

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Electrical Engineering

MODELING OF ELECTRICAL DISTRIBUTION NETWORKS WITH PARTICLE SWARM OPTIMIZATION TECHNIQUE FOR THE IMPROVEMENT OF VOLTAGE PROFILE AND LOSS REDUCTION

Falih Khlaif Shahad

Master of Electrical Engineering (Industrial Power)

2016

MODELING OF ELECTRICAL DISTRIBUTION NETWORKS WITH PARTICLE SWARM OPTIMIZATION TECHNIQUE FOR THE IMPROVEMENT OF VOLTAGE PROFILE AND LOSS REDUCTION

FALIH KHLAIF SHAHAD

A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Electrical Engineering (Industrial Power)

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this dissertation entitled "Modeling of Electrical Distribution Networks with particle swarm optimization technique for the Improvement of Voltage Profile and Reduction" is the result of my own work except as cited in the references. The dissertation has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	12c

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this dissertation and in my opinion this report is sufficient in terms of scope and quality as a partial fulfillment of Master of Electrical Engineering (Industrial Power).

Signature	:	
Suprvisor Name	:	
Date	:	

Mannjon Daleun

Prof. Dr. Marizan Bin Sulaiman |7|204

PROF. DR. MARIZAN BIN SULAIMAN Manager Centre for Robotics and Industrial Automation (CeRIA) Centre For Research and Innovation Management (CRIM) Universiti Teknikal Malaysia Melaka

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved parents, and my best friend

ABSTRACT

Modeling of power distribution networks needs accurate impedance data of overhead lines and underground cables. In unbalanced distribution networks, the mutual and selfimpedances are required. The need of accurate impedance data is for evaluation electrical of distribution system planning with economic considerations. The data of series impedance is also used to investigate power flow in all segments in the distribution system. Therefore, modified Carson's equations have been utilized in this study to calculate series impedance of both overhead lines and underground cables using MATLAB program for getting more accurate results. MATLAB program has the ability to get the result of three phase, two phases, and single phase according to user's choice. The IEEE tests have been used to validate this work. Two tests, as the IEEE 34 bus test and IEEE 13 bus test are implemented. Determination of power flow was done using Open Distribution System Simulator (OpenDSS) program which is suitable for electrical distribution networks. The obtained results from OpenDSS program are used to find the optimum location and sizing of capacitors that would be installed in distribution system. The particle swarm optimization (PSO) is utilized to solve the problem of location and sizing of capacitor. Constraints of voltage profile and total demand of reactive power were considered. Installation of capacitors before and after optimization was compared based on voltage profile and reduction of power losses. The results of this work showed that the method for the calculations of the series impedance (series resistance and inductance) per unit of length is acceptable according to IEEE standard data. The method is accurate and has advantage as easy to implement which accomplished with Carson's equations. In addition, the results indicated that PSO algorithm has succeeded in finding proper placement and sizing of capacitor bank.

i

ABSTRAK

Pemodelan rangkaian pengagihan kuasa memerlukan data impedans yang tepat talian atas dan kabel bawah tanah. Dalam rangkaian pengagihan yang tidak seimbang, impedans bersama dan sendiri diperlukan. Keperluan data impedans tepat adalah untuk menilai perancangan sistem pengagihan elektrik dengan pertimbangan ekonomi. Data siri impedans juga digunakan untuk menyiasat aliran kuasa dalam semua segmen dalam sistem pengagihan. Oleh itu, pengubahsuaian persamaan Carson telah digunakan dalam kajian ini untuk mengira siri impedans kedua-dua talian atas dan kabel bawah tanah menggunakan program MATLAB untuk mendapatkan hasil yang lebih tepat. program MATLAB mempunyai keupayaan untuk mendapatkan hasil daripada tiga fasa, dua fasa dan satu fasa mengikut pilihan pengguna. Ujian IEEE telah digunakan untuk mengesahkan kerja-kerja ini. Dua ujian: IEEE 34 ujian bas dan IEEE 13 ujian bas dilaksanakan. Penentuan aliran kuasa itu telah dilakukan dengan menggunakan program DSS Terbuka yang sesuai untuk rangkaian pengagihan elektrik. Keputusan yang diperolehi dari program DSS terbuka telah digunakan untuk mencari lokasi yang optimum dan saiz kapasitor yang akan dipasang dalam sistem pengedaran. Pengoptimuman zarah sekumpulan (PSO) digunakan untuk menyelesaikan masalah lokasi dan saiz kapasitor. Kekangan profil voltan dan jumlah permintaan kuasa reaktif dipertimbangkan. Pemasangan kapasitor sebelum dan selepas pengoptimuman telah dibandingkan berdasarkan profil voltan dan pengurangan kehilangan kuasa. Hasil karya ini menunjukkan bahawa kaedah untuk pengiraan impedans siri (rintangan siri dan kearuhan) bagi setiap unit panjang boleh diterima mengikut IEEE data standard. Kaedah ini adalah tepat dan mempunyai kelebihan yang lebih mudah untuk dilaksanakan seperti yang dicapai dengan persamaan Carson. Di samping itu, Keputusan menunjukkan bahawa algoritma PSO telah berjaya dalam mencari penempatan yang betul dan saiz bank kapasitor.

ACKNOWLEDGEMENTS

Firstly, all praises and thanks to ALLAH, the almighty. Alhamdulillah, and peace and blessings of ALLAH are upon the last Prophet Mohamed S.A.W. I am ever grateful to HIS endless blessings throughout my research work which is the main reason behind the success for the completion of this research.

I would like to express my deepest gratitude and appreciation to Engr. Professor Dr. Marizan bin Sulaiman, my supervisor, from Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his encouragement, patience, and guidance during my study.

I am extremely grateful to my family for their love and prayers. I would like to thank Ministry of Electricity/Republic of Iraq (MOE) and general directorate of electrical distribution for the south for the financial support during my study in Malaysia.

TABLE OF CONTENTS

	CLAR PROV	ATION /AL	PAGE
DEI ABS AC TAI LIS LIS LIS LIS	DICA STRA STRA KNOV BLE (T OF T OF T OF T OF	TION CT	i ii iv vii viii x xi xi
СН	АРТЕ	R	
1.		RODUCTION	1
	1.1	Background	1
	1.2	Motivation of Research	5
	1.3	Problem Statement	6
	1.4	Objectives of Research	7
	1.5	Scope of Research	7
	1.6	Contribution of Research	8
	1.7	Organization of Research	9
2.	LIT	ERATURE REVIEW	11
	2.1	Introduction	11
	2.2	Distribution System	11
		2.2.1 Primary Distribution System	12
		2.2.2 Secondary Distribution System	13
	2.3	Modeling Network Elements	16
	2.4	Series Impedance (line Impedance)	17
		2.4.1 Why Distribution System Analysis?	19
		2.4.2 The Reasons of Distribution System Analysis	20
	2.5	Typical Constrictions of Over headlines	21
	2.6	Distribution Lines	22
	2.7	The Conductor Types	23
	2.8	OpenDSS Program	24
	2.9	Shunt capacitor	25
		2.9.1 Shunt capacitor Application of Feeders	26
	2.10	Optimal Shunt Capacitor Placement and Sizing	27
		2.10.1 Placement of Capacitor Bank	28
		2.10.2 The Sizing of Capacitors	33
	2.11	Summary	34
3.	DFC	SEARCH METHODOLOGY	25
5.	3.1	Introduction	35 35
	5.1	Introduction	55

iv

3.2	Distribution System Analysis and Modeling 3			
3.3	Series	Impedance (line Impedance)	37	
3.4	Series	Impedances of Overhead Lines	38	
	3.4.1	The Importance of Analysis and Modeling of Distribution	39	
		System		
	3.4.2	Transposed Three Phase Lines	40	
	3.4.3	Untransposed Distribution Lines	41	
	3.4.4	Carson's Equations	42	
	3.4.5	Modified Carson's Equations	44	
	3.4.6	Why Non-Transposed Line Model	45	
3.5	Series	Impedances of Overhead Line by Using Modified Carson's	45	
	Equati	ions		
	3.5.1	Kron Reduction	47	
	3.5.2	Sequence Impedances	48	
	3.5.3	Case Study for Three Phases Overhead Line	48	
3.6	Series	Impedance of Underground Line	51	
	3.6.1	Concentric Neutral Cable	52	
	3.6.2	Case study for three concentric neutral cables	56	
	3.6.3	Tape Shielded Cables	59	
	3.6.4	Case study for A Single-phase tape shielded with neutral	61	
3.7	Using	MATLAB Program of Determination of Series Impedance	64	
3.8	Power	r Flow by Using Open DSS Program	66	
	3.8.1	Representation of Line	66	
	3.8.2	Representation of Loads	68	
	3.8.3	Representation of Distributed Load Model	70	
	3.8.4	Representation of Source	71	
	3.8.5	Representation of Transformer	72	
	3.8.6	Representation of Regulator	73	
	3.8.7	Representation of Capacitor Bank	74	
	3.8.8	Running OpenDSS from Matlab	75	
3.9	Partic	le Swarm Optimization (PSO)	76	
	3.9.1	Concept of PSO	77	
	3.9.2	Algorithm Parameters	79	
	3.9.3	Algorithm Characteristics	82	
	3.9.4	1 0	83	
	3.9.5	Using Particle Swarm Optimization	84	
	3.9.6	Minimization of losses	84	
	3.9.7	The Constraints	86	
3.10	Sum	mary	88	
RES	ULTS	AND DISCUSSION	89	
4.1	Introd	luction	89	
4.2	Case s	study for IEEE 34 Node Test Feeder	90	
	4.2.1	Results for Modeling with Series Impedances	91	
	4.2.2	Results of Power Flow without Capacitor Bank	93	
	4.2.3	Results of Power flow with capacitor bank	96	
	4.2.4	Results of Power Flow with Optimum Sizing and Location	99	
		V		

C Universiti Teknikal Malaysia Melaka

ੱ

4.

Capacitor Banks

	4.3	3 Results of Case Study for the IEEE 13 Node Test Feeders				
		4.3.1	Results for Modeling with Series Impedances	106		
		4.3.2	Results of Power Flow without Capacitor Bank	109		
		4.3.3	Results of Power flow with capacitor bank	110		
		4.3.4	Results of Power Flow with Optimum Sizing and Location	113		
	4.4	Summ	ary	118		
5.	CO	NCLUS	SION	119		
	5.1	Concl	usion	119		
	5.2 Achievement of Research Objectives					
	5.3	Signif	icance of Research Outcomes	121		
	5.4 Suggestions for Future Research					
RE	FERE	NCES		123		
AP	PEND	ICES		129		

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Electrical Characteristics of Distribution Components	3
3.1	Characteristics of Phase Conductors	49
3.2	Characteristics of Cable of Three Phases	56
3.3	Characteristics of Cable of Single Phase	62
3.4	Line Code Property	67
3.5	Load Properties	69
3.6	Voltage Source Properties	71
3.7	Regulator and Transformer Properties	73
3.8	Capacitor Properties	75
3.9	Commerially avialible Capacitor Sizes with their Cost	86
4.1	Comparisons of Results of Series Impedance of IEEE 34 Bus	91
4.2	Voltage Profiles of 34 Bus Test Feeder Without Capacitor	94
4.3	Voltage Profiles of 34 Bus Test Feeder With Capacitor	97
4.4	Voltage Profiles of 34 Bus Test Feeder With Optimization	100
4.5	Comparisons of Total Losses of IEEE 34node Test	103
4.6	Comparisons of Results of Series Impedance of IEEE 13 Node Test	107
4.7	Voltage Profile of 13 Bus Test Feeder without Capacitor	110
4.8	Voltage Profile of 13 Bus Test Feeder with Capacitor	112
4.9	Voltage Profile of 13Bus Test Feeder with Optimization	114

4.10 Comparisons of Total of IEEE 13 Node Test

viii

LIST OF FIGURES

FIGUR	TITLE TITLE	PAGE	
1.1	Simple Distribution System	2	
1.2	Sample of Transmission Power System		
2.1	Single Line Diagram of Distribution System	12	
2.2	Primary Distribution System	13	
2.3	Secondary Distribution System	14	
2.4	Radial System	15	
2.5	Ring Main System	16	
2.6	Specification of Determination of Series Impedances	18	
2.7	Diagram Showing Three Types of Conductor Configurations Used	22	
2.8	The Conductor Types	24	
2.9	Capacitor Bank	26	
2.10	The Effect of Capacitor Shunt on Voltage Rated	27	
2.11	Optimal Location of Capacitor Bank	30	
2.12	Capacitor Locations	32	
3.1	Methodology Stages	36	
3.2	Distribution Feeder	37	
3.3	Magnitic Field	39	
3.4	Images Conductors	44	
3.5	Primitive Impedance Matrix for Overhead Lines with Earth Conductor	47	

3.6	Models of Overhead Line Spacing	50
3.7	Three Phase- Underground with Extra Neutral	52
3.8	Primitive Impedance Matrix for Underground Cables	52
3.9	Concentric Neutral Cable	53
3.10	Distances between Concentric Neutral Cables	55
3.11	Three-Phase Concentric Neutral Cable Spacing	56
3.12	Tape Shielded Cable	60
3.13	Single Phase Taped Shielded with Neutral	62
3.14	Matlab Program of Determination of Series Impedance	65
3.15	Circuit Diagram of Line	67
3.16	Circuit Diagram of Load	69
3.17	Distributed Load Model in OpenDSS	71
3.18	Circuit Diagram of Transformer	73
3.19	Simple PSO	78
3.20	Flow Chart of PSO Algorithm	82
4.1	The Diagram of IEEE 34 Node Test Feeder	90
4.2	The Diagram of IEEE 34 Node Test Feeder with Capacitor	96
4.3	Plot Of Total Loses With No. Of Iteration of IEEE 34 Bus	99
4.4	The Diagram of IEEE 34 Node Test Feeder with Optimization	102
4.5	Comparison of Total Power Losses between Three Case	103
4.6	Comparisons of Voltages Profile Without And With optimization	104
4.7	The Diagram of IEEE 13 Node Test Feeder	109
4.8	The Diagram of IEEE 13 Node Test Feeder with Capacitor Bank	111
4.9	The Diagram of IEEE 13 Node Test Feeder with Optimization	113
4.10	Comparsion of Total Power Losses Between Three Cases	116

And Optimization Case

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Data of IEEE Test Systems	130
В	Conductor Data	139
С	Underground Cable Data	142
D	Coding of Open DSS Programs	143
Е	MATLAB Programs	148
G	Result of power flow of IEEE34 Bus Test System	156
Н	Result of power flow of IEEE13 Bus Test System	159

LIST OF ABBREVIATIONS

3-PH	-	Three-Phase
2-PH	-	Two Phase
1-PH	-	One Phase
LCT	₹	Tap Changer Transformer
0-1-2		Symmetrical Sequence Components
0	-	Zero Sequence Component
1	-	Positive Sequence Component
2	-	Negative Sequence Component
IEEE	-	Institute of Electrical and Electronics Engineers
OpenDSS	-	Open Distribution System Simulator
PSO	-	Particle Swarm Optimization

xiii

LIST OF SYMBOLS

Z _{ii}	-	Self Impedance
Z _{ij}	-	Mutual Impedance
[A]	2	Forward Linear Transformation Matrix
[A] ⁻¹	-	Invers Linear Transformation Matrix
KVAR	-	Kilo Volt Amper Recative
S _{ABC}	-	Complex Power in an Transformed System
pu	-	Per-Unit
a	-	Operator = $1 \angle 120^{\circ}$
t	-	Transpose
$Q_{3\Phi}$	-	Reactive Power in Three Phase System
Z	-	Impedance
Zs	-	Source Impedance
Z _T	-	Transformer Impedance
Х	-	Reactance
X _L	-	Load Reactance
Xs	-	Source Reactance
X _T	-	Transformer Reactance
X _C	-	Cable Reactance
R	-	Resistance
R _T	-	Transformer Resistance

xiv

R _C	-	Cable Resistance
Z_{abc}	-	Series Impedance
Z_0, Z_1, Z_2	-	Zero, Positive, and Negative sequence Impedance
V	-	Volt
А	-	Amper
kV	H	Kilo Volt
kVA	ē	Kilo Volt Amper
MVA	-	Mega Volt Amper
Ω		Ohm

CHAPTER 1

INTRODUCTION

1.1 Background

Distribution networks are considered as the final stage to deliver the electricity to consumers. The distribution system normally is beginning at the distribution substation, and served by sub-transmission feeders. The design of each substation is to supply one or more of primary feeders. Majority of the feeders for electrical networks are radial so that power flows from that substation to user meter (Ramachandran, 2011). A design of a simple distribution system and its modules is given in Figure1.1. The significant characteristic of radial distribution feeders is taking only one path of power flow from the supply to consumption. Normally, the distribution system is collected feeders from distribution substations. Majority of feeders consist of primary main feeder of three phases with separating laterals that are two phases or single phase (Lakervi, 1995).

The transmission lines for distribution system can be overhead lines or underground cables based on the possibilities and conditions depending on electrical characteristics. Voltage regulators adjust the voltage settings, to keep the voltage at all nodes within ANSI limits. Some of the primary main feeders have in-line transformers to serve large industrial consumers. To provide reactive power support to the feeder at critical nodes, single phase or three phase capacitor banks are used. The substation transformer primary usually operates at 12.47 kV and the voltage is stepped down to 4.16 kV. Smaller distribution transformers, also known as service transformers supply customers at 120/240V level. The distribution feeder supplies single phase, two phase and three phase loads categorized as

smaller residential consumer in addition to large industrial consumers. The important characteristics of distribution systems are highlighted as in (Kersting, 2002).

There is always a voltage drop of distance between the substation and load end of each feeder. That voltage drop mainly depends on the loading situations of the lines of distribution. The used substation of distribution regulates the system voltage specified limits using tap changers of transformers (Load Tap Changer). The load tap changer regulates the taps on side of secondary of transformer when the load varies and regulates the voltages within specified voltages as shown in Figure 1.1 (Ramachandran, 2011).

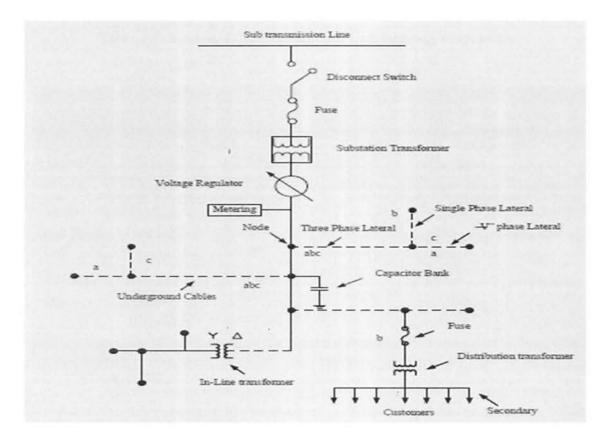


Figure 1.1: Simple Distribution System

Substation transformer is used to reduce the source voltage for distribution system level. Usually, the standard of distribution voltage levels is 34.5 kV, 23.9 kV, 14.4 kV, 13.2 kV, 12.47 kV, and 4.16 kV (Ramachandran, 2011). The electrical distribution systems

are classified into primary and secondary systems. As well, the primary system includes of distribution substations and feeders. The substations will step down voltages from the sub-transmission system to 34.5 kV and 4.16 kV (Humayd, 2011). The distribution system consists of circuit breakers and simple switches for high voltage and relays that can be controlled on action of circuit breakers to achieve low voltage switching. Thus, each of equipment in a distribution feeder has electrical features that must be calculated before the power flow of the feeder. The characteristics of electrical component are showed in Table 1.1 (Kersting, 2002).

Overhead Conductors	Underground Conductors	Wire Data	Voltage Regulators	Transformers	Capacitors
 Spacing Phasing Distance from ground level Wire details Kron reduction 	 Spacing Phasing Thickness of tape shield Number of Concentric Neutrals Cable details 	 Geometric mean Radius (GMR) feet Diameter (inches) Resistance (ohms/mile) Ampacity Repair rate 	 Potential Transformer ratios Current transformer ratios Compensator settings R and X settings 	 kVA rating Voltage rating Impedance settings (R and X) No-load power loss 	 Capacity Phasing Control type ON-OFF settings Power factor

Table 1.1: Electrical Characteristics of Distribution Components

Recently, it has become the purpose of distribution systems to generate voltages that must be stepped down to distribution system so that power generation stations will be remote to urban centers. The transmissions line is more efficient to transmit the electricity but there are some of voltage profiles levels cannot be utilized for consumers which need step-down voltages from level to another which give more benefit. The lines of power transmission is entered a substation then the voltage levels will be stepped down for another voltage levels give. Then, they will deliver to customers, and industrial as shown in Figure 1.2 (McDonald et al., 2013).

Distribution system is classically described less than 50kV, that voltages can be distributed to specified areas to connect with industrial and commercial customers. The large commercial and industrial customers are normally connected with the grid at this voltage level. Consumers are classically fed by overhead lines and underground cables. Pole mounted transformers are classically utilized in old rural areas and residential neighborhoods. Each home is connected to the pole mounted transformer. On the other hand, there are urban, rural and commercial distribution which done using underground services.

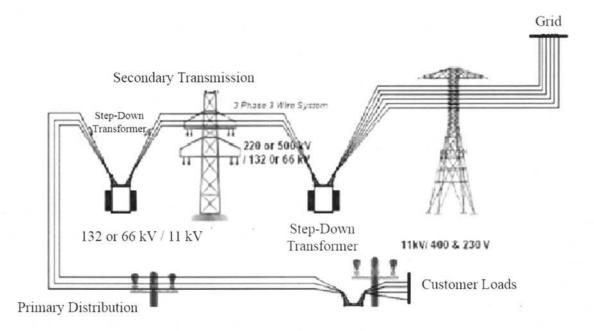


Figure 1.2: Sample of Transmission Power System

Electrical distribution networks is vital part of power system therefore, there is the need for new tools to model or analyze it as Open Distribution Simulator System program