

Faculty of Electrical Engineering

MODELING FOR REDUCTION OF HARMONICS USING INVERTERS IN SMART GRID SYSTEM

Ali Kareem Saeed

Master of Electrical Engineering
(Industrial Power)

2016

MODELING FOR REDUCTION OF HARMONICS USING INVERTERS IN SMART GRID SYSTEM

ALI KAREEM SAEED

A dissertation submitted in partial of the requirements for the degree of Master of Electrical Engineering (Industrial Power)

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare this dissertation entitled "modeling for reduction of harmonics using inverters in smart grid system" is the result of my own research except as cited in the reference. The dissertation has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature :

Name : ALI KAREEM SAEED

Date : 23.06.2016

APPROVAL

I hereby declare that I have read this dissertation/report and in my opinion, this dissertation/report is sufficient in terms of scope and quality as a partial fulfillment of Master of Electrical Engineering (Industrial Power).

Signature

: Prof. Dr. Mohammad Rom Bin Tamjis Supervisor Name

Date

PROF. DR. MOHAMAD ROW BIN TAMUS PROFESOR

Falkulti Kejuruterean Elektrik Universiti Teknikal Malaysia Melake

DEDICATION

Almighty Allah who blessed me with a lot of graces.

I dedicated this dissertation:

To the spirit of my father

To my beloved mother

To my wife "Zahraa Ali"

To my Daughter "Fatema" and my sisters and brothers for their love and encouragement.

ABSTRACT

The rapid growth of grid-connected PV generation resulting in the total harmonic distortions (THD) due to use of PV inverters is becoming a major concern. The output voltage of the inverter is a square or a nearly sinusoidal waveform, therefore, the output voltage contain the harmonic. Harmonic contents depend on the type and typology of the inverter. Use of multilevel inverter helps to solve this problem. Several converter topologies have been used in low-voltage applications; most of the topologies are not suitable in medium-voltage applications. CHB-MLI based on OHSW-SHE is a preferred choice to solve this problem. In this inverter, the THD depends on the switching angles and modulation index. The number of levels which can be synthesized in line voltage depends on MI since the RMS line voltage depends on these number of levels. In this research, Newton Raphson iterative method is implemented for the computation of the optimal switching angles and total harmonic distortion (THD) in 5,7,9,11 and 13-level inverter. The switching angles are calculated offline to eliminate lower order harmonics that are more harmful and difficult to remove without filter while the fundamental output voltage is obtained as desired. The simulation modeling for the single phase and the three-phase for 5,7,9,11 and 13-level CHB-MLI is done by using MATLAB Simulink. The THD for phase voltage and line voltage for three-phase output inverter is obtained from the simulation for various values of Modeling Index (MI). Computational THDs are validated with MATLAB simulations, and both results are in close agreement. In addition, the values of (MI) which achieve the maximum level in line to line voltage is also computed. In CHB-MLI, number of IGBT is proportional directly to number of level. One of the important features for CHB-MLI is the ability for this type to get a high AC voltage based on cascaded DC source. In addition, SHE technique helps to eliminate the lower order harmonics in the output voltage. This reduction in the THD value for the output voltage is below the limitation set in IEEE-519 without filtering system. Thus, it is necessary to investigate the ability to produce 11kv transformer less inverter to eliminate a bulk transformer in PV farm. Parameter identification is a vital part of the medium-voltage inverter design process. In this project, suitable IGBTs for 5, 7, 9, 11, and 13 level 11kVvoltage CHB-MLI for renewable generation systems (PV) is selected accordingly. The availability of IGBT modules in the market is considered in the selection process. The result shows the line voltage THD for 13-level is below the limitation set in IEEE-519 without filtering system. In addition, the IGBTs for 13 level 11kV CHB-MLI inverter are costed a minimum total price of IGBTs when compared with IGBTs price for 5, 7, 9, and 11level. This means in transformer less CHB-MLI type, the 13-level is more suitable for 11 kV medium application. However, this research is limited to harmonic reduction only using CHB-MLI based on OHSW-SHE, not including filter system. Also, the elimination of harmonic is done by calculating the optimum switching angles by using equal SDCS.

ABSTRAK

Pembangunan pesat penjanaan PV kesambung grid yang berkaitan menyebabkan jumlah herotan harmonik (THD) dihasilkan daripada "inverter" PV menjadi perhatian utama, kerana ia mempunyai kesan buruk kepada grid pintar. Penggunaan inverter bertingkat dapat membantu untuk menyelesaikan masalah ini. Beberapa topologi penukar telah digunakan dalam aplikasi voltan rendah; kebanyakan topologi tidak sesuai dalam aplikasi voltan sederhana. CHB-MLI berdasarkan OHSW-SHE adalah pilihan terbaik untuk menyelesaikan masalah ini, dalam inverter ini THD bergantung kepada sudut pensuisan dan indeks modulasi. Bilangan tahap yang boleh disintesis dalam voltan talian bergantung kepada MI disebabkan voltan RMS talian bergantung kepada bilangan peringkat. Dalam kaedah ini, Newton Raphson dilaksanakan untuk pengiraan sudut pensuisan optimum dan jumlah herotan harmonik (THD) dalam 5,7,9,11 dan 13 peringkat inverter. Sudut pensuisan dikira "offline" untuk menghapuskan harmonik bagi lebih rendah yang lebih berbahaya dan sukar untuk membuang dengan penapis manakala voltan output asas diperolehi seperti yang dikehendaki. Pemodelan simulasi untuk fasa tunggal dan tiga fasa bagi 5,7,9,11 dan 13 peringkat CHB-MLI dilakukan dengan menggunakan MATLAB Simulink. The THD voltan fasa dan voltan talian tiga fasa "output inverter" adalah didapatkan dari simulasi untuk pelbagai nilai Indeks Model (MI). "THDs Computational" disahkan dengan simulasi MATLAB, dan kedua-dua keputusan adalah selaras. Di samping itu nilai-nilai (MI) yang mencapai tahap maksimum dalam talian ke talian voltan juga dikira. Dalam bilangan CHB-MLI daripada IGBT berkadar terus dengan beberapa tahap. Salah satu ciri yang penting bagi CHB-MLI adalah keupayaan untuk jenis ini untuk mendapatkan voltan AC tinggi berasaskan sumber DC tandem Di samping itu, teknik SHE membantu untuk menghapuskan harmonik bagi lebih rendah voltan output. Pengurangan dalam nilai THD untuk voltan keluaran adalah di bawah had yang ditetapkan dalam IEEE-519 tanpa sistem penapisan. Ini menggalakkan untuk menyiasat dalam keupayaan untuk menghasilkan 11kV " inverter tanpa alatubah" untuk menghapuskan alatubah pukal di ladang PV. Pengecaman parameter adalah sebahagian penting daripada proses rekabentuk "inverter" voltan sederhana. Dalam projek ini, IGBT yang sesuai merangka tahap 5, 7, 9, 11, dan 13, 11kV voltan CHB-MLI untuk sistem penjanaan tenaga boleh diperbaharui (PV) dilaksanakan. Dengan adanya modul IGBT di pasaran adalah dipertimbangkan dalam yang terbaik. proses memilih

ACKNOWLEDGEMENTS

Praise to Allah, Lord of the Universe, a praise that befits His might and suffices His Grace, Peace and blessing be upon His generous Messenger, His family and companions, for giving me the strength to complete this dissertation.

I would like to express my deepest gratitude and appreciation to my project supervisor, Prof. Mohammad Rom Bin Tamjis for his guidance throughout preparing the research project, which I considered all that as something beyond repayment. Also, special gratitude to Dr. Iz-Aldin, Mr. Mohammad Rashee for their cooperation, guidance and help in providing information needed for this dissertation.

Last but not least, I would like to express my appreciation to those who have been involved directly and indirectly in completing this project.

TABLE OF CONTENT

			PAGE
DE	CLAR	ATION	
API	PROVA	AL .	
DEI	DICAT	ION	
ABS	STRAC	CT	i
ABS	STRAK		ii
ACI	KNOW	LEDGEMENTS	iii
TAI	BLE O	F CONTENTS	iv
LIS	T OF T	TABLES	vii
LIS	TOFF	FIGURES	X
LIS	T OF A	APPENDICES	XV
LIS	T ABB	REVIATIONS	xvi
LIS	T OF I	PUBLICATIONS	xviii
CH	APTEF	Ł	
1.	INT	RODUCTION	1
	1.1	Research Background	1
	1.2	Harmonic Mitigation in PV System	3 3
		1.2.1 Energy Converter (PV) and DC Link Circuit	
		1.2.2 DC to AC Converter Circuit (Inverter)	4
		1.2.3 AC Output Circuit	4 5 5
	1.3	Multilevel Inverter	
	1.4	Problem Statement	6
	1.5	Objective	7
	1.6	Scope of the Dissertation	8
	1.7	Dissertation Outline and Organisation	9
2.	LIT	ERATURE REVIEW	10
	2.1	Power System	10
	2.2	Distribute Generation	11
	2.3	Photovoltaic System (PVs)	12
		2.3.1 PV System Inverter	12
		2.3.2 Grid-connected Impact of Solar PV Systems	13
		2.3.3 Criteria Followed in Linking the PV	14
	2.4	Harmonics	16
		2.4.1 Harmonics Sources	16
		2.4.2 Harmonic of Load	16
		2.4.3 Harmonic of Generation Units	18
		2.4.4 Harmonic Phase Sequences	18
	2.5	Multilevel Inverter	20
		2.5.1 Choice of IGBT	23
		2.5.2 The Neutral-Point Clamped Multilevel Topology	24
		2.5.3 The Flying-Capacitor Inverter	26
		2.5.4 Cascaded H-Bridge Inverter	28
	22. 15	2.5.5 A Brief Comparison of the Topologies	31
	2.6	Modulation Techniques and Harmonic Elimination of Multilevel	
		Inverter	32

		2.6.1 2.6.2	Sinusoidal Pulse Width Modulation (Multicarrier PWM) Space Vector Modulation and 1DM	34 37
		2.6.3	Selective Harmonic Elimination (high switching	37
		2.0.3	frequency)	41
		2.6.4	SHE (fundamental switching frequency) or Optimized	41
		2.0.4	Harmonic Stepped Waveform (OHSW) Technique	43
	2.7	Chapte	r Summary	48
	2.7	Спарис	1 Summary	40
3.		гноро		55
	3.1	Introdu		55
	3.2		tion Tools	57
	3.3		natical Modelling	59
		3.3.1	Optimization Harmonic Stepped Waveform of Selective	
			Harmonic Elimination technique (OHSW-SHE)	59
		3.3.2	The Mathematical Modeling for Switching Angles and	
			SHE Equations of Cascaded H Bridge Multilevel Inverters	61
		3.3.3	Newton Raphsons' Algorithm for determining switching	
			Angles of the Cascaded H Bridge Multilevel Inverters	63
		3.3.4	Mathematical Modelling Of The Total Harmonic	
			Distortion (THD) of Cascaded H Bridge Multilevel	
			Inverters	65
		3.3.5	Algorithm for Mathematical Modelling of the THD (Total	
			Harmonic Distortion)	66
	3.4		AB Simulation Modeling for CHB-MLI	68
		3.4.1	Simulation modeling for single-phase CHB-MLI	69
		3.4.2	Simulation modeling for 1ph 5-level CHB-MLI	71
		3.4.3	Simulation modeling for 1ph 7-level CHB-MLI	75
		3.4.4	Simulation modeling for 1ph 9-level CHB-MLI	78
		3.4.5	Simulation modeling for three-phase CHB-MLI	80
		3.4.6	Simulation modeling for three-phase 5-level CHB-MLI	84
	2.2	3.4.7	Simulation modeling for three-phase 7-level CHB-MLI	85
	3.5		on of IGBT switches for CHB-MLI Topology for Medium-	
	2.6	Voltage		87
	3.6	Chapte	r Summary	89
4.	RES	ULTS A	ND DISCUSSION	90
	4.1	Introdu	ection	90
	4.2	Results	s of the Mathematic model	90
		4.2.1	Switching Angles and THD for 1ph 5-level CHB-MLI	91
		4.2.2	Switching Angles and THD for 3ph 5-level CHB-MLI	93
		4.2.3	Switching Angles and THD for 1ph 7-level CHB-MLI	94
		4.2.4	Switching Angles and THD for 3ph 7-level CHB-MLI	96
		4.2.5	Switching Angles and THD for 1ph 9-level CHB-MLI	98
		4.2.6	Switching Angles and THD for 3ph 9-level CHB-MLI	100
		4.2.7	Switching Angles and THD for 1ph 11-level CHB-MLI	102
		4.2.8	Switching Angles and THD for 3ph 11-level CHB-MLI	104
		4.2.9	Switching Angles and THD for 1ph 13-level CHB-MLI	106
		4.2.10	Switching Angles and THD for 3ph 13-level CHB-MLI	108
		4.2.11	THD comparison for Single and Three Phase CHB-MLI 5,	

		7, 9,11a	and 13 level Inverters	110
	4.3	Result of	of MATLAB Simulation Modeling for CHB-MLI	111
		4.3.1	THD for Single-phase 5-level CHB-MLI Simulation	112
		4.3.2	THD for Three-phase 5-level CHB-MLI Simulation	116
		4.3.3	THD for Single-phase 7-level CHB-MLI Simulation	118
		4.3.4	THD for Three-phase 7-level CHB-MLI Simulation	121
		4.3.5	THD for Single-phase 9-level CHB-MLI Simulation	124
		4.3.6	THD for Three-phase 9-level CHB-MLI Simulation	126
		4.3.7	THD for Single-phase 11-level CHB-MLI Simulation	128
		4.3.8	THD for Three-phase 11-level CHB-MLI Simulation	131
		4.3.9	THD for Single-phase 13-level CHB-MLI Simulation	133
		4.3.10	THD for Three-phase 13-level CHB-MLI Simulation	135
	4.4	Selectin	ng IGBT switches for CHB-MLI Topology for 11kV-	
		Voltage	2	137
	4.5	Chapter	Summary	140
5.	CON	CLUSIO	ON AND RECOMMENDATIONS FOR FUTURE	
	WO	RK		141
	5.1	Conclus	sion	141
	5.2	Contrib	ution	143
	5.3	Recomm	mendation For Future Works	144
REI	FEREN	CES		145
API	PENDI	CES		154

LIST OF TABLES

ΓABLE	TITLE	PAGE
2.1	IEEE Std 519-1992 harmonic voltage distortion limits	15
2.2	IEEE Std 519-1992 harmonic current limits for general distribution	on
	system	15
2.3	Comparison of component per leg of three types of (m) multilev	/el
	invert	31
2.4	Comparison for three types of 5, 9 level inverter	32
2.5	The summary of the conducted studies by the other researchers	49
3.1	Eliminated harmonic according no. Level	56
3.2	The switches state of each cell of single-phase 5-level inverter	72
3.3	The switches state of each cell of single-phase 7-level inverter	77
3.4	Basic operation data for CHB-MLI to select the IGBTs.	89
4.1	The values of switching angles and voltage THD 1ph 5-level CHB-M	LI 93
4.2	Switching angles and line voltage THDvalues for 3ph 5-lev	/el
	CHB-MLI	94
4.3	Switching angles and voltage THD for 1ph 7-level CHB-MLI	97
4.4	Switching angles and voltage THD for 3ph 7-level CHB-MLI	98
4.5	Switching angles and voltage THD for 1ph 9-level CHB-MLI	100
4.6	Line voltage THD values for 3ph 9-level CHB-MLI	102

4.7	Switching angles and voltage THD for 1ph 11-level CHB-MLI	104
4.8	Line voltage THD for 3ph 11- CHB-MLI	105
4.9	Switching angles and voltage THD for 1ph 13-level CHB-MLI	108
4.10	THDv line voltage for three-phase 13-level inverters	109
4.11	THDv phase for CHB-MLI 5, 7, 9, 11, and 13 level inverters at	
	MI = 0.8.	111
4.12	THDv line for CHB-MLI 5, 7, 9, 11, and 13 level inverters at MI= 0.8	112
4.13	Switching angles in sec. And pw% for (omer, 2015)	114
4.14	Switching angles in sec. And pw% for 5-level CHB-MLI simulation	114
4.15	Comparison of THD ν ph for mathematic and simulation model for 1ph	
	5-level	115
4.16	Comparison THDv line mathematic and simulation model for 3ph 5-	
	level	118
4.17	Switching angles and pulse width percentage for 1ph 7-level inverter	
	simulation	120
4.18	Comparison of THD ν ph for mathematic and simulation model for 1ph	
	7-level	121
4.19	Comparison THDv line mathematic and simulation for 3ph 7-level	123
4.20	Comparison of THD ν ph for mathematic and simulation model for 1ph	
	9-level	125
4.21	Comparison THDv line mathematic and simulation for 3ph 9-level	128
4.22	Comparison of THD ν ph for mathematic and simulation model for 1ph	
	11-level CHB-MLI	130
1 23	Comparison THDs line mathematic and simulation for 3nh 11 level	133

4.24	Comparison of THDv ph for mathematic and simulation model for 1ph	
	13-level	134
4.25	Comparison THDv line mathematic and simulation model for 3ph	
	13-level	137
4.26	Available IGBT model in market according	139
4 27	The number and total price for IGBTs	139

LIST OF FIGURES

F	IGURE	TITLE	PAGE
	1.1	General configuration of a PV system	3
	1.2	Boost converter	4
	2.1	Traditional view of the electric grid	11
	2.2	Multilevel converter applications overview	23
	2.3	Photograph of ABB 6.5-kV IGBT module 5SNA 0400J650100	24
	2.4	(a) Single-phase, 3-level NPC topology. (b) Output waveform	25
	2.5	(a) Single-phase, 3-level flying-capacitor inverter. (b) Output wavefo	rm 27
	2.6	(a) Single-phase, 3-level H-Bridge inverter. (b) Output waveform	29
	2.7	(a) Single-phase, 5-level H-Bridge inverter topology. (b) Our	tput
		waveform	30
	2.8	Classification of multilevel inverter control schemes	33
	2.9	Example of sinusoidal pulse width modulation for a two level inverte	r 34
	2.10	Example of SPWM waveforms for a 5-level inverter	36
	2.11	Multicarrier PWM classification	37
	2.12	2-D Space vector modulation for a 3-level, three-phase inverter	39
	2.13	Conventional control region representations using 3-D SVM technique	ies 40
	2.14	1-D state space for a 5-level single-phase NPC	40
	2.15	Illustration of selective harmonic elimination of the third and f	ifth

	harmonics	42
2.16	Five-level phase voltage output for inverter base on SHE	42
2.17	OHSW waveform for a single-phase, m-level inverter	44
2.18	Angles for five level staircase output voltage waveform	47
3.1	Methodology flow chart	58
3.2	The Selective Harmonic Elimination technique for MLI.	63
3.3	Single-phase m-level inverter using cascaded-inverters with SDCSs	
	structure	70
3.4	The output voltage for 1-ph m-level CHB-MLI	70
3.5	Single-phase 5-level CHB-MLI	71
3.6	Voltage output for single-phase 5-level CHB-MLI	72
3.7	The MATLAB simulation circuit for 1ph 5-level CHB-MLI	74
3.8	The setting window of pulse generator	74
3.9	The IGBT switches state for each cell for 1ph 5-level CHB-MLI	75
3.10	Single-phase 7-level CHB-MLI	76
3.11	Voltage output single-phase 7-level CHB-MLI	76
3.12	The MATLAB simulation circuit for 7-level CHB-MLI	78
3.13	Single-phase structure 9-level CHB-MLI	79
3.14	The MATLAB simulation circuit for 9-level CHB-MLI	80
3.15	Structure of m-level 3ph CHB-MLI	81
3.16	Phase A and B synthesize 9-level line voltages in 3ph 5-level inverter	82
3.17	Phase A and B synthesize 7-level line voltages in 3ph 5-level inverter	83
3.18	Three-phase 5-level CHB-MLI	84
3.19	The MATLAB simulation circuit for 3ph 5-level CHB-MLI	85

3.20	Three-phase 7-level CHB-MLI	86	
3.21	The MATLAB simulation circuit for 3ph 7-level CHB-MLI		
4.1	Switching angles and voltage THD for 5-level		
4.2	Switching angles for 3ph 5-level CHB-MLI	93	
4.3	The comparison between THD1 ph and THD3 ph 5-level CHB-MLI	94	
4.4	Switching angles and voltage THD values for 7-level CHB-MLI	96	
4.5	Switching angles for 3ph 7-level CHB-MLI	97	
4.6	The comparison between THD_1ph and THD_3ph for 7-level		
	CHB-MLI	98	
4.7	Switching angles and voltage THD for 1ph 9-level CHB-MLI	100	
4.8	Switching angles for 3ph 9-level CHB-MLI	101	
4.9	Comparison between THD1 ph and THD3 ph for 9-level CHB-MLI	101	
4.10	Switching angles and voltage THD for 11-level CHB-MLI	104	
4.11	Switching angles for 3ph 11-level CHB-MLI	105	
4.12	The comparison between $THD-1ph$ and $THD3ph$ for 11-level		
	CHB-MLI	105	
4.13	Switching angles and voltage THD for 13-level CHB-MLI	108	
4.14	Switching angles for 3ph 13-level CHB-MLI	109	
4.15	The comparison between THD $1ph$ and THD $3ph$ for 13-level		
	CHB-MLI	109	
4.16	THDv phase for Cascaded H-Bridge 5, 7, 9, 11, and 13 level inverters	110	
4.17	THD ν line for Cascaded H-Bridge 5, 7, 9, 11, and 13 level inverters	111	
4.18	THDv for Cascaded H-Bridge using (Omer, 2015) angles		
4.19	THDv ph for mathematic and simulation model for 1ph 5-level CHB-		

	MLI	115
4.20	THDv and harmonic voltage amplitude for 1ph 5level CHB-MLI	115
4.21	THDi and harmonic current amplitude for 1ph 5level CHB-MLI	116
4.22	Comparison THDv line mathematic and simulation model for 3ph	
	5-level	117
4.23	THD ν and harmonic amplitude line voltage in 3hp 5-level CHB-MLI	118
4.24	THDi and harmonic amplitude line current in 3hp 5-level CHB-MLI	118
4.25	Comparison of $THDv\ ph$ for mathematic and simulation model for	
	7-level	120
4.26	THDv and harmonic voltage amplitude for 1ph 7level CHB-MLI.	121
4.27	THDi and harmonic current amplitude for 1ph 7level CHB-MLI	121
4.28	comparison THDv line mathematic and simulation model for 3ph	
	7-level	122
4.29	THD ν and harmonic amplitude line voltage in 3hp 7-level CHB-MLI	123
4.30	TUD: -11 i lit-1-li le i -21 - 7 l l GUD MI I	123
	THDi and harmonic amplitude line voltage in 3hp 7-level CHB-MLI	123
4.31	Comparison of THD v ph mathematic and simulation model for 9-level	125
4.31 4.32		
	Comparison of THD v ph mathematic and simulation model for 9-level	125
4.32	Comparison of THD v ph mathematic and simulation model for 9-level THD v and harmonic voltage amplitude for 1ph 9level CHB-MLI.	125 125
4.32 4.33	Comparison of THD v ph mathematic and simulation model for 9-level THD v and harmonic voltage amplitude for 1ph 9level CHB-MLI. THD i and harmonic amplitude line voltage in 3hp 9-level CHB-MLI	125 125
4.32 4.33	Comparison of THD <i>v ph</i> mathematic and simulation model for 9-level THD <i>v</i> and harmonic voltage amplitude for 1ph 9level CHB-MLI. THD <i>i</i> and harmonic amplitude line voltage in 3hp 9-level CHB-MLI Comparison THD <i>v line</i> mathematic and simulation model for 3ph	125 125 126
4.32 4.33 4.34	Comparison of THD <i>v ph</i> mathematic and simulation model for 9-level THD <i>v</i> and harmonic voltage amplitude for 1ph 9level CHB-MLI. THD <i>i</i> and harmonic amplitude line voltage in 3hp 9-level CHB-MLI Comparison THD <i>v line</i> mathematic and simulation model for 3ph 9-level.	125 125 126
4.32 4.33 4.34	Comparison of THD <i>v ph</i> mathematic and simulation model for 9-level THD <i>v</i> and harmonic voltage amplitude for 1ph 9level CHB-MLI. THD <i>i</i> and harmonic amplitude line voltage in 3hp 9-level CHB-MLI Comparison THD <i>v line</i> mathematic and simulation model for 3ph 9-level. THD <i>v</i> and harmonic amplitude line voltage in 3hp 9-level CHB-MLI	125 125 126 127 128

4.39	THDi and harmonic current amplitude for 1ph 11level CHB-MLI	131
4.40	Comparison THDv line mathematic and simulation model for 11-level	132
4.41	THD and harmonic amplitude line voltage in 3hp 11-level CHB-MLI	132
4.42	Comparison of THD $v\ ph$ mathematic and simulation model for 13-level	134
4.43	THDv and harmonic voltage amplitude for 1ph 13level CHB-MLI	134
4.44	THDi and harmonic voltage amplitude for 1ph 13level CHB-MLI	134
4.45	ComparisonTHDvline mathematic and simulation model for 13-level	136
4.46	THDv and harmonic amplitude line voltage in 3hp 13-level CHB-MLI	136
4.47	THDi and harmonic amplitude line current in 3hp 13-level CHB-MLI	137
4.48	IGBT number according CHB-MLI levels	139
4.49	Total price of IGBTs according CHB-MLI levels	140

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Code for 5 Level Inverter	155
В	Code for 7 Level Inverter	157
C	Code for 9 Level Inverter	159
D	Code for 11 Level Inverter	161
E	Code for 13 Level Inverter	163

LIST OF ABBREVIATIONS

Abbreviations Description

AC Alternating Current

CHB Cascaded H-Bridge

DC Direct Current

FACTS Flexible AC Transmission Systems

FC Flying Capacitor

FFT Fast Fourier Transform

GTO Gate Turn Off

HVDC High Voltage DC

IGBT Insulated Gate Bipolar Transistor

IPD In Phase Disposition PWM

LS Level Shifted PWM

MLI Multilevel Inverter

MPPT Maximum Power Point Tracker

NPC Neutral Point Clamped Inverter

OHSW Optimized Harmonic Stepped Waveform

PCC Point of Common Coupling

POD Phase Opposition Disposition

PS Phase Shifted PWM

SHE Selective Harmonic Elimination

xvi

SPWM Sinusoidal Pulse Width Modulation

SVM Space Vector Modulation

THD Total Harmonic Distortion

LIST OF PUBLICATIONS

A. K. Saeed, R.T., Mohamad, M.R., Ab Ghani, 2015. "Framework Of Harmonics Mitigation Modelling For Renewable Energy Source Connected To The Grid". *Paper Accepted for International Journal of Applied Engineering Research*, Paper Code: 40224.

Ali A.Abdulzahra., R.T.Mohamad., A. K. Saeed., 2015. Harmonic Distortion Control technique in Adjust Speed Drives. *International Journal of Applied Engineering Research*, ISSN0973-4562, 10, pp 38500-38503.

Ghassan J.K, R.T., Mohamad, M.R., Ab Ghani, 2015. Modeling Water Treatment Plant with High Efficiency Motors (HEMs). *International Journal of Applied Engineering Research*, *ISSN0973-4562*, 10, pp38498-38499.

CHPATER 1

INTRODUCTION

1.1 Research Background

The model of the power grid is usually considered to have distinct parts usually, generation plants, transmission lines, distribution system and distribution generation. The traditional view of generation plants in the power grid has been large generator stations that are located outside of cities. Transmission lines carry large amounts of power and form the backbone of the grid connecting large generation stations and major load centers. Distribution systems, on the other hand, contain smaller lines and transmit smaller amounts of power. They are generally placed in residential areas and carry power to individual homes and businesses.

These days the demand for electrical energy is increasing to meet the load expansion in the electrical power system. The load expansion leads to transfer of bigger amount of power from generation stations to load centers to meet this new additional load. The transmission lines in old electrical grid are not able to carry this additional power. Therefore another type of generation called distributed generation (DG) is regarded for customers to cope with this problem. The distributed generations decrease the power losses in the grid due to decreasing in current flow. One of this DG is renewable energy source (photovoltaic) (Anees, 2012).