design of shunt APF	73
3.27	Simplified system under steady state condition	74
3.28	Supply current waveforms without shunt APF	76
3.29	Supply current waveform based on 10 kHz carrier PWM	77
3.30	Supply current waveform based on hysteresis PWM	77
3.31	Harmonics spectrum for different reference current generators	78
	based on hysteresis PWM	
3.32	APF operation with induction motor	79
3.33	Waveform under fault analysis	81
3.34	Measurement noise versus normal probability distribution	82
	function	
3.35	Process noise versus normal probability distribution function	83
3.36	Proposed three-phase reference current generator employing	84
	Kalman filter estimator	
3.37	Kalman Filter harmonics estimation with the inner control loop	85
	of the <i>d</i> - <i>q</i> current; (a) <i>d</i> -axis component, (b) <i>q</i> -axis component	
3.38	Kalman <i>d</i> -axis filtered current algorithm	88
3.39	Discrete Kalman Filter	89
3.40	d-axis and q-axis before and after Kalman filter estimator	90

3.41	Supply current waveform (phase A) at $Q = 1e-3$	91
3.42	Supply current waveform (phase A) at $Q = 1e-6$	91
3.43	Supply current waveform (phase A) at $Q = 1e-8$	91
3.44	Harmonic spectrum of shunt APF using Kalman filter-based	92
	estimator for variation of process noise covariance	
3.45	Graph THD versus Q values at balance condition	93
3.46	Speed operation of the induction motor	94
3.47	Supply current waveform (phase A) for dynamic load at Q ; (a) 1,	95
	(b) 1e-5, (c) 1e-6, and (d) 1e-8	
3.48	Graph THD versus Q values for dynamic load	96
3.49	Harmonic spectrum of dynamic load	96
3.50	Supply voltage and current during the voltage supply variation	97
3.51	Supply current (phase A) under voltage supply variation	97
3.52	Configuration for the experimental setup	99
3.53	Control Desk layout	101
3.54	Voltage source inverter experimental realization scheme	103
3.55	Current transducer circuit	105
3.56	Voltage transducer circuit	106
3.57	Hardware configuration	107
3.58	Block diagram of hardware implementation for shunt APF	108
	feeding induction motor	
4.1	Reference current generator	111
4.2	Computational time versus THD	112
4.3	Three-phase supply current before compensation for R-load	114

4.4	Harmonic spectrum of supply current for three-phase rectifier	114
	with R-load without shunt APF	
4.5	Simulation result for three-phase supply currents waveform	115
4.6	Harmonic spectrum for shunt APF with low-pass filter and shunt	116
	APF with Kalman filter estimator	
4.7	Supply current waveform for RLC without shunt APF	117
4.8	Harmonic supply current spectrum of RLC-load without shunt	118
	APF	
4.9	Three-phase supply current simulation result of RLC-load with	118
	shunt APF	
4.10	Harmonic spectrum of supply current between low-pass filter	119
	and Kalman filter estimator for RLC-load	
4.11	Simulation result for three-phase dynamic supply current without	121
	shunt APF	
4.12	Harmonics spectrum of supply current without shunt APF	121
4.13	Simulation result for three-phase dynamic supply current with	122
	shunt APF	
4.14	Harmonic spectrum of supply current between low-pass filter	123
	and Kalman filter estimator	
4.15	Supply current without shunt APF for three-phase rectifier with	124
	R-load	
4.16	Supply current with shunt APF for three-phase rectifier with R-	124
	load	
4.17	Experimental result of supply current for three-phase rectifier	125
	with R-load without applying shunt APF	

xiii C Universiti Teknikal Malaysia Melaka

4.18	Experimental harmonic spectrum between low-pass filter and	126
	Kalman filter estimator for three-phase rectifier with R-load	
4.19	Comparison between without applying shunt APF and IEEE 519	127
	standard	
4.20	Comparison between applying shunt APF and IEEE 519	127
	standard	
4.21	Non-linear supply current waveform	128
4.22	Harmonic spectrum of supply current	129
4.23	Supply current waveform after compensation	129
4.24	Harmonic spectrum of supply current when applying shunt APF	130
4.25	Harmonic spectrum of supply current based on low-pass filter	130
	and Kalman filter without fundamental harmonic	
4.26	Comparison between without applying shunt APF with IEEE	132
	519 standard	
4.27	Comparison between applying shunt APF with IEEE 519	132
	standard	
4.28	Supply current waveform without shunt APF	133
4.29	Harmonic spectrum without shunt APF	133
4.30	Supply current when applying shunt APF with Kalman filter	135
	estimator	
4.31	Harmonics spectrum of supply current between low-pass filter	136
	and Kalman filter estimator	
4.32	Comparison between without applying shunt APF with IEEE	137
	519 standard	

- 4.33 Comparison between applying shunt APF with IEEE 519 137 standard
- 5.1 Harmonic spectrum of three-phase rectifier with R-load from 140 simulation and experimental work
- 5.2 Harmonic spectrum of three-phase rectifier with RLC-load from 141 simulation and experimental work
- 5.3 Harmonic spectrum for three-phase induction motor from 142 simulation and experimental work
- 5.4 Real and reactive power without and with shunt APF for three- 147 phase rectifier with R-load
- 5.5 Real and reactive power without and with shunt APF 149
- 5.6 Real and reactive power without and with shunt APF for 150 induction motor load
- 5.7 Harmonic spectrum of three-phase rectifier with R-load from 152 simulation and experimental work
- 5.8 Harmonic spectrum of three-phase rectifier with RLC-load from 153 simulation and experimental work
- 5.9 Harmonic spectrum for three-phase induction motor from 154 simulation and experimental work
- 5.10 Real and reactive power before and after compensation for three- 157 phase rectifier with R-load
- 5.11Real and reactive power before and after compensation for three-159phase rectifier with RLC-load
- 5.12 Real and reactive power for induction motor 160

- 5.13Experimental harmonic spectrum between low-pass filter and162Kalman filter estimator for three-phase rectifier with R-load
- 5.14 Harmonic spectrum between low-pass filter and Kalman filter 163 estimator for three-phase rectifier with RLC-load
- 5.15 Experimental harmonic supply current spectrum between low- 164 pass filter and Kalman filter estimator

LIST OF APPENDICES

TABLE	TITLE		
А	Induction Motor Parameter	197	
В	Carrier PWM Generator	198	
С	Hysteresis Current Control	199	
D1	Harmonics spectrum for three-phase rectifier with R-load without	200	
	shunt APF		
D2	Harmonics spectrum for three-phase rectifier with R-load with	201	
	shunt APF		
D3	Harmonics spectrum for three-phase rectifier with RC-load	202	
	without shunt APF		
D4	Harmonics spectrum for three-phase rectifier with RC-load with	203	
	shunt APF		
D5	Harmonics spectrum for IM drive without shunt APF	204	
D6	Harmonics spectrum for IM drive without shunt APF	205	

LIST OF ABBREVIATIONS

AC	-	Alternating Current
ANN	-	Artificial Neural Network
APF	-	Active Power Filter
ARAMA	-	Autoregressive Moving Average
CMLI	-	Cascaded Multi Level Inverter
CZT	-	Chirp z-transform
DC	-	Direct Current
DFT	-	Discrete Fourier Transform
DSP	-	Digital Signal Programming
ESPRIT	-	Estimation of Signal Parameter
GA	-	Genetic Algorithm
HB	-	Hysteresis Band
НСС	-	Hysteresis Current Control
HHT	-	Hilbert-Huang Transform
IGBT	-	Insulating Gate Bipolar Transistor
LPCM	-	Linear Peak Current Mode
MUSIC	-	Multiple Signal Classification
NLC	-	Non-linear Carrier
NLL	-	Non-linear Load
PC	-	Personal Computer
PCC	-	Point of Common Coupling
PFC	-	Power Factor Correction

xviii C Universiti Teknikal Malaysia Melaka

PHD	-	Pisarenko harmonics decomposition
PI	-	Proportional Integral
PLL	-	Phase Lock Loop
PWM	-	Pulse Width Modulation
RTI	-	Real Time Interface
RTW	-	Real Time Workshop
SHE	-	Selective Harmonics Elimination
SRF	-	Stationary Reference Frame
STATCOM	-	Static Synchronous Compensator
SVM	-	Space Vector Modulation
THD	-	Total Harmonics Distortion
VSI	-	Voltage Source Inverter
WT	-	Wavelet Transform