

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Mechanical Engineering

THE BIOMECHANICAL EFFECT OF HUMAN WEIGHT ON SPINAL FACET JOINTS USING FINITE ELEMENT ANALYSIS

Raed Ali Mohammad

Master of Mechanical Engineering (Applied Mechanics)

2016

THE BIOMECHANICAL EFFECT OF HUMAN WEIGHT ON SPINAL FACET JOINTS USING FINITE ELEMENT ANALYSIS

RAED ALI MOHAMMAD

A dissertation submitted in fulfillment of the requirements for the degree of Master of Mechanical Engineering (Applied Mechanics)

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this dissertation entitles "The Biomechanical Effect Of Human Weight On Spinal Facet Joints Using Finite Element Analysis" is the result of my own research except as cited in the references. The dissertation has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:	S
Name	ŧ	Raed Ali Mohammad
Date:	:	4/7/2016

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this dissertation and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Mechanical Engineering (Applied Mechanics).

Signature

Supervisor Name

Date:

DR. MOHD JUZAILA BIN ABD LATIF Pensyarah Kanan Fakulti Kejuruteraan Mekanikal Universiti Teknikal Malaysia Melataf : Mohd Juzaila bin Abd. Eataf 01/08/2016

DEDICATION

This dissertation work is dedicated to my Parents; My father (Ali Mohammad), you have always been an inspiration to me, you set a great example for me, when I think back of the sacrifices you made then I know that you gave most precious gift for me.

My mother, who put up with me for all these years. Throughout the years, you've always been by my side; I can face anything with you by my side.

My wife, who has supported and encouraged me, you're so creative. You give a lot, and i appreciate how much you give.

For my sons; Bahaa, Akram, Hussam, Bassam, my brother and sister, and my big family, i ask "Allah" to protect you all; you are good examples have taught me to work hard for the things that I aspire to achieve.

🔘 Universiti Teknikal Malaysia Melaka

ABSTRACT

Many important medical associations define obesity as a disease. Being overweight or obese is a serious disorder that affects human spine. Obesity is a contributing factor to back pain due to changing for the mechanical properties as a result to the over loading. Hence, being overweight or obese can significantly contribute to symptoms associated with osteoarthritis (OA), facet joint arthritis, degenerative disc disease (DDD), spinal stenosis, and spondylolisthesis. However, the facet joint behavior regarding the body weight effects under separate loadings or the responses to the compressive loads in the discs need to be identified. Moreover, using cadaveric specimens in biomechanics testing of the lumbar spine restricted with a difficulty in acquiring the disc pressure, bone strain and facet joint contact pressure. While, simulation model looks into all of these disadvantages. Thus, the goal of the current study was to develop a method to simulate the biomechanics of the lumbar spine, and to delve into the effect of obesity on the intervertebral discs and facet joint in addition to provide the system analysis of the spine between multi body weights. The finite element analysis results will highlight significant differences if the model adopted is performed under different material properties, geometries, loading modes or other conditions. A process is currently in use to transform a CT scan of a lumbar spine into a simulation model. The process includes changing the CT scan to a geometry file and creating a mesh of the bone and soft tissue, and assigning material properties to each bone element based on the bone density. Lumbar spine models was developed and verified with previous studies. The finite element model was subjected to follower compression load of 500 N, 800 N and 1200 N to represent the load case of normal, overweight and obese with a combination of pure moments of 7.5 Nm in flexion and extension. The results highlight the fact that in all loadings case of (normal, overweight and obese people), there are high distributions of stress in both L4 and L5 and so on the intervertebral discs. Increasing the human weight was in turn increasing the nucleus pulposus pressures and annulus fibrosus stresses. Intradiscal pressures in the nucleus pulposus were increased more noticeably with flexion than with extension. With regard to the facet joint forces, flexion resulted in a larger facet force in the superior facet joints than that in the inferior facet joints at the same level and in extension was 21% more than flexion motion, and both of them were in increment at over and obese person weight. Moreover, it also appeared that the influence of the magnitude of normal body weight loads on the facet force was less important than that due to overweight and obese weight. This model also can serve to simulate the implants performance including the total disc replacement and fusion techniques.

ABSTRAK

Banyak persatuan perubatan mendefinasikan obesiti sebagai satu penyakit. Berat badan vang berlebihan adalah gangguan serius yang boleh menjejaskan tulang belakang manusia. Obesiti adalah satu faktor yang menyumbang kepada sakit belakang kerana perubahan bagi sifat-sifat mekanikal akibat pembebanan berlebihan. Oleh itu, berat badan berlebihan atau obes boleh menyumbang kepada penyakit yang dikaitkan dengan osteoartritis (OA), facet arthritis sendi, penyakit cakera degeneratif (DDD), stenosis tulang belakang, dan spondylolisthesis. Walau bagaimanapun, kesan berat badan terhadap sambungan facet di bawah beban yang berasingan atau beban mampatan dalam cakera perlu dikenal pasti. Selain itu, dengan menggunakan spesimen dalam ujian biomekanik tulang belakang lumbar terhad dengan kesukaran dalam memperolehi tekanan cakera, ketegangan tulang dan aspek tekanan. Penggunaan kaedah model simulasi dapat menyelesaikan semua kelemahan ini. Oleh itu, matlamat kajian ini adalah untuk membangunkan satu kaedah untuk mensimulasikan biomekanik tulang belakang lumbar, dan untuk menyelidik kesan obesiti pada cakera intervertebral dan aspek bersama di samping menyediakan analisis sistem tulang belakang di antara pelbagai badan berat. Keputusan analisis unsur terhingga akan memberi keputusan yang signifikan jika model yang menggunakan sifat bahan, geometri, mod pemuatan atau syarat-syarat lain yang berbeza. Ini termasuk proses yang digunakan untuk mengubah imbasan CT daripada tulang belakang lumbar ke dalam model simulasi. Proses ini menukar imbasan CT ke dalam fail geometri dan mewujudkan jaringan tulang dan tisu lembut, dan memberikan sifat bahan untuk setiap elemen tulang berdasarkan kepadatan tulang. Model tulang belakang lumbar yang telah dibangunkan dan disahkan dengan kajian sebelumnya. Model unsur terhingga adalah tertakluk kepada beban mampatan 500 N, 800 N dan 1200 N untuk mewakili kes beban normal, berat badan berlebihan dan obes dengan gabungan momen tulen 7.5 Nm dalam keadaan membengkok ke hadapan dan belakang. Keputusan menunjukkan bahawa, terdapat pengagihan tinggi tekanan dan ketegangan di kedua-dua L4 dan L5 dan pada cakera intervertebral dalam ketiga-tiga beban sebelumnya (normal, berat badan berlebihan dan obes). Meningkatkan berat badan akan meningkatkan tekanan nukleus pulposus dan tekanan anulus fibrosus. Tekanan Intradiscal dalam pulposus nukleus meningkat lebih di dalam keadaan membengkok ke hadapan berbanding dengan membengkok ke belakang. Berhubung dengan daya pada facet, bengkokan ke hadapan menyebabkan daya yang lebih besar pada sendi facet sebanyak 21% berbanding bengkokan belakang di dalam keadaan obes. Model ini juga boleh berfungsi untuk mensimulasikan prestasi implan termasuk jumlah teknik penggantian cakera dan fusion.

ACKNOWLEDGMENT

First my praise is to the Almighty "Allah", on whom we ultimately depend. Then, I would like to sincerely thank my supervisor Dr. Mohd Juzaila Abdul Latif for their guidance, advices, and support. Without his valueable assistance, this work would not have been completed. I am also indebted to my friends for them contributions. My acknowledgment also goes to UTeM university, and especially faculity of mechanical engineering.

Most importantly, I am forever grateful my family who understands the importance of this work, none of this would have been possible without their patience and lend a hand.

iii

TABLE OF CONTENTS

		PAG	GE
DE	CLA	RATION	
AP	PRO	VAL	
DE	DICA	TION	
AB	STRA	АСТ	i
AB	STR/	K	ii
AC	KNO	WLEDGMENT	iii
TA	BLE	OF CONTENTS	iv
LIS	ST OF	TABLES	vi
LIS	ST OF	FIGURES	viii
LIS	ST OF	APPENDICES	xii
LIS	ST OF	ABBREVIATIONS	xiii
LIS	ST OF	SYMBOLS	xvi
СН	APT	ER	
1.	INT	RODUCTION	1
	1.1	Research background	1
	1.2	Problem statement	2
	1.3	Objective	3
	1.4	Scope	3
	1.5	Significance of study	4
2.	LIT	TERATURE REVIEW	5
	2.1	Introduction	5
	2.2	Human Spine	6
		2.2.1 Structural anatomy of the human spine	6
		2.2.2 Anatomy of the human lumbar spine	7
	2.3	Vertebral body	9
		2.3.1 Posterior elements	10
		2.3.2 Vertebral body specifications	11
	2.4	Intervertebral disc	11
		2.4.1 Structure	12
		2.4.2 The structure compositional ratio	14
	2.5	Ligament	15
	2.6	Muscles	18
	2.7	Facet joint	18
	2.8	Biomechanics of lumbar spine	19
		2.8.1 Lumbar functional spinal unit	22
		2.8.2 Biomechanics of the vertebral body	23
		2.8.3 Biomechanics of the intervertebral disc	24
		2.8.4 Biomechanics of the Ligaments and the annulus fibrous and muscles	26
		2.8.5 The mechanical behavior of Facet Joints	27
	2.9	Low back pain	28
		2.9.1 Facet joints related to low back pain	29
		2.9.2 Treatments	31
	2 10	Obesity and low back pain	37
	2.10	2.10.1 The effect of weight on lumbar Spine and intervertebral disc	39
		2.10.2 Degeneration of Facet Joints and Osteoarthritis	40
	2.11	Computational method	43
			1.64

		2.11.1	Finite element modelling of spine	43
		2.11.2	2 Material properties of human lumbar spine	45
		2.11.3	Range of motion of lumbar spine models	48
		2.11.4	Pressure of intervertebral disc in lumbar spine	49
		2.11.5	Stress analysis in respective model	51
	2.12	Resea	arch gap of knowledge	54
3	ME	тно	DOLOGY	55
5.	3 1	Intro	duction	55
	3.2	Deve	elopment of 3-D model of lumbar spine	55
	33	Devl	opment of soft tissues FE model in lumbar spine	58
	0.0	331	Intervertebral disc	58
		3.3.2	Facet joint and Cartilage modeling	60
	3.4	Deve	lopment of Finite element model of the lumbar spine	61
		3.4.1	Element type	64
		3.4.2	Material properties	67
		3.4.3	Boundary and Loading Conditions	67
	3.5	Verifi	ication of the finite element model	68
		3.5.1	Intersegmental rotations of the lumbar spine	69
		3.5.2	Interstitial pressure of intervertebral disc	69
		3.5.3	Validation of the follower load condition	69
	3.6	Cases	study: The effect of human weight	70
4.	RE	SULT	S AND DISCUSSION	71
	4.1	Over	view	71
	4.2	Verif	ication of lumbar spine model	71
		4.2.1	Intersegmental Rotations of Lumbar Spine	72
		4.2.2	Intervertebral Disc	74
	4.3	Verif	ication of the follower load condition	76
	4.4	Biom	echanical effects of human weight on intact lumbar spine model	77
		4.4.1	The effects of human weight on the kinematics of lumbar spine	77
		4.4.2	The effects of human weight on the Intradiscal pressure of the nucleous	80
		4.4.3	The effects of human weight on the annulus stress of the intervertebral disc	83
		444	The effects of human weight on the facet joint force	85
	4.5	Sum	nary	87
5.	CO	NCLU	ISIONS AND RECOMMENDATIONS FOR FUTURE	
	RE	SEAR	СН	88
	5.1	Conc	lusion	88
	5.2	Reco	mmendations for future research	89
RE	FERF	ENCES	5	91
AP	PEND	DIX A	Vertebrae Angles	107
AP	PEND	DIX B	FSU model dimensions details	108
AP	PEND	DIX C	Model Specification	111
AP	PEND	DIX D	Comparing the present Range of motion with a female ROM	114
AP	PEND	DIX E	Intervertebral disc and nucleus pulposus height for	115
var	ious l	umbar	spine levels	

V

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	BMI is indicator of body fat for most weight categories.	38
2.2	Material Properties had been modelled for FE Lumbar Spine model in previous studies.	44
2.3	Material properties for the FE models of lumbar vertebral cancellous bone in previous studies.	45
3.1	Element types and number of elements used in components of the spine.	65
3.2	Examples of linear elements often used in spine modelling. Nodes are represented by squares and integration points by crosses.	66
3.3	Material properties used in the osseoligamentous lumbar spine model.	67

vi

LIST OF FIGURES

FIGURE	TITLE	PAGE	
2.1	Schematic of the Human Spine.		
2.2	Schematic for Normal anatomy of the facet joint and IVD in a	8	
	vertebral column. A. Sagittal view of segments L1-L5; B. Sagittal		
	view; C-D. Coronal views; E-F. Axial view; G. Lumbar disc-		
	facet unit (L3-L4); H. IVD (L3-L4).		
2.3	Body parts of vertebrae.	9	
2.4	Intervertebral disc IVD.	12	
2.5	Intervertebral disc structure and function. (a) Spinal compression	14	
	(C), (b) Lamellae of the annulus with oblique collagen fibers in		
	alternating directions (approximately, $a = 30^{\circ}$).		
2.6	The ligament flavum along with the anterior and posterior	16	
	longitudinal ligaments enable flexion and extension of the spine		
	while keeping the vertebrae in alignment.		
2.7	Facet joint in motion.	19	
2.8	Terminology for directions of force.	20	
2.9	Torque and forces acting on the lumbar spine.	22	
2.10	Three dimensional coordinate system for the lumbar functional	23	
	spinal unit		

2.11	Fluid pump mechanism of an intact and healthy lumbar	25
	intervertebral disc.	
2.12	Typical Load-Displacement curve for the lumbar functional spinal	26
	unit.	
2.13	The lubrication in the Facet Joints by Synovial Fluid: Facet joints	28
	are surrounded by a capsule filled with synovial fluid, which	
	lubricates the joints.	
2.14	Spine Conditions, damage to the spine (Patient's Guide to Lumbar	30
	Facet Joint Arthritis. 2003).	
2.15	A diagnostic injection to inject a local anesthetic (numbing	32
	medication) into: either the joint or into the nerve that goes to the	
	joint.	
2.16	Anterior Lumbar Fusion with Cages.	34
2.17	Freedom Lumbar Disc (FLD) design to replace worn disc.	34
2.18	Implantation of two visco-elastic intervertebral disc prostheses 4	35
	to 5 lumbar vertebrae, and between the fifth lumbar vertebra and	
	the sacrum.	
2.19	Anchoring the artificial disc replacement.	37
2.20	The intervertebral disc with (a) compression (b) bending.	40
2.21	Inflamed Facet Joints.	41
2.22	Degenerative spondylolisthesis facet joint and the pain	42
	distribution.	
2.23	Stresses in the IVD for human spine (a) Distribution of the Von	45

viii

Mises stress in the Discs D1and D10; (b) MRI showing a herniated disc.

- 2.24 Comparison between the three models of the range of motion at 49 each segment under flexion- extension motion at: conventional laminectomy CL, spinous process osteotomy SPiO.
- 2.25 Locations of shear strains in the annulus under combined 50 moments.
- 2.26 Stress analysis in model (a) Comparison of the maximal von 52
 Mises stress of the annulus fibrosus among three models (MPa).
 (b) Comparison of intradiscal pressure of the nucleus pulposus among three models.
- 2.27 Distribution of stress of the annulus fibrosus in the CL and SPiO 53
 models under flexion and torsion moment. CL, conventional
 laminectomy; SPiO, spinous process osteotomy.
- 3.1 Computed Tomography (CT) scans data of the human spine.
 3.2 Segmentation process in 3- Matic software (a) jagged, and (b)
 56
- smooth contour lines of a CT scan image.
- 3.3 3-D surface of the human spine. 57
- 3.4 The transparency view of cortical and cancellous bones in the 57 vertebral body.
- 3.5 Intervertebral disc IVD sandwiched between two adjacent 59 vertebral bodies.
- 3.6 Model of the intervertebral disk (IVD) and its regions. 60
- 3.7 The lumbar L4-L5 cartilage tissue of the facet joint. 61

- 3.8 Method to assembled lumbar vertebral parts as suggested by 62 (Zahaf et al., 2015). 3.9 Scan to model workflow. 63 The comparison of total ROM of the lumbar spine under pure 73 4.1 moments up to 7.5 Nm between present FE model and previously published in vitro result (Panjabi et al., 1994). On the left extension, the flexion on the right. 4.2 Lumbar spine displacement (m) under (a) Flexion motion, (b) 73 Extension motion. 4.3 Comparison of present FEA and previous in vitro studies of the 75 IVD results (a) axial displacement (b) intradiscal pressure under compressive load up to 1200 N. Comparison of range of motion in flexion-extension loading 4.4 77 direction under 800 N compressive load between previous in vitro results (Renner et al. 2007) and present model. 4.5 Comparison of intersegmental rotations of the lumbar spine at 78 normal, overweight and obese compressive loads under flexion and extension motions. 4.6 Intradiscal pressures at various levels of the lumbar spine under 81 normal, overweight and obese human weights, including forward/backward bending moments. 4.7 Percent change in nucleus pressures between flexion and 82
- extension for the normal and obese person.
- 4.8 Annulus stresses of normal, overweight and obese human weights. 83

- 4.9 Percent change in average annulus fibrosus von Mises stresses for 84flexion and extension motion between normal and obese weight.
- 4.10 Superior (posterior) facet joint forces at various levels under 85 different loadings in flexion- extension motion.
- 4.11 Inferior facet joint forces at various levels under different loadings 86 in flexion- extension motion.

LIST OF APPENDICES

APPENDIX	TITLE	
Α	Vertebrae Angles	115
В	FSU model dimensions details	
B1	The cortical and cancellous bone diemension details	
B2	Facet joint, nerval code and endplate dimensions details	117
B3	Details dimension of the intervertebral disc model	
С	Model Specification	119
C1	Disc Specification	119
C2	Nucleus Specification	120
C3	Superior and Inferior Facet Joint Specification	121
D	Comparing the present Range of motion with a female ROM	122
Е	Intervertebral disc and nucleus pulposus height for various lumbar spine levels	123

LIST OF ABBREVIATIONS

3D	three-dimensional
ALL	Anterior longitudinal ligament
AOA	American Obesity Association
APTA	American Physical Therapy Association's
BMD	Bone mineral density
CL	Capsular ligament
CLa	Conventional laminectomy
CT	Computed tomography
DDD	Degenerative disc disease
De	Dorsal external
Di	Dorsal internal
DICOM	Digital Imaging and Communications in Medicine
FE	Finite element
FEA	Finite element analysis
FEM	Finite element method
FLD	Freedom Lumbar Disc
FSU	Functional spinal unit
ICR	Instantaneous center rotation
IDP	Intradiscal pressure
IGES	The Initial Graphics Exchange Specification
ISL	Interspinous ligament
ITL	Intertransverse ligament
IVD	Intervertebral disc
L1	The first lumbar vertebra

xiii

L2	The second lumbar vertebra
L3	The third lumbar vertebra
L4	The fourth lumbar vertebra
L5	The fifth lumbar vertebra
LBP	Low back pain
LF	Ligamentum flavum
MRI	Magnetic resonance imaging
NMR	Nuclear magnetic resonance
PLL	Posterior longitudinal ligament
ROM	Range of motion
S1	First sacral vertebrae
SPiO	Spinous process osteotomy
SSL	Supraspinous ligament
STL	Stereolithography (Standard Tessellation Language)
TDR	Total disc replacement
VLe	Ventral-lateral external
VLi	Ventral-lateral internal
VMS	Von Mises stress

xiv

LIST OF SYMBOLS

F	-	Force
Ν	-	Poisson's ratio
Е	-	Young's modulus
3	-	Strain
C1, C2	-	Material constant characterising the deviataric deformation of material
R	- 1	Radius
L	-	Length
θ	¥1	Theta
®	11 11	Copyright

xv

CHAPTER 1

INTRODUCTION

1.1 Research background

Lower back pain stands out to be one of the most important socioeconomic diseases and one of the most striking health care issues today. The prediction of the spine system's mechanical behavior is one leading issue in biomechanics (Grillo et al., 2005). A better understanding of moving mechanisms of lumbar spine under different loads and stress distribution in this system is highly significant in the advancement of technologies in terms of the spinal restorations intervertebral prostheses, and osteopathic medicine bone (Brunski 1997). The degeneration of the lumbar discs is very much related to Body Mass Index (BMI) where the overweight and obesity person are linked with a higher risk of back pain problems.

Finite element (FE) numerical simulation is a very practical tool for studying the phenomena that cannot be clarified by experimental methods. Moreover, numerical simulation techniques have the potential to lower the costs and to make it less time-consuming during the development of new effective spinal treatment methods or implants executed. Therefore, it is required to find more accurate and correct numerical techniques for the intricate structure of the human spine.

1

1.2 Problem statement

Obesity has been associated with chronic low back pain (LBP) and this problem is expected to worsen in the near future following the increasing number of overweight and obese people (Zahaf et al., 2015). The abnormal body weight increases the joint stresses in human body (Rohlmann et al., 2007; Leyland, 2007) and this has been addressed as a probable aspect which causes joint degeneration (Vismara et al., 2010; Kurutz and Oroszváry, 2010). Start in previous in vitro study, it was shown that immoderate loading on the facet joint is the probable cause for vertebrae failure and, more significantly, vertebrae facet joint failure (Rodacki et al., 2005). Disc height decrease as a result of the compressive load caused by the reduction in the size of gelatinous mass in nucleus pulposus and the fluid being squeezed out of the disc (Bao et al., 1996; Jenkins, 2009). Thus, this intensifies the hydrostatic pressure, further leading to a convexity of outer annulus. Although this mechanism has been explained in various clinical studies, the detailed understanding that backs the biomechanics leading to facet joint damage has yet to be defined clearly. Its long-term clinical outcomes have become an issue raised as the results are not as reliable as it was anticipated (Alekseev, 2002; Belov, 2005; Nikiforov, 2011). Some uncontrolled long-term studies verified that they elevate the pressure and stress occurring on the facet joint, further increasing the possibility of facet joint degeneration.

Therefore, it is important is to understand the consequences of excess compressive load on the lumbar spine and facet joint. The effects of human weight on facet joint in the lumbar spine, however, are still ambiguous since most studies were carried out using certain compressive load of human weight at specific lumbar spine levels (Dreischarf et al., 2010; Moumene and Geisler 2007; Kurutz and Oroszváry, 2010). Additionally, the relationship between the increases in body weight to that of the stresses that occur as the body moves from one place to another needs to be explained. Therefore, it is important to investigate the biomechanical effects of various groups of the human weight in flexion and extension motions on the kinematics of the facet joint in lumbar spine.

1.3 Objectives

The objectives of this work are:

- To develop and verify a complete three-dimensional FE model of the lumbar spine from L1 to L5 with the corresponding intervertebral discs and facet joints.
- To investigate the biomechanical effects of obesity on the facet joint of the lumbar spine.

1.4 Scope

The L1-L5 lumbar spine model was developed using Mimics 14.0 software (Materialise, Leuven, Belgium) and 3-Matic 7.01 software (Materialise, Leuven, Belgium) based on CT scan images. The model comprises of soft tissues including intervertebral disc and facet cartilage. Enabling the reconstitution of the vertebra facet joint, and bone using ABAQUS CAE 6.9 finite element software. The parameters examined in this study were the intersegmental rotations of the lumbar spine, pressure within the nucleus, Von Mises stress (VMS) on the annulus fibrosus and the forces of facet joint. Furthermore, human weight were at three types of BMI, normal weight, over weight and obese.

1.5 Significance of study

It has been mentioned in past literature that to delve into and assess the potential risks of other various degenerative facet joint spondylolisthesis, facet joint degeneration could have significant geometrical changes, where the body responds to this additional pressure by developing bone spurs. The facet joints have a strong interaction with the intervertebral discs and significant contribution to control the functional biomechanics of the spine. Furthermore, the understanding of loading acting on the lumbar spine is crucial towards the development of clinical treatments for facet joint troubles. However, the effects of human weight on the facet joint were not really emphasised since the majority of the previous clinical and FE studies were done using certain compressive load of human weight at specific lumbar spine levels (Dreischarf et al., 2010; Zahaf et al., 2015; Moumene and Geisler, 2007). This can be done in the finite element analysis (FEA) as the computational method allows for the modification of forces and moments acting on the FE model of the lumbar spine.

The accuracy of simulation for the anatomy of human lumbar spine and reflection to the biomechanical features is the first step to comprehensively understand biomechanic changes of the spine in case of weight increase, especially that related with obese weight person. Enhanced model will provide a reliable method for further research and contribute to the related biomechanic research of the lumbar spine and facet joint.

The results presented here proves to be valuable not only for future research, but they also highlight the capability in handling a higher compressive load applied to the lumbar spine, although it may be necessary for further studies to be done to offer support to the solution made.

4