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ABSTRACT 

 

 

Laminated rubber-metal bearing has been well-known as a vibration isolator to dissipate 
vibration energy. However, most of existing works on the bearing especially the 
mathematical models consider only the performance of the bearing due to the static force. 
The main objective of this study is therefore to develop mathematical model to 
characterize the isolation performance of the bearing; called here laminated rubber-metal 
spring (LRMS). Mathematical models for ‘transmissibility’ are developed by using three 
different approaches: (i) lumped parameter system, (ii) distributed parameter system and 
(iii) discrete lumped parameter system. The first approach uses assumption of massless 
rubber, where the rubber layers are simply modelled by using spring and damper elements. 
The second approach employs impedance technique derived from wave propagation across 
a cylindrical rubber. In this approach, the internal resonances can be predicted. And the 
third approach uses a method of dividing a rubber layer into multiple elements of masses 
and springs in order to predict the equivalent internal resonance as in the second approach. 
It is found that by adding more metal plates in the rubber, more resonances exist in the 
transmissibility which can degrade the isolation performance. However, the isolation at 
high frequencies is improved compared with that of the spring without embedded metal 
plates. The resonances can be reduced by adding more damping to the rubber. For the 
experimental work, the LR-MS samples with five different number of embedded metal 
plates were fabricated using Standard Malaysian Rubber Constant Viscosity (SMR-CV). A 
test rig for this purpose was also fabricated based on international standards. The measured 
data of force transmissibility shows good agreement with the proposed mathematical 
model. Last but not least, there parametric study is also discussed in this thesis. 
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ABSTRAK 

 

 

“Laminated rubber-metal spring (LR-MS)” telah dikenali sebagai pemencil getaran, 
bertujuan untuk menghalang pergerakan tenaga getaran. Pemencil getaran pada masa 
kini hanya mempunyai model matematik untuk mengkaji prestasi pemencil getaran pada 
daya statik sahaja. Oleh yang demikian, pembangunan model matematik daya dinamik 
masih jauh ketinggalan. Model matematik untuk kebolehpindahan dibangunkan dengan 
menggunakan tiga pendekatan yang berbeza: (i) sistem parameter teragih dan (ii) sistem 
parameter tergumpal diskret. Pendekatan pertama menggunakan andaian getah tanpa 
jisim, di mana lapisan getah hanya dimodelkan dengan menggunakan unsur pegas dan 
peredam. Pendekatan kedua menggunakan teknik galangan dari perambatan gelombang 
untuk silinder getah. Dalam pendekatan ini resonan dalaman boleh diramalkan. Untuk 
kaedah ketiga, lapisan getah dibahagikan kepada elemen kecil yang dikenali sebagai jisim 
dan peregas, ini bertujuan untuk menjangka salunan dalaman yang terhasil dari kaedah 
kedua. Dapat disimpulkan bahawa apabila menambah kepingan logam di dalam getah, 
salunan dalaman yang terhasil telah bertambah. Salunan dalaman ini akan mengurangkan 
prestasi pemencil getaran. Pada frekuensi tinggi, prestasi pemencil getaran dapat 
ditingkatkan dengan memasukkan kepingan logam ke dalam getah. Salunan dalaman 
dapat dikurangkan apabila nilai kepingan logam ditambah. Di dalam eksperiman, sampel 
LR-MS telah di bangunkan dengan menggunakan “Standard Malaysian Rubber Constant 
Viscosity (SMR-CV)”. Sebanyak lima sampel berjaya dibangunkan, di mana setiap sampel 
mempunyai nilai kepingan logam yang berlainan. Pelantar ujian telah dibangunkan 
dengan rujukan piawaian antarabangsa. Hasil keboleh-pindaan daripada eksperimen 
telah dibandingkan dengan model matematik, dan hasilnya adalah menyokong antara satu 
sama lain. Analisis parameter turut di jalankan di dalam kajian ini.  
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