ENERGY MANAGEMENT SYSTEM FOR THREE-WHEEL LIGHT ELECTRIC VEHICLE USING MULTI-SOURCES ENERGY MODELS

FARID ARAFAT AZIDIN

THESIS SUBMITTED IN FULFILLEMENT FOR DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF ENGINEERING AND BUILT ENVIRONMENT UNIVERSITI KEBANGSAAN MALAYSIA BANGI

2016

SISTEM PENGURUSAN TENAGA UNTUK KENDERAAN ELEKTRIK RINGAN TIGA RODA MENGUNAKAN PELBAGAI SUMBER

FARID ARAFAT AZIDIN

TESIS YANG DIKEMUKAKAN UNTUK MEMENUHI SEBAHAGIAN DARIPADA SYARAT MEMPEROLEH IJAZAH FALSAFAH KEDOKTORAN

FAKULTI KEJURUTERAAN DAN ALAM BINA UNIVERSITI KEBANGSAAN MALAYSIA BANGI

2016

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

18 OGOS 2016

FARID ARAFAT BIN AZIDIN P50200

ACKNOWLEDGMENTS

First and foremost praise is to Almighty Allah for all his blessings for giving me patience and good health throughout the duration of this PhD research.

I am very fortunate to have Professor Dr. MA Hannan as a research supervisor. I am greatly indebted to his ideas, encouragement, assistance, support, solid guidance and in-depth discussions he shared with me through this research and in the preparation of the thesis. Without him tireless assistance, leadership, and confidence in my abilities, this thesis would not come to its timely completion.

I should like to express my sincere thanks to Professor Dr. Azah Mohamed as Head of Power System Lab and for letting me using all power system instruments towards the successful completion of this PhD degree. I should also like to offer a special thanks to Professor Madya Dr. Hussein Sharif for their insightful comments and solid guidance. Thanks also to my colleagues at the Power Laboratory, UKM for their support and discussions that has helped me during the research.

To Ministry of Higher Education (MOHE) and UTeM, thanks for the financial assistance and space provided for me to do the research.

Love and warmest thanks for my dearest parents; Azidin Bin Mahmud and Sapiah Binti Ahamad Tarmizi, for your do'as, support and encouragements throughout my education years. To my dearest wife, Hamidah Binti Hamzah and my lovely daughter, Farhana Hamizah Binti Farid Arafat, thanks for your do'as, patience, understanding and support for all the duration of doing this research. Finally, to all those who have helped me throughout the duration of this research; families, colleagues and friends, thank you to all of you. All of you have been a source of confidence and inspiration for me.

ABSTRACT

Hybrid electric vehicles, plug-in hybrid electric vehicles, battery electric vehicles, fuel-cell vehicles are just a few technologies that are being researched worldwide today. Applying renewable energy such as battery, fuel cell and super-capacitor in the electric vehicle is a smart and ideal solution. However, battery as a single-source in electric vehicle has many disadvantages such as limited travel distance and longer charging time. Besides, battery reduces its electrical characteristics through high current flow, high temperature, self-discharge and low battery capacity level. Fuel cell has low power response during sudden energy demand and requires an expensive infrastructure for refueling. In case of light fuel cell vehicle, small tank is practical for exchange tank. In super-capacitor side, it cannot support enough energy for a single powered electric vehicle purposes, however can be used as secondary power supply. Thus, an intelligent energy management system (EMS) of various sources is necessary to counterbalance the drawback of the sources. To solve the problem, the objective of the research is to develop an intelligent EMS which can conduct multi-sources for three wheel light electric vehicle (LEV). A rule-based control algorithm which contains eight states in EMS is designed to control power switches and to ensure sufficient energy is delivered to the load. The work of this research begins by electrical analysis in PSPICE simulation which focuses in circuit design and testing the state condition. A close loop vehicle system implemented with intelligent EMS is designed in MATLAB/Simulink. The simulation model is simulated with a real three wheel scooter specification which has capacity of 5.4 kW DC machine. To show effectiveness of the developed vehicle system, the performance and efficiency of the vehicle simulation is compared with standard drive cycle such as ECE-47 and ECE-15. To justify the simulation model, a scaled-down lab test bench model is designed using dSPACE DS 1104. The LEV model with 18 W load power is implemented in the developed test bench prototype. As a result, the vehicle system specification for the lab test bench model is reduced accordingly to the ratio of load power. The power specifications of the multi-source models such as 30 W for fuel cell, 3 Ah for rechargeable sealed lead acid battery and 100F for super-capacitors have been used. An EMS hardware is designed to offer a bridge between MATLAB/Simulink and dSPACE DS 1104. In the EMS hardware design, the switching relay is used for selection of the sources and current transducers which are used for measuring load current and battery capacity. All input and output signals from the EMS hardware design are connected to the dSPACE DS 1104 for data presentation in graphical user interface. For the uphill simulation test, using ECE-47 drive cycle, multi-source energy models shows that the power effectiveness is 94.6% where as for the battery, as a single-source, it is 84.9%. The lab test bench model also proved that in extension of 33% of speed ECE-47 drive cycle, the energy efficiency of multi-source LEV is 80.2% which is better performance than that of combustion engine energy efficiency of 29.2%. Therefore, the system equipped with an intelligent control algorithm has promising potential in vehicle energy management applications for the future.

ABSTRAK

Kenderaan elektrik jenis hibrid, hibrid masukan-palam, bateri dan sel fuel adalah sebahagian daripada teknologi yang dikaji di seluruh dunia pada masa kini. Penggunaan tenaga keterbaharuan seperti bateri, sel fuel dan pemuat lampau dalam kenderaan elektrik, adalah satu penyelesaian yang pintar dan unggul. Bateri sebagai satu punca dalam kenderaan elektrik mempunyai banyak kekurangan seperti jarak perjalanan terhad dan masa cas yang panjang. Tambahan pula, bateri akan mengurangkan sifat elektriknya dalam keadaan arus elektrik yang tinggi, suhu yang tinggi, nyahcas-kendiri dan paras kapasiti bateri yang rendah. Sel bahanapi pula mempunyai kuasa tindak balas yang rendah dalam keadaan permintaan tenaga tibatiba dan juga memerlukan infrastruktur mahal untuk pengisian semula. Bagi kenderaan sel fuel ringan, tangki yang kecil adalah praktikal untuk tangki pertukaran. Untuk pemuat lampau pula, ia tidak mampu membekalkan tenaga kepada kenderaan elektrik punca satu tetapi mampu digunakan sebagai pembekal kuasa sekunder. Oleh itu, satu sistem pengurusan tenaga (SPT) pintar diperlukan untuk memenuhi masalah tenaga tersebut. Objektif penyelidikan kekurangan punca adalah untuk membangunkan SPT yang boleh diaplikasikan pada kenderaan elektrik ringan (KER) tiga roda pelbagai sumber. Satu algoritma kawalan yang menpunyai lapan keadaan dalam SPT dibangunkan untuk mengawal suis kuasa dan memastikan tenaga yang dibekalkan kepada beban adalah mencukupi. Penyelidikan bermula dengan mengenal pasti litar elektrik melalui simulasi PSPICE. Satu sistem gelung tertutup bersama SPT pintar dibangunkan dalam MATLAB/Simulink. Model simulasi adalah mengikut spefikasi skuter elektrik sebenar dengan kuasa 5.4 kW mesin DC. Untuk menguji kerberkesanan sistem kenderaan tersebut, ianya dibandingkan dengan kitar pandu piawai ECE-47 dan ECE-15. Sebagai pengesahan model simulasi, suatu ujian makmal berskala kecil direka dengan menggunakan dSPACE DS1104. Satu KER prototaip berskala kecil dibangunkan dengan kuasa beban 18 W. Oleh itu, sistem kenderaan juga perlu dikurangkan mengikut nisbah kuasa beban. Spefikasi kuasa bagi sistem pelbagai sumber tersebut adalah 30 W untuk sel bahanpi, 3 Ah bateri cas semula dan 100 F pemuat lampau. Satu litar elektrik SPT direka untuk dijadikan sebagai perantaramuka MATLAB/Simulink dengan dSPACE DS1104. Dalam litar elektrik SPT, terdapat suis geganti untuk memilih kuasa manakala transduser arus untuk mengukur beban arus dan kapasiti bateri. Semua masukan dan keluaran dari litar SPT elektrik disambungkan kepada keluaran dSPACE DS1104 untuk mempersembahkan data dalam antaramuka pengguna grafik. Dalam ujian simulasi mendaki menggunakan kitar pandu ECE-47, model tenaga pelbagai sumber memberi prestasi 94.6% manakala model bateri adalah 84.9%. Model ujian makmal membuktikan bahawa dengan penambahan kelajuan 33% bagi kelajuan ECE-47, kecekapan kuasa bagi KER pelbagai sumber meningkat ke 80.2%, dan memberikan prestasi yang lebih baik dari enjin pembakaran dengan kecekapan 29.2.0%. Justeru, sistem yang dilengkapi dengan algoritma kawalan pintar mempunyai potensi dalam pengurusan tenaga kenderaan pada masa hadapan.

CONTENTS

Halaman

DECLARATION	ii
ACKNOWLEDGMENTS	111
ABSTRACT	iv
ABSTRAK	V
CONTENTS	vi
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xviii
LIST OF SYMBOLS	XX

CHAPTER I INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	3
1.3	Research Objectives and Scopes	5
1.4	Outline of Thesis	6

CHAPTER II LITERATURE REVIEW

Light Electric Vehicle	8
Light Electric Vehicle Energy Model	13
2.2.1 Battery Model2.2.2 Fuel Cell (FC) Model2.2.3 Solar Cell Energy Model	13 17 19
Light Electric Vehicle Energy Storage	20
 2.3.1 Super-capacitors Model 2.3.2 LEV Advanced Energy Storage System 2.3.3 Combination of Energy Source with Auxiliary Energy Storage for LEV 	20 23 24
Light Vehicle Energy Conversion Devices	24
Electric Vehicle Dynamic Model	27
2.5.1 Dynamic Modelling Hybrid System2.5.2 Dual Clutch Transmission (DCT) in PHEV2.5.3 Improved Power-train for HEV	27 28 28
	 Light Electric Vehicle Energy Model 2.2.1 Battery Model 2.2.2 Fuel Cell (FC) Model 2.2.3 Solar Cell Energy Model Light Electric Vehicle Energy Storage 2.3.1 Super-capacitors Model 2.3.2 LEV Advanced Energy Storage System 2.3.3 Combination of Energy Source with Auxiliary Energy Storage for LEV Light Vehicle Energy Conversion Devices Electric Vehicle Dynamic Model 2.5.1 Dynamic Modelling Hybrid System 2.5.2 Dual Clutch Transmission (DCT) in PHEV

	2.5.4 Dynamic Modelling FC Powered Scooter (LEV)	29
2.6	Type of Hybrid Vehicle and Characterization	29
	 2.6.1 Auto Rickshaw (LEV) 2.6.2 Plug-in HEV 2.6.3 Renewable Energy Vehicle Simulator based HEV 2.6.4 Adaptive Neuro Fuzzy Interferences System in Unmanned Electric Aerial Vehicle 2.6.5 Characterization of HEV 	30 30 32 33 33
2.7	Control Strategy for HEV	35
2.8	HEV in Step Evolution and Drivetrain Technique	39
	 2.8.1 The Step Evolution in HEV 2.8.2 Concept of HEV Drivetrain 2.8.3 Series HEV Drivetrain 2.8.4 In-wheel LEV Drivetrain 	39 41 42 43
2.9	Standard Test Drive Cycle for LEV	44
2.10	Current Issues and Challenges	46
	2.10.1 Energy Storage2.10.2 Power and Energy Management System2.10.3 System Configuration and Power Drive Structure2.10.4 Power Electronics2.10.5 Motor Generation	47 48 48 48 49
2.11	Existing Multi-sources LEV, HEV and Technologies	49
2.12	Multi-sources Three-wheel LEV System	54
2.13	Summary	56
CHAPTER III	CONTROL ALGORITHM AND MULTI-SOURCES MODEL OF AN ENERGY MANAGEMENT	

CHAPTER III CONTROL ALGORITHM AND MULTI-SOURCES MODEL OF AN ENERGY MANAGEMENT SYSTEM FOR THREE-WHEEL LIGHT ELECTRIC VEHICLE

3.1	Introduction	58
3.2	Three-wheel LEV System Structure	59

3.3	Intelli	gent Energy Management System	61
	3.3.1 3.3.2	Intelligent Control algorithm Energy Flow Control	61 64
3.4	Simul	ation in Open Loop Drive System	65
	3.4.6	FC Simulation Model	66 67 68 70 71 71 72
3.5	Close	-loop drive system	73
	3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 3.5.8	Close-loop Super-capacitors Model DC/DC Converter Feedback and Control System Model	73 76 77 79 81 83 84 87 90
3.6	Summ	nary	94
CHAPTER IV		BENCH MODEL OF MULTI-SOURCES EE-WHEEL LIGHT ELECTRIC VEHICLE	
4.1	Introd	uction	95

7.1	muou))
4.2	Scale-	Downed LEV Test Bench Model Specifications	95
4.2	LEV 7	Test Bench Model System	96
4.4	DS110	04 DSP Controller Board	98
4.5	Multi-	Sources Energy Configuration	100
	4.5.1	Battery Characteristics and Configuration	100
	4.5.2	Fuel Cells Characteristics and Configuration	101
	4.5.3	Super-capacitors Characteristics and	103
		Configuration	

4.6	Test Bench Hardware Configuration	104
	4.6.1 Voltage Regulator	106
	4.6.2 Pedal Position through Variable Resistor	107
	4.6.3 I/O Buffer Circuit	107
	4.6.4 PWM Hex Schmitt-trigger Inverter Circuit	108
	4.6.5 Relay Triggered Circuit	108
	4.6.6 Half Bridge Driver Circuit	109
	4.6.7 MOSFET Drive Circuit	110
	4.6.8 Current Transducer Circuit	111
	4.6.9 Load Disc	113
	4.6.10 EMS Board I/O List	113
4.7	LEV Test Bench Model	114
	4.7.1 Pedal Position Signal	117
	4.7.2 Current Load Signal	118
	4.7.3 Battery SOC Signal	119
	4.7.4 Current Control Signal	120
	4.7.5 Speed Sensor Detection	122
	4.7.6 Regenerative Braking Estimation	124
4.8	Summary	124

CHAPTER V RESULTS AND DISCUSSION

5.1	Introduction	125
5.2	Open-Loop Model Simulation	125
	5.2.1 FC and SC Output Voltage	126
	5.2.2 FC Active Condition	126
	5.2.3 Battery Low Condition	127
	5.2.4 Short Term of High Load	128
	5.2.5 Long Term of High Load	129
	5.2.6 Load Voltage	130
5.3	Close-loop System and Test Bench Model Analysis	131
	5.3.1 Output Voltage in Close-loop System	131
	5.3.2 DC chopper Output Voltage	132
	5.3.3 Vehicle Dynamic Force	134
	5.3.4 Input Torque, TL	135

5.4	Close-loop System Model in Drive Cycle Test	135
	 5.4.1 LEV Speed in ECE-47 Drive Cycle 5.4.2 LEV Power in ECE-47 Drive Cycle 5.4.3 LEV SOC Condition in ECE-47 Drive Cycle 5.4.4 Single-battery and Multi-sources LEV in ECE-47 Drive Cycle 	136 137 138 139
5.5	Test Bench Model in ECE-47 Drive Cycle Test	140
	 5.5.1 LEV Speed Condition 5.5.2 LEV Switching Time 5.5.3 LEV Load Current 5.5.4 LEV Speed at Low Battery Capacity 5.5.5 LEV Switching Time at Low Battery Capacity 5.5.6 LEV Load Current at Low Battery Capacity 5.5.7 LEV SOC at Low Battery Capacity 	140 141 142 143 144 145 146
5.6	Test Bench Model in ECE-47ext Drive Cycle Test	147
	5.6.1 LEV Speed of Single and Multi-sources5.6.2 LEV Switching Time for Multi-sources5.6.3 LEV Current Load Single and Multi-sources	147 148 148
5.7	Test Bench Model in ECE-15 Drive Cycle Test	150
	5.7.1 Multi-sources LEV in Driving Performance5.7.2 Multi-sources LEV Current Load5.7.3 Multi-sources LEV Switching State	150 151 151
5.8	Test Bench Model in Heavy Load Condition	152
	5.8.1 Multi-sources LEV in Step-up driving speed	153
5.9	Validation of the proposed work with other research work	155
	5.9.1 Analysis of Energy Consumption between Multi- Sources (MS-LEV) and Internal Combustion Engine (ICE)	155
	5.9.2 Test Bench Model Compared with Previous Work	158
5.10	Summary	159
CHAPTER VI	CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK	

6.1Introduction160

6.2	Contributions of Research	161
6.3	Suggestions for Future Work	162

REFERENCES

APPENDIXES

А	Switching Control Circuit Board	179
В	Graphical User Interface (GUI) Presentation	180
С	MATLAB Function Block in C-Programming	184
D	List of Publication	189

C Universiti Teknikal Malaysia Melaka

163

LIST OF TABLES

Table No.

Page

2.1	Summaries of the hybrid vehicles parameters and technologies	51
2.2	Outline methodology and advantages/disadvantages from selected review paper	53
3.1	The physical specifications of proposed three-wheel LEV system	59
3.2	Specifications of energy sources used for PSPICE simulation model	60
3.3	Specifications of energy sources and vehicle model used for MATLAB/Simulink simulation model	60
3.4	Logic control algorithm of power sources in various conditions	62
3.5	DC machine/motor parameter	89
3.6	Characteristics of the vehicle's dynamic parameters	91
4.1	Specifications of energy sources and vehicle model used for the test bench model	96
4.2	The list of input and output pins of the switching board	114
5.1	Energy consumption and efficiency of MS-LEV	156
5.2	Comparison with other research of LEV	158

LIST OF FIGURES

Figure No.

Page

1.1	HEV published items in years in Web of Science	2
1.2	HEV citations in years in Web of Science	2
2.1	Comparison between various energy states in terms of power and energy density	10
2.2	Improved battery model	14
2.3	Improved battery models by Salameh et al.	15
2.4	Dynamics battery models	15
2.5	SC equivalent circuit models	23
2.6	Open-loop model of the DC/DC Buck converter	25
2.7	Open-loop model of the DC/DC Boost converter	25
2.8	Open-loop model of the DC/DC Ćuk converter	26
2.9	EMS's operation chart on PHEV	32
2.10	Control System Strategies of HEV	36
2.11	Four evolution stages of the HEV technologies	40
2.12	Series HEV drivetrain	43
2.13	In-Wheel HEV drivetrain	44
2.14	European driving schedule, ECE-15	45
2.15	European driving schedule, ECE-47	46
2.16	Series in-wheel multi-sources drivetrain	55
3.1	Logic block in control algorithm	63
3.2	Flowchart of energy flow control	65
3.3	Open-loop model of motor drive system	66
3.4	Model of the multi-sources in motor drive system	67
3.5	Battery simulation model	68
3.6	FC simulation model	69
3.7	SC simulation model	70
3.8	Model of the dc/dc buck converter for FC	71
3.9	Model of the dc/dc boost converter for SC	72

3.10	Motor drive model	72
3.11	Basic close-loop motor drive	73
3.12	Close-loop vehicle system flowchart	74
3.13	Multi-sources LEV system simulation	75
3.14	Battery Discharge curve	77
3.15	Fuel Cell Stack Block	78
3.16	Fuel Cell V-I and P-I curve	79
3.17	Super-capacitor discharge curves at various constant current in ampere	81
3.18	FC linked to the DC/DC converter	82
3.19	DC/DC converter circuit	82
3.20	Three relay simulation block to sense feedback parameter	83
3.21	Simulation block for SC activation	84
3.22	Power control system for an improved three-wheeled LEV	84
3.23	Switching systems of multi-sources	85
3.24	Simulation block of the controlled current source with the DC chopper	86
3.25	Simulation block of the H-Bridge System	87
3.26	DC machine equivalent circuit model	88
3.27	Simulation block of the DC Machine	90
3.28	Simulation block for the vehicle speed	91
3.29	External forces applied to the vehicle	92
3.30	Simulation block for the vehicle load	93
4.1	Block diagram of LEV in dSPACE DS 1104 lab test bench model	97
4.2	A DS1104 R&D controller board	98
4.3	Block diagram of the architecture and the functional units of the DS1104	99
4.4	Lead Acid Battery of 12V, 4.5 AH	100
4.5	Battery Discharge Characteristics curve at 20°C	101
4.6	Fuel cell Systems with controller and hydrogen storage	102
4.7	Experiment rated voltage and current in V-I curve of PEMFC	102
4.8	Experiment rated power and current in P-I curve of PEMFC	103
4.9	Super-capacitors in a 1x5 module	104
4.10	Super-capacitors discharge curve in various constant current in ampere	104

4.11	Photograph of the test bench hardware configuration	105
4.12	Control board switching circuit	106
4.13	Voltage regulator circuit	106
4.14	Pedal offset circuit using voltage divider	107
4.15	I/O Buffer circuit	108
4.16	PWM Hex Schmitt-trigger inverter circuits	108
4.17	Relay triggered circuit	109
4.18	PWM driver circuit	110
4.19	Half bridge circuits	111
4.20	Current Transducer parameter configurations	111
4.21	Current transducer circuits for measuring current	112
4.22	Photograph of electric motor, load disc and Hall sensor	113
4.23	The programing flowchart of dSPACE LEV test bench model	115
4.24	Multi-sources LEV in test bench model	116
4.25	Pedal speed configuration in test bench model	118
4.26	Load current configuration in test bench model	118
4.27	Graph of Current/Voltage measurements	119
4.28	SOC configuration in test bench model	120
4.29	Current control duty cycle configuration in test bench model	121
4.30	Graph of Pedal-Voltage/Duty cycle	122
4.31	Signal pulse of speed detection from DC supply a) 6 V b) 12 V	122
4.32	Linearity between DC voltage supply and the frequency of disc rotation	123
4.33	Converting the frequency of disc rotation to km/h	123
4.34	Regenerative braking estimation of test bench model	124
5.1	Output voltages before and after the FC and SC	126
5.2	Output systems when the FC is active	127
5.3	Output systems at States 3, 5, and 7	128
5.4	Output systems at States 5 and 6	129
5.5	Output systems at States 1, 4, 5, 7 and 8	130
5.6	Load and supply voltage during motor drive	130
5.7	Output voltage of multi-sources from simulation	131
5.8	Triggering signals of DC chopper from simulation	132
5.9	Triggering signals from a) Pedal offset 1 V b) Duty cycle 0.2 by test bench lab model	133

5.10	Triggering signals from a) Pedal offset 2.2 V b) Duty cycle 0.5 by test bench lab model	133
5.11	Triggering signals from a) Pedal offset 3.5 V b) Duty cycle 0.8 by test bench lab model	133
5.12	Component of vehicle dynamic force	134
5.13	Total vehicle dynamic force	134
5.14	Input torque from vehicle dynamic force	135
5.15	Comparison of the motor speed with the ECE-47 test driving cycle	137
5.16	Comparison of vehicle and electrical load power	137
5.17	Changing supply current at 82s	139
5.18	Comparison among the ECE-47, the battery-only and the multi- sources systems of small LEVs during high load	140
5.19	Comparison results of a single-sourced system and a multi- sources system to the drive cycle ECE-47	141
5.20	Switching time of the multi-source LEV driven by single-source (battery)	142
5.21	Switching time of the multi-source LEV driven by single-source (FC)	142
5.22	Battery and FC load current during drive cycle ECE-47	143
5.23	Multi-source LEV vehicle speed at low battery condition during ECE-47 drive cycle	144
5.24	Switching state at low battery condition during ECE-47 drive cycle	145
5.25	Multi-source LEV load current at low battery condition during ECE-47 drive cycle	146
5.26	Multi-sources LEV SOC at low battery condition	147
5.27	Multi-sources LEV (MS-LEV) against the drive cycle ECE-47ext	148
5.28	Switching state for the MS-LEVs during drive cycle ECE-47ext	148
5.29	Multi-sources LEV current load during the drive cycle ECE 47ext	149
5.30	Multi-sources LEV in driving performance by ECE-15 drive cycle	150
5.31	Multi-sources LEV current load during ECE-15 drive cycle	151
5.32	Multi-sources LEV switching state by ECE-15 drive cycle	152
5.33	Various disc loads	152
5.34	Multi-sources LEV and single source battery in step-up driving cycle	153
5.35	Multi-sources LEV and single source switching state	153
5.36	Multi-sources LEV and single source battery in step-up driving cycle	154

5.37	Multi-sources LEV and single source battery current load	155
5.38	Energy consumption of MS-LEV and ICE in 3-D	157
5.39	Energy efficiency of MS-LEV and ICE in 3-D	157

LIST OF ABBREVIATIONS

ADC	Analog/Digital Converter
AEV	All Electric Vehicle
BC	Battery Capacity
BEV	Battery Electric Vehicle
BLEV	Battery Light Electric Vehicle
CHP	Combined Heat and Power
DOD	Depth of Discharge
DOE	Department of Energy
ECU	Electronic Control Unit
EMS	Energy Management System
EPR	Equivalent Parallel Resistance
ESR	Equivalent Series Resistance
ESS	Energy Storage System
FC	Fuel-cell
FCT	Fully Charged Test
FCV	Fuel-cell Vehicle
GUI	Graphical User Interface
HEV	Hybrid Electric Vehicle
HF	Hybridization Factor
HFCV	Hybrid Fuel Cell Vehicle
ICE	Internal Combustion Engine
IGBT	Insulated Gate Bipolar Transistor
I/O	Input and Output
IPM	Intelligent Power Management
LEV	Light Electric Vehicle
LV	Light Vehicle
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
MS-LEV	Multi-Source Light Electric Vehicle
NREL	National Renewable Energy Laboratory
РСТ	Partially Charged Test
PD	Power Demand

PEI	Power Electronic Interface
PEMFC	Proton Exchange Membrane Fuel Cell
PHEV	Plug-in Hybrid Electric Vehicle
PO	Pedal Offset
PMS	Power Energy Management
PV	Photovoltaic
PWM	Pulse Width Modulation
RTI	Real-Time Interface
SC	Super-capacitor
SOC	State of Charge
UAV	Unmanned Aerial Vehicle
UC	Ultra-Capacitor
UDDS	Urban Dynamometer Driving Schedule
VSP	Vehicle Simulation Program

xix

LIST OF SYMBOLS

R_1, R_2, R_3	Resistors network circuit
C_1, C_2, C_3	Capacitors network circuit
C_b	Battery capacitance
R_p	Self-discharge resistance
R_{1C}, R_{1D}, C_1	Represent voltage drop during charge and discharge
R_{SC}, R_{SD}	Resistance of the electrolyte and resistance of the battery plates
Т	Battery temperature
R	Universal gas constant
F	Faraday's constant
P_{H_2}	Partial pressures of hydrogen
P_{O_2}	Partial pressures of oxygen
P_{H_2O}	Partial pressures of water
J _a	Actual current density of the cell (A/m^2)
$J_{\rm max}$	Typical values range of 500-1500 mA/cm ²
Ν	Number of cells in the stack
L	Voltage Loss
P _{std}	Standard pressure
Q_{SC}	Energy stored in SC
I_L	Light generated current
Ιο	Initial current
Κ	Boltzmann constant
q	Electron charge
V _{SC,OC}	Open circuit voltage in SC
d	Distance between plates
ε	Permittivity
q_{SC}	SC charge
C_{SC}	SC capacitance
i _{SC}	Charging current flow

V _{SC,max}	Maximum SC voltage
V _{SC,min}	Minimum SC voltage
R_{SC}	Line resistance
V _{SC,i}	Initial SC voltage
$V_{SC,f}$	Final SC voltage
t _{on}	Length of the ON state of the switch
D_C	Duty cycle
i _L	Inductor current
t_{off}	Length of the OFF state of the switch
MAX capacity	Maximum battery energy in Ampere hour
AHused	Energy usage in Ampere hour
P_{EM}	Peak power of the electric motor
P _{ICE}	Peak power of the ICE (internal combustion engine)
V _{Batt}	Battery open voltage
R _{int}	Battery internal resistance
<i>ts</i> 5	Switching control for battery
V_FC	FC open voltage source
V_FC act	FC actual voltage when reach transient time
<i>t</i> _{<i>S</i>3}	Switching control for FC
V_SC	SC open voltage source
Rp	Parallel internal resistance in SC
Rs	Series internal resistance in SC
<i>t</i> _{<i>S</i>1}	Switching control for SC
V _{S1_{on}}	SC voltage at start S1 active switching
$V_{S1_{off}}$	SC voltage at final S1 off switching
V _{batt}	Battery constant load voltage
V_0	Battery no load voltage
Κ	Polarized voltage constant
Q	Battery capacity

Ν	Numbers of the cell
A_{v}	Exponential voltage
ln	Natural logarithm
i _{fc}	FC current
E _{fc}	Generated energy of FC
RC	Time-constant formed by resistor and capacitor
E_{SC}	SC consumed energy
V_{f}	SC final voltage
n _s	Number of capacitors in series
n _p	Number of capacitors in parallel
ESR	Equivalent series resistance
V _{SCmax}	SC maximum voltage
I _{dsc}	Constant discharge current
E _{batt}	Energy from Battery
E_{FC}	Energy from FC
E _{SC}	Energy from SC
I ref	Reference current
Speed _{ref}	Reference speed of vehicle / Drive cycle reference
Speed _{act}	Actual speed of vehicle
k_p, k_i	Proportional and integrator gain
I _a	Armature current
r	Tyre radius
т	Vehicle mass
A	Frontal area
d	Air density
C_d	Drag coefficient
μ_r	Rolling coefficient
g	Gravity acceleration
α	Angle slope

Vout	Measured current in output voltage
I_{PN}	Primary nominal rms current
I_P	Primary current, measuring range
$u_1(t)$	Signal from pedal offset through A/D converter
T_1	Timer relay for SC
$u_2(t)$	Signal from current load through A/D converter
T_2	Timer relay for FC
С	Tangent of Current/voltage graph
i(t)	Battery current to the load
DutyCycle offse	et Additional offset value of duty cycle
T_e	Electromechanical torque