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ABSTRACT 

 

 

Advancements in microprocessors and other high power electronics have resulted in 
increased heat dissipation from those devices. In addition, to reduce cost, the functionality 
of microprocessor per unit area had been increasing. The increase in functionality 
accompanied by reduction in chip size had caused its thermal management to be 
challenging. In order to dissipate the increase in heat generation, the size of conventional 
microchannel heat sinks had to be increased. As a result, the performance of these high heat 
flux generating electronics was often limited by the available cooling technology and space 
to accommodate the larger conventional microchannel heat sink. One way to enhance heat 
transfer from electronics without sacrificing their performance was the use of heat sink with 
many microchannels and liquid passing through it recently, the microchannel heat sink have 
been widely used to transfer heat from the microprocessors in the computer industry. As the 
heat flux increases, the thin film evaporation occurring in the evaporator plays a key role in 
a heat transfer. It had been shown that most of the heat input to the evaporator of the 
microchannel heat sink was transferred through the evaporating thin film region. A better 
understanding of heat transfer characteristics in the evaporating thin film region will lead to 
develop new equation in the thin film region and enhancing the evaporating heat transfer in 
the heat pipe. An analytical model describing thin film evaporation was developed including 
the thin film interface and disjoining pressure. A mathematical equation was then developed 
to investigate the effect of heat flux on film thickness in the thin film evaporation region. 
Results are provided for liquid film thickness, total heat flux, and evaporating heat flux 
distribution. In addition to the sample calculations that were used to illustrate the transport 
characteristics. The calculated results from the current model match closely with those of 
analytical results of Wang et al. (2008) and Wayner jr. et al. (1976). This work will lead to 
a better understanding of heat transfer and fluid flow occurring in the evaporating film 
region and develop an analytical equation for evaporating liquid film thickness.numerical 
analysis and experimental tests to predict the heat transfer and chf are the focus of this work. 
The experimental test section had three microchannels with having of 30 mm x 25.4 mm x 
53.34 mm in size. The effect of flow instabilities in microchannels was investigated of each 
microchannel to stabilize the water flow boiling process. Water flow boiling was 
investigated in this study using degassed, deionized water in an aluminum, copper and a 
graphene rectangular microchannel with a hydraulic diameter of 540 µm and 426 µm for Re 
650-3000. The power input was adjusted for constant heat flux (630-520) kw/m2 for each 
flow rate. High speed images were taken periodically for water flow boiling. The change in 
regime timing revealed the effect of deposition on the onset of nucleate boiling (ONB) cycle 
duration and bubble frequencies are reported for different flow boiling durations. The 
addition bubble formation was found to stabilize bubble nucleation and growth and limit the 
recession rate of the upstream and downstream interfaces, mitigating the spreading of dry 
spots and elongating the thin film regions to increase thin film evaporation. 
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ABSTRAK 

 

 

Kemajuan mikropemproses dan alat elektronik berkuasa tinggi telah meningkan 
pembebasan haba daripada peranti-peranti yang menggunakannya. Disamping itu, fungsi 
mikropemproses bagi setiap keluasan unit juga bertambah demi mengurangkan kos. 
Peningkatan yang berlaku disebabkan oleh pengurangan saiz cip ini memberi cabaran 
untuk menguruskan haba yang dilepaskan. Saiz sinki haba saluran mikro konvensional 
perlu diperbesarkan untuk membebaskan pertambahan haba yang dijana. Fluks haba tinggi 
yang dijana oleh alatan elektronik ini memberi kesan terhadap prestasi disebabkan oleh 
teknologi penyejukan dan ruang untuk memuatkan sinki haba saluran mikro konvensional 
sedia ada yang terlalu terhad. Satu kaedah untuk memperbaiki pemindahan haba daripada 
alatan elektronik tanpa perlu mengorbankan prestasinya adalah dengan penggunaan sinki 
haba yang mempunyai banyak saluran mikro serta mengalirkan cecair padanya. Sejak itu, 
sinki haba saluran mikro digunakan secara meluas untuk memindahkan haba 
mikropemproses dalam industri komputer. Disebabkan oleh fluks haba meningkat, 
pengewapan lapisan nipis yang berlaku di dalam penyejatan memainkan peranan penting 
dalam pemindahan haba. Ini telah dibuktikan bahawa kebanyakan input haba sejatan yang 
berlaku pada sinki haba saluran mikro dipindahkan ke kawasan lapisan nipis penyejatan. 
Memahami tentang ciri pemindahan haba yang lebih baik dalam kawasan lapisan nipis 
sejatan dapat menghasilkan persamaan baru untuknya dan meningkatkan sejatan haba 
yang dipindahkan di dalam paip haba. Model analisis yang menerangkan tentang lapisan 
nipis sejatan telah dibangunkan dan permukaan lapisan nipis serta tekanan tak searas turut 
dihuraikan. Satu persamaan matematik dilakukan untuk menyiasat tentang kesan fluks haba 
pada ketebalan lapisan dalam kawasan lapisan nipis sejatan. Hasilnya adalah termasuk 
ketebalan lapisan cecair, jumlah fluks haba, dan penyebaran fluks haba yang tersejat. Ini 
adalah tambahan kepada contoh pengiraan yang digunakan untuk menggambarkan ciri 
pengangkutannya. Hasil kiraan daripada model terbaru hampir sama dengan keputusan 
analisis oleh Wang et al. (2008) dan Wayner jr. et al. (1976). Usaha ini memberi 
pemahaman yang lebih baik tentang pemindahan haba dan aliran cecair yang berlaku 
dalam kawasan lapisan sejatan serta menghasilkan persamaan analisis ketebalan lapisan 
cecair yang tersejat. Analisis berangka dan ujian eksperimen pada pemindahan haba dan 
chf adalah fokus kerja ini. Bahagian ujian eksperimen mengandungi tiga saluran mikro 
dengan saiz 30 mm x 25.4 mm x 53.34 mm. Kesan aliran yang tidak stabil dalam saluran 
mikro diselidik untuk mengesan proses didihan aliran air yang stabil. Dalam ujikaji ini, 
didihan aliran air dikaji dengan menggunakan air terion dan dinyahgas di dalam saluran 
mikro bersegi empat daripada aluminum, tembaga dan grafen berserta hidraulik 
berdiameter 540 µm dan 426 µm untuk Re 650-3000. Input tenaga diselaraskan untuk fluks 
haba yang sama (630-520) kw/m2 bagi setiap kadar aliran. Imej berkelajuan tinggi diambil 
dari semasa ke semasa untuk didihan aliran air. Perubahan terhadap masa menerangkan 
kesan pemendapan pada permulaan tempoh kitaran nukleat didihan (ONB) dan frekuensi 
gelembung bagi tempoh didihan aliran yang berbeza juga  
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