

Faculty of Mechanical Engineering

INVESTIGATION ON THE MECHANICAL PROPERTIES OF HYBRID FIBRE METAL LAMINATE

Faizal Azli Bin Hj. Jumaat

Master of Mechanical Engineering (Automotive)

2016

INVESTIGATION ON THE MECHANICAL PROPERTIES OF HYBRID FIBRE METAL LAMINATE

FAIZAL AZLI BIN HJ. JUMAAT

A report submitted in fulfillment of the requirements for the degree of Master of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering

1

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

"I hereby, declared this report entitle of 'Mechanical properties investigation of reinforced light weight composite material' is the results of my own research except as cited in the references".

April

Signature

Author's Name

: FAIZAL AZLI BIN HJ. JUMAAT

*

Date

: 10 JUNE 2016

APPROVAL

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of the Master of Mechanical Engineering

(Automotive)".

o.p

Signature	:	DR. SIVAKUMAR AL DHAR MALINGAM
		Fakulti Kejuruteraan Mekanikal Universiti Teknikal Malaysia Melaka
Supervisor	:	DR. SIVAKUMAR A/L DHAR MALINGAM

Date

: 10 JUNE 2016

DEDICATION

To my beloved wife, Hasnah Bte. Ahmad and my lovely sons. Their sources of my inspiration and strength in pursuit of excellence. To my mother Patimah bte. Ngamin who always pray for us happiness. Thanks for all support and encouraged towards the end.

C Universiti Teknikal Malaysia Melaka

ABSTRACT

The main purpose of this research is to investigate the mechanical properties of hybrid fibre-metal-laminate (FML) with different orientations composites. The mechanical responses of FML composites reinforced by three layers of natural fibre or in combination with glass fibres were compared against those of different ply orientation and laminate layup. The tensile moduli of elasticity of the FML composites with various laminate layup were comparable to those of FML composites with different ply orientation. The ultimate tensile strengths and strain at failure of the FML composite with different ply orientation and laminate lavup were also investigate. The mechanical response trends under impact of FML composites were compared against those of flatwise and edgewise of impact test. The FML laminates based on aluminium alloy 5052-0 connected with polypropylene adhesive film, polypropylene (PP), glass fibre (G) and kenaf fibre (K). The low velocity impact tests were performed by using impact pendulum tester according to ASTM E-23 standard and the tensile behaviour generally investigated using universal testing machine according to ASTM D 3039 standard. The effects of ply orientation (0°-90° / 45°-45°) and laminate layup (GGG/KKK/GKG/KGK) on the mechanical responses of the FMLs were also investigated. The morphological properties of FML composite samples were analysed through stereo microscope images and these clearly demonstrated the better interfacial adhesion between the woven kenaf fibre, woven glass fibre and the polypropylene matrix with different orientation. Result shows that, 50% reductions by weight for FML compared to monolithic aluminium, FML incorporating 45%-45 woven orientations had inferior tensile properties in comparison to FML composites reinforced by 0°/90° woven orientation and FML layup with GKG shows the superior at both test methods.

ABSTRAK

Tujuan utama kajian ini adalah untuk mengkaji sifat-sifat mekanik bagi komposit gentian logam lamina (FML) yang mesra alam serta ringan. Tindak balas mekanikal komposit FML yabg diperkukuh oleh tiga lapisan serat semula jadi atau gabungan dengan gentian kaca dan dibandingkan berdasarkan orientasi lapis yang berbeza dan kombinasi lamina yang berbeza turut dikaji. Kekuatan tegangan muktamad, Young modulus dan ketegangan pada kegagalan komposit FML dengan orientasi lapis yang berbeza dan kombinasi lamina juga dikaji. Trend tindak balas mekanikal di bawah kesan menyerap tenaga hentakan bagi komposit FML telah dibandingkan secara terlentang dan sisi menggunakan ujian hentakan. Rekabentuk FML berdasarkan aloi aluminium 5052-0 yang dilekatkan menggunakan lapisan nipis polypropylene, polypropylene (PP), gentian kaca (G) dan serat kenaf (K). Ujian kesan halaju rendah telah dilakukan dengan menggunakan kesan bandul penguji mengikut standard ASTM E-23 dan tingkah laku tegangan umumnya dikaji dengan menggunakan mesin ujian universal mengikut standard ASTM D 3039. Kesan orientasi lapis (0°-90° / 45°-45°) dan kombinasi lamina (GGG / KKK / GKG / KGK) pada tindak balas mekanikal bagi FML juga dikaji. Ciri-ciri morfologi sampel komposit FML dianalisis melalui imej stereo mikroskop dan ini jelas menunjukkan lekatan antara permukaan yang lebih baik di antara gentian kenaf yang ditenun, gentian kaca tenunan dan matriks polypropylene dengan orientasi yang berbeza. Keputusan menunjukkan bahawa terdapat pengurangan berat sebanyak 50% antara FML berbanding aluminiun, FML yang menggunakan orientasi tenunan 45%-45 mempunyai sifat tegangan lebih rendah berbanding dengan komposit FML diperkukuh oleh orientasi tenunan 0%90° dan lamina FML dengan GKG menunjukkan sangat baik di kedua-dua kaedah ujian.

ACKNOWLEDGEMENT

Assalamualaikum W.B.T.

First of all, I would like to express my gratitude to Allah S.W.T., for giving me infinite grace, love and blessing, to enable me to pursue my ambition up to this point of my life. Hope him will accept me as His servant. Most special thanks to my beloved Muhammad S.A.W, peach and greeting upon him for his sacrifice.

This work is a synergistic of many minds. I am grateful for the inspiration and wisdom of many professionals and for the trans-generation sources and roots of this wisdom. Interdependent is higher value than independence.

Generously would like to take this opportunity to express my hear felt appreciation and thanks to respectable Dr. Sivakumar A/L Dhar Malingam for his continuing guidance, encouragement, supervision, advice and effort in completing this master programme.

Sincere thanks to all involve in this project direct or indirectly help me in conducting the experimental work. As for my family members, no amount of gratitude could reply your kindness of being there as well as the patience to put with my whim. My deepest gratitude in meant for all of you.

TABLE OF CONTENT

DEC	CLARA	TION	
APH	ROVA	L	
DEI	DICATI	ON	
ABS	STRAC	Г	
ABS	STRAK		ü
ACI	KNOW	LEDGEMENTS	iii
TAI	BLE OF	CONTENT	iv
LIS	T OF T	ABLES	vii
LIS	T OF F	IGURES	viii
LIS	T OF A	PPENDICES	xii
LIS	T OF A	BBREVIATIONS	xiii
CH	APTER		
1.	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Problem Statement	4
	1.3	Objectives	5
	1.4	Research Scope	5
2.	LIT	ERATURE REVIEW	6
	2.1	Introduction	6
	2.2	Material	6
		2.2.1 Glass Fibre	7
		2.2.2 Kenaf Fibre	9
		2.2.3 Polypropylene	14

2.2.4 Alloy Aluminium 16

	2.3	Hybrid Fibre Metal Laminate	20
	2.4	Hot Press Process	22
	2.5	Mechanical Testing	25
		2.5.1 Tensile Test On Fml	25
		2.5.2 Impact Test On Fml	31
3.	MET	THODOLOGY	39
	3.1	Introduction	39
	3.2	Project Flow Chart	39
	3.3	K-Chart For Project Implements	40
	3.4	Material Preparation	42
		3.4.1 Composite Preparation	42
		3.4.2 Aluminium Preparation	47
		3.4.2.1 Annealing Of Aluminium Alloy	47
		3.4.2.2 Aluminium Surface Treatment	48
	3.5	Fml Fabrication Process	48
	3.6	Specimen Preparation For Impact And Tensile Test	51
	3.7	Tensile Testing	53
	3.8	Impact Testing	55
	3.9	Morphology Test	58
4.	RES	ULT AND DISCUSSION	60
	4.1	Introduction	60
	4.2	Fml Mass Measurement	60
	4.3	Tensile Test	64
		4.3.1 Orientation 45%-45%	65
		4.3.2 Orientation 0°/90°	66
		4.3.3 Tensile Failure Analysis	67
		4.3.4 Comparison Between Woven Orientations	70

	4.4	Impac	t Test		73
		4.4.1	Flatwise	e Impact	74
			4.4.1.1	Orientation 45°/-45°	75
			4.4.1.2	Orientation 0°/90°	75
			4.4.1.3	Flatwise Impact Failure Analysis	76
			4.4.1.4	Comparison Between Flatwise Woven Orientations	79
		4.4.2	Edgewi	se Impact	79
			4.4.2.1	Orientation 45°/-45°	80
			4.4.2.2	Orientation 0°/-90°	81
			4.4.2.3	Edgewise Impact Failure Analysis	81
			4.4.2.4	Comparison Between Edgewise Woven Orientations	83
		4.4.3	Compar	ison Between Edgewise Woven	
			Orientat	tions	84
5.	CON	CLUSI	ON AND	RECOMMENDATIONS	87
	5.1	Concl	usion		87
	5.2	Recon	nmendati	ons	88
	REF	ERENC	ES		89
	APP	ENDICI	ES		96

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Identified advantages and disadvantages of various fibre	8
	for FML	
2.2	Mechanical properties of natural and synthetic fibre	13
2.3	Typical properties of PP	15
2.4	Constituent materials used for FML manufacturing	17
2.5	Theoretical physical and mechanical properties of aluminium	18
	alloy 6061	
2.6	Chemical Composition of AA5052-H32	19
2.7	Advantages of fibre metal laminates	22
2.8	Tensile properties of the aluminium alloy, the SRPP, the PP	29
	adhesive and the FML specimens	
2.9	Impact classification according to impact energy	36
3.1	Composition of Aluminium alloy 5052 – H32	47
3.2	Details of the layup, staking sequence and type of characteristics	49
3.3	(a) Dimension for tensile test specimen and (b) Dimension for	52
	impact test specimen	
3.4	Detail for tensile specimens	55
3.5	Detail for impact specimens	57
4.1	Percentage different for tensile test specimens	61
4.2	Percentage different for impact test specimens	61
4.3	Tensile test samples for different woven orientations and layups	64
4.4	Tensile properties of FML	65
4.5	Impact test samples for different orientations of layup, woven and	74
	test	
4.6	Flat wise Impact strength for orientation 0°-90° and 45°/-45°	74
4.7	Edgewise impact strength for orientation 45%-45% and 0%-90%	80

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Classification of FML based on metal plies	7
2.2	Sectional view of the AA5052-H32/GF/AA5052-H32	9
	sandwich sheet	
2.3	Plain woven fabric: (a) top view and (b) cross section view	10
2.4	Tensile properties of hybrid composites	12
2.5	Typical Characteristics of Polypropylene	14
2.6	Configuration of continuous fibre/metal/epoxy hybrid composite,	20
	3/2 layup	
2.7	A schematic illustration of a 3/2 fibre-metal laminate	23
2.8	Stacking sequence of the FML	24
2.9	Curing process curve of the FML	24
2.10	Comparison of stiffness (tensile modulus), strength and	28
	specific stiffness (tensile modulus/density) and specific	
	strength (strength/density) of NFCs with glass fibre reinforced	
	plastics	
2.11	Comparison of stress-strain following tensile tests on the plain	30
	aluminium, the 0°/90° SRPP composite and the [Al, 0°/90 °] FML	
	specimens	
2.12	Comparison of stress-strain following tensile tests on the plain	31
	aluminium, the $\pm 45^{\circ}$ SRPP composite and the [Al, $\pm 45^{\circ}$] FML	
	specimens	
2.13	Typical load-displacement curve following a low velocity impact	33
	test on a FML	

2.14	Cross-sections of four scaled specimens impacted	34
2.15	Absorbing energy vs. Impact energy	34
2.16	Cross section of the impacted plate	35
2.17	Schematic diagram of a sandwich structure configuration	36
2.18	Maximum peak load under various impact energy	37
2.19	Absorbed energy on composite specimen under various impact	38
	energy	
2.20	Side view of damaged specimen	38
3.1	FML Panel Manufacturing Process Flow Chart	40
3.2	K – Chart of project implementation	41
3.3	Monolayer sheet extrusion machine	42
3.4	(a) Kenaf Fibre woven, (b) Glass Fibre woven and	44
	(c) Polypropylene	
3.5	Drying oven	45
3.6	Mass measurement for (a) Kenaf fibre, (b) Glass fibre and	46
	(c) Polypropylene	
3.7	Mould and composite material	48
3.8	Hot Press Machine	49
3.9	Activities of FML fabrication	50
3.10	Schematic illustration of FML laminates	51
3.11	Schematic diagram of the specimen	52
3.12	Dimension design of FML panel (a) 45%-45% and (b) 0%90%	53
3.13	Instron 5969 (Universal Testing Machine)	54
3.14	Clip-on Extensometer	54
3.15	Gotech GT-7045-MD Impact Pendulum Test	56

3.16	Charpy hammers 5.5 J	56
3.17	(a) Schematic diagram of edgewise impact and (b) schematic	57
	diagram of flatwise impact	
3.18	Stereo microscope	58
3.19	Sample for impact test	59
3.20	Morphology test	59
4.1	Mass of FML for tensile test specimen for 45%-45° and	62
	0°/90° orientation	
4.2	Mass percentage different of FML for tensile test specimen	62
	for 45°/-45° and 0°/90° orientation	
4.3	Mass of FML for impact test specimen for 45%-45% and	63
	0°/90° orientation	
4.4	Mass percentage different of FML for impact test specimen for	63
	45°/-45° and 0°/90° orientation	
4.5	Tensile failure microscopic image of 0%90% (GGG, GKG, KGK	68
	and KKK layup)	
4.6	Tensile failure microscopic image of 45%-45% (GGG, GKG, KGK	69
	and KKK layup)	
4.7	Comparison of stress-strain following tensile tests on the GGG	70
	45°/-45°, GKG 45°/-45°, KGK 45°/-45° and KKK 45°/-45° FML	
	specimens	
4.8	Comparison of stress-strain following tensile tests on the GGG	71
	0°/90°, GKG 0°/90°, KGK 0°/90° and KKK 0°/90° FML specimens	
4.9	Comparison of Young' modulus following tensile tests on the FML	72
	layup (GGG, GKG, KGK and KKK) and woven orientation (45°/-45	0
	and 0°/90°) FML specimens	

4.10	Comparison of ultimate tensile strength following tensile tests on the FML layup (GGG, GKG, KGK and KKK) and woven orientation	72 n
	(45°/-45° and 0°/90°) FML specimens	
4.11	Comparison of failure strain following tensile tests on the FML	73
	layup (GGG, GKG, KGK and KKK) and woven orientation (45°/-45	5°
	and 0°/90°) FML specimens	
4.12	Impact strength of flatwise for four layup at 45%-45% orientation	75
4.13	Impact strength of flatwise for four layup at 0°/90° orientation	76
4.14	Flatwise impact failure microscopic image of 45%-45% woven	77
	orientation	
4.15	Flatwise impact failure microscopic image of 0%90% (GGG, GKG	78
	and KGK)	
4.16	Comparison of impact energy absorbed on flatwise for 45°/-45° and	79
	0°/90°	
4.17	Impact strength of four layup at 45%-45% orientation	80
4.18	Impact strength of four layup at 0%90% orientation	81
4.19	Edgewise impact failure microscopic image of 0%90% (GGG, GKG	82
	and KGK)	
4.20	Edgewise impact failure microscopic image of 45%/-45% (GGG)	83
4.21	Comparison of impact energy absorbed on edgewise for 45%-45%	84
	and 0°/90°	
4.22	Impact strength of four layup at 45% woven orientation	85
4.23	Impact strength of four layup at 0 %90 % woven orientations	85

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Raw data of FML tensile test specimen mass measurement	96
В	Raw data of FML impact test specimen mass measurement	97
С	ASTM D 3039 Tensile Test Report	98
D	Tensile stress-strain data for GGG, GKG, KGK and KKK	110
	at 45°/-45° and 0°/90° woven orientation	
Е	Young's modulus at 45°/-45° and 0°/90°	114
F	Maximum strain at ultimate tensile stress at 45%-45%	115
	and 0°/90°	
G	Impact test result raw data	116

LIST OF ABBREVIATIONS

Al	÷	Aluminium
ARALL	5	Aramid Reinforce Aluminium Laminates
ASTM	-	American Society for Testing and Materials
CARALL		Carbon Reinforced Aluminium Laminate
CFRP		Carbon Fibre Reinforced Polymer
Е	-	Young's Modulus
FML	÷.	Fibre Metal Laminates
FRP	÷	Fibre Reinforced Polymer
G		Glass fibre
GFRP	1.0	Glass Fibre Reinforced Polymer
GLARE	18	Glass Reinforced Aluminium Laminate
Gpa	÷.	Giga pascal
ISO	•	International Organization for Standardization
К	÷.,	Kenaf fibre
М	-	Mass (kg)
MPa	- 4	Mega pascal
РР		Polypropylene
Т	-	Extraction temperature
UTM	- 5	Universal Testing Machine
UTS		Ultimate tensile strength
KPa		Kilo pascal
wt%	- 6	Weight percentage
ε		Strain at failure
%		Percentage
°C	2	Degree celsius

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The volume of thermoplastics used in the housing, automotive, packaging and other low-cost, high-volume applications is enormous. Recent interest in reducing the environmental impact of materials is leading to the development of newer materials or composites that can reduce the stress to the environment. In light of potential future petroleum shortages and pressures for decreasing the dependence on petroleum products, there is an increasing interest in maximizing the use of renewable materials. The need to develop light-weight but environmentally sustainable engineering materials has attracted research into natural fibre-reinforced composite (Shah, Porter, Vollrath, 2014).

Due to their low density and moderate mechanical properties, plant-derived fibres offer a plausible pathway towards new composite materials having mechanical property-toweight relations on par with conventional composites incorporating man-made fibres such as glass aramid or carbon (Dittenber, 2012). When compared to synthetic fibres, plant fibre also possesses desirable physical characteristics including renewable and biodegradable credentials, environmentally-friendly processing and safe occupational handling (Joshi, 2004). The contemporary trend of replacing man-made fibres in FRP composites with plant-derived fibre can also be extended to Fibre Metal Laminates (FML). These composite materials possess the composites and have been demonstrated to have excellent damage tolerance characteristics (Sinmazcelik, Avcu, 2011).

Due to the relative low cost of aluminium alloys and glass fibres, Glass Laminate Aluminium Reinforced Epoxy (GLARE) has been the most studied and commercially ubiquitous FML composite (Botelho, Silva, 2006). However concerns with high processing costs and associated environmental issues as well as occupational handling of glass fibres have incentivised materials engineers to study the feasibility of FML reinforced with plant fibre. In an attempt to eliminate some of the environmentally-unattractive attributes of glass reinforcements, a handful of researchers (Kuan, Santulli, 2013) have investigated the mechanical behaviours of FML composites reinforced with plant fibres. Santulli and coworkers characterized the tensile and impact response of FML composite incorporating 2024-0 aluminium alloys and hemp or flax reinforced polypropylene laminates. While the mechanical responses of hemp reinforced FML were notably lower than those estimating using Rules-of-mixtures. The results confirmed the potential to adopt natural fibreenhanced FML in load-bearing engineering applications. Vasumathi and Murali investigated the mechanical responses of FML composites incorporating jute fibre under bending, impact and tensile loading. Similar to research findings by Santulli and others, the observations also suggested the potential adoption of natural fibre in place of high-cost, environmentally-unfriendly and occupationally-unsafe synthetic fibres such as kevlar, aramid, carbon and glass. Wambua and others (Wambua, 2007) explored the anti ballistic benefits of bonding fibre polymer composite reinforced by hemp, flax, or jute onto steel plates. Sandwiching the fibre reinforced plastic laminates between 0.8 mm-thick steel plates increase the ballistic resistance of the laminates by 109%.

In the past two decades a number of researchers used natural fibres with a polymer matrix composite and this has received considerable attention both in the literature and the industry. Although synthetic fibres such as kevlar, aramid, glass, and carbon are extensively used for the reinforcement of plastics, these materials are expensive and are non-renewable resources (Salman, 2014). Many of the woven natural fabrics are rising as a viable option to glass fibre reinforced composites in industrial applications like packaging, paper making, and composite materials. The composite sandwiches consist of face-sheet (skin) and core material layup have various application areas including aeronautical, marine and transport industry. Beside the perfect flexural resistance and stiffness, high corrosion resistance, low thermal and acoustic conductivity are the major advantageous of these systems over the traditional materials. Although synthetic fibres such as kevlar, aramid, glass, and carbon are extensively used for the reinforcement of plastics, these materials are expensive and are non-renewable resources (Salman, 2014). Many of the woven natural fabrics are rising as a viable option to glass fibre reinforced composites in industrial applications like packaging, paper making, and composite materials.

One of the more popular natural fibres is kenaf fibre, which is an annual plant due to its rapid growth, and has an average yield of 1700 kg/ha (Khan, 2010). One of the celebrated constituents of natural fibre reinforced plastic composites in Malaysia is kenaf fibre. The research in kenaf plastic composite is growing tremendously along with the plastic industry's high demand for producing petroleum-based materials. The attractive features of kenaf fibres are the low cost, lightweight, renewability, biodegradability and high specific mechanical properties. Kenaf has a bast fibre which contains 75% cellulose and 15% lignin and offers the advantages of being biodegradable and environmentally safe. Among natural fibre composites, kenaf fibre reinforced composites have found potential applications for mobile phone shells consisting 15–20% kenaf fibres. Another example in the automobile industry is the Toyota RAUM, which is equipped with a spare tire cover made of kenaf fibre composites (Maya Jacob John et al., 2007).

1.2 PROBLEM STATEMENT

To date, limited research has been performed on the mechanical behaviours of FML composites integrating the advantageous mechanical properties of metallic alloys with the environmentally-friendly benefits of plant fibres. Therefore, in order to increase our understanding of the fundamental mechanisms driving damage in such FML composites when subjected to varied loading conditions, more research is required.

The increasing demands in automotive and aircraft industry for high performance, low cost and lightweight structures have stimulated a strong trend towards the development of FML. The worldwide automotive production rate is increasing and is estimated to reach 76 million cars annually by 2020. Limited petroleum resources will increase petroleumbased products' prices in the near future. It is estimated that a 25% reduction in car weight would be equivalent to saving 250 million barrels of crude oil (Lan R. Mair, 2000). Therefore it is possible that manufacturers will consider expanding the use of natural fibre in their new products.

This research will study the mechanical properties of hybrid fibre metal laminate under tensile loads and low velocity impact loads. For this, a FML made of the lightweight and anti corrosion Aluminium alloy 5052-0 with woven kenaf fibre and woven glass fibre reinforced polypropylene composite is manufactured for the testing. Epoxy is the most popular type of thermosetting resin used for fabricating FML composite, however due to the long processing time for curing and low fracture resistance, low cost thermoplastic (polypropylene) based composites are used as the matrix agent for the composite. Three layup configurations for the FML and two woven orientation (0°/90° and 45°/-45) were consider in this study.

1.3 AIM AND OBJECTIVES

The objectives of this research are:

- To investigate the effect of woven fibre orientation and hybrid layup on tensile test.
- To investigate the effect of woven fibre orientation and hybrid layup on impact test.

1.4 RESEARCH SCOPE

The scopes of the study are:

- a. Fabricate the FML composites materials.
- b. To conduct tensile test according to ASTM D3039.
- c. To conduct impact test according to ASTM E23.
- d. To study the failure.

CHAPTER 2

LITERATURE RIVIEW

2.1 INTRODUCTION

During the last three decades, there has been a search for lightweight materials that can replace the traditional aluminium alloys in aerospace structure. For an optimal structure design, a new material is needed which combines high strength, low density high elasticity modulus with improve toughness, corrosion resistance and fatigue properties. Fibre reinforced composites materials almost cover all these demands. Fibre metal laminates (FML) take advantages of metal and fibre reinforced composites, proving superior mechanical properties to the conventional lamina consisting only of fibrereinforced lamina or monolithic aluminium alloys. Due to their advantages, FMLs are finding great use in aerospace and vehicle. A number of companies have interest in substitute the traditional aluminium components by FML composite. Fibre metal laminates have been successfully introduced into the Airbus A380 (Beumler, 2006).

2.2 MATERIAL

FML composites composed of two thin aluminium layers connected with fibre reinforce polymer composite. It consist metallic sheets and fibre as composite layers. The concept usually applied to aluminium with aramid, carbon or glass fibre, but also can be applied to other constituents. Figure 2.1 gives a classification of FML based on metal plies.