STUDY ON COPPER INCORPORATED MESOPOROUS SILICA SBA-15 FOR N₂O CATALYTIC DECOMPOSITION

MOHD HAIZAL MOHD HUSIN

DOCTOR OF PHILOSOPHY (INDUSTRIAL CHEMISTRY) UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

	DECL	ARATION OF THE	SIS AND COPYRIGHT
Author's Full Na	ame :	MOHD HAIZAL MOH	ID HUSIN
Date of Birth	: _	10 APRIL 1976	
Title	:	STUDY ON COPPER	INCORPORATED MESOPOROUS
	_	SILICA SBA-15 FOR	N ₂ O CATALYTIC DECOMPOSITION
Academic Sessio	- on : -	Semester II 2015/2016	; ;
declare that this t			the formation we don the Official Second
CONFIDE	ENTIAI	Act 1997)*	ntial information under the Official Secret
RESTRI	ICTED		d information as specified by the e research was done)*
OPEN A	OPEN ACCESS I agree that my thesis to be published as online open access (Full Text)		
acknowledge tha	t Unive	rsiti Malaysia Pahang	reserve the right as follows:
1. The Thesis is t	he Prop	erty of Universiti Mal	laysia Pahang
2. The Library of	Univer	siti Malaysia Pahang	has the right to make copies for the
purpose of rese		2	
3. The Library ha	is the rig	ght to make copies of	the thesis for academic exchange.
Certified By:			
	(Stude	ent's Signature)	(Supervisor's Signature)
	760	0410055269	DR. CHIN SIM YEE
1	New IC/	Passport Number	Name of Supervisor
	Date:	: 15 July 2016	Date: 15 July 2016

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy in Industrial Chemistry.

(Supervisor's Signature)

 Full Name : DR. CHIN SIM YEE
 Position : ASSOCIATE PROFESSOR FACULTY OF CHEMICAL AND NATURAL RESOURCES ENGINEERING
 Date : 15 JULY 2016

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Author's Signature)

Full Name: MOHD HAIZAL BIN MOHD HUSINID Number: PKD10004

Date : 15 JULY 2016

STUDY ON COPPER INCORPORATED MESOPOROUS SILICA SBA-15 FOR $\mathrm{N_2O}$ CATALYTIC DECOMPOSITION

MOHD HAIZAL MOHD HUSIN

Thesis submitted in fulfillment of requirements for the award of degree of Doctor of Philosophy

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

JULY 2016

DEDICATION

I dedicate this dissertation to my family and many friends. My deep feeling of gratitude is to my loving parents, Haji Husin and Hajah Zainab, whose words of encouragement always motivate me to work harder. *Al-fatihah* to my late wife, Rozieyati, without whose caring supports it would not have been possible for me to complete this work during her life. To my loving children, Fathin, Hakim, Arief, and Hafiz thank you for your patience and understanding.

I also dedicate this dissertation to all my many friends and members of the Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka who have encouraged me throughout the process. I will always appreciate all that they have done in helping me.

ACKNOWLEDGEMENT

I thank all who have been generous with their expertise and valuable time in assisting me in this work. A special thanks to Prof. Mohd Ridzuan Nordin and Associate Professor Chin Sim Yee, my supervisors for their countless hours of reflecting, reading, encouraging, and for their patience throughout the entire process. Thank you too to Prof. Liew Kong Yong and Prof. Jinli Li from South-Central University for Nationality, Wuhan, People Republic of China for facilitating my research.

I would also like to acknowledge and thank all technical staff of Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang for providing all assistances requested. Special thanks go to the members of staff from Institute of Postgraduate Studies UMP for their continued support in my prolonged candidature.

Finally I would like to record my special appreciation to Universiti Teknikal Malaysia Melaka for the scholarship and study leave granted on me in relation to this work.

ABSTRACT

Nitrous oxide (N_2O) is an environmental pollutant because it is a relatively strong greenhouse effect gas and contributes towards the destruction of ozone in the stratosphere. Direct decomposition of N₂O by catalysts represents one of the potential solutions to minimize N₂O emissions. This research focuses on Cu incorporation into SBA-15 mesoporous silica by pH modification method using hexamethylenetetramine (HMTA) as an internal pH-modifier and its potential use as a catalyst for N₂O decomposition. The effect of acidity on SBA-15 preparation through different initial HCl concentration and the addition of HMTA as pH modifier were investigated. The SBA-15 formed well-ordered hexagonal mesoporous structure at high acidity (2.0 M) and poor ordered hexagonal pore structure at low acidity condition (0.005 M). It was found that under moderate acidic condition (0.1 M HCl) with addition of HMTA (HMTA:Si molar ratio 1:10), well-ordered hexagonal mesoporous SBA-15 could be produced. Meanwhile, copper was chosen for further studies on metal incorporation of SBA-15 (M/SBA-15) because Cu-containing SBA-15 has the highest catalytic activity for N₂O decomposition compared to that of other first row transition metals impregnated on SBA-15. Copper incorporated mesoporous silica (Cu-SBA-15) has been successfully prepared by direct synthesis under medium acidic condition with addition of HMTA as a pH modifier. The Cu/SBA-15 produced were characterised using XRD, N₂ adsorption-desorption, TEM, SEM, FTIR, UV-vis, XPS and TPR. The results indicate that Cu was mainly incorporated into the framework of SBA-15. The unit-cell, surface area, pore volume and wall thickness increased after the incorporation of the copper ions in SBA-15. HMTA plays a very important role to increase internal pH in order to introduce copper into the framework of SBA-15 silica. Cu loading on Cu/SBA-15 determined using AAS is almost the same to the initial Cu amount, when the pH value is above isoelectronic of silica (pH=2) due to addition of HMTA. Higher amount of HMTA, however, lead to the destruction of SBA-15 structure. Compared with Cu/SBA-15 impregnation method, Cu/SBA-15 prepared through pH modification method shows much higher activity for N₂O catalytic decomposition due to 80% N₂O conversion at 550 °C and reached 100% at 600 °C. The activation energy for the reaction catalysed by Cu/SBA-15 prepared through pH modification method is 91.9 -121.6 kJ/mol. This is much lower compared to that catalysed by Cu/SBA-15 prepared though impregnation, that is in the range between 148.5 - 173.9 kJ/mol. Cu/SBA-15 incorporated sample also has higher activity due catalytic activity started at 300 °C and reaches more 80% conversion at 500 °C for catalytic reduction of N₂O by CH₄.

ABSTRAK

Nitrus oksida (N_2O) adalah bahan pencemar alam sekitar kerana ia merupakan gas kesan rumah hijau yang agak kuat dan boleh menyebabkan kemusnahan ozon dalam stratosfera. Penguraian langsung N₂O menggunakan kaedah pemangkin merupakan salah satu penyelesaian yang berpotensi meminimumkan pelepasan N₂O. Kajian ini menumpu kepada penyediaan mangkin Cu yang digabungkan dengan SBA-15 silika berliang meso melalui sintesis langsung secara pengubahsuaian pH dengan menggunakan heksametiltetramin (HMTA) sebagai pengubah pH dalaman dan potensi penggunaan bahan ini sebagai mangkin bagi tindak balas penguraian N₂O. Kajian kesan keasidan dalam penyediaan SBA-15 berdasarkan perbezaan kepekatan awalan larutan HCl dan penambahan HMTA sebagai pH diubahsuai telah dilakukan. Bahan SBA-15 yang terhasil menunjukkan struktur heksagon berliang meso yang teratur pada keasidan yang tinggi (2.0 M HCl) manakala struktur liang heksagon yang tidak teratur terbentuk pada keadaan keasidan yang rendah (0.005 M HCl). Hasil kajian menunjukkan keadaan berasid sederhana (0.1 M HCl) dengan penambahan HMTA (HMTA: Si nisbah molar 1:10) mampu menghasilkan struktur heksagon berliang meso yang teratur. Sementara itu, kuprum telah dipilih untuk kajian lanjutan terhadap logam digabungkan dengan SBA-15 (M/SBA-15). Ini kerana sampel SBA-15 yang mengandungi Cu (Cu-SBA-15) menunjukkan aktiviti paling aktif dalam tindak balas penguraian N₂O berbanding sampel yang mengandungi logam peralihan baris pertama yang lain yang telah disediakan melalui kaedah pengisitepuan. Kuprum yang bergabung dengan silika berliang meso (Cu/SBA-15) telah dihasilkan menggunakan keadaan berasid sederhana berserta dengan penambahan HMTA sebagai agen pengubah pH. Sampel Cu/SBA-15 yang terhasil dicirikan menggunakan XRD, N₂ penjerapan-penyahjerapan, TEM, SEM, FTIR, UV-vis, XPS dan TPR. Dapatan analisa menunjukkan bahawa atom Cu telah bergabung ke dalam kerangka silika SBA-15. Unit-sel, luas permukaan, isi padu liang dan ketebalan dinding meningkat selepas penggabungan ion kuprum dalam SBA-15. HMTA memainkan peranan yang amat penting untuk meningkatkan pH dalaman larutan supaya dapat memasukkan kuprum ke dalam rangka silika SBA-15. Muatan Cu yang diukur menggunakan AAS menunjukkan kuantiti Cu yang hampir sama dengan kuantiti awal, apabila nilai pH melebihi titik isoelektronik silika (pH = 2) melalui penambahan HMTA. Namun begitu penambahan berlebihan HMTA membawa kepada kemusnahan struktur SBA-15. Dalam perbandingan, dengan sampel Cu-SBA-15 yang disediakan melalui kaedah pengisitepuan, sampel Cu/SBA-15 yang disediakan melalui pengubahan pH adalah lebih aktif bagi aktiviti penguraian bermangkin N₂O berdasarkan 80% penukaran N₂O pada suhu 550 °C dan mencapai 100% pada suhu 600 °C. Tenaga pengaktifan bagi tindak balas yang dimangkinkan Cu/SBA-15 kaedah penggabungan adalah 91.9 - 121.6 kJ/mol iaitu lebih rendah berbanding dengan nilai bagi Cu/SBA-15 kaedah pengisitepuan iaitu di antara 148.5 - 173.9 kJ/mol. Dengan kehadiran CH₄, Cu/SBA-15 disediakan dengan menggunakan kaedah pengubahsuaian pH telah menunjukkan aktiviti pemangkinan yang lebih tinggi. Penguraian lebih daripada 80% penukaran dicapai pada 500 °C bagi tindak balas penurunan N₂O dengan CH₄.

TABLE OF CONTENTS

Page

DECLARATION	
TITLE PAGE	i
DEDICATION	ii
ACKNOWLEDGMENT	iii
ABSTRACT	iv
ABSTRAK	V
TABLE OF CONTANTS	vi
LIST OF TABLES	Х
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xxi

CHAPTER 1 GENERAL INTRODUCTION

1.1	Introduction	1
1.2	N ₂ O Emission	2
1.3	Catalytic Removal of N ₂ O Emissions	3
1.4	Mesoporous Silicate Types SBA-15	4
1.5	Problem Statement	5
1.6	Purpose of the Research	8
	1.6.1 Objectives of the Research1.6.2 Scopes of the Research	8 9
1.7	Outline of the Thesis	9

CHAPTER 2 LITERATURE REVIEW

2.1	Introd	uction	11
2.2	Background of Greenhouse Gases Emission		13
2.3	Backg	round of N ₂ O Emission	15
	2.3.1	Chemistry of Nitrous Oxide	15
	2.3.2	Nitrous Oxide as a Greenhouses Gases	16
	2.3.3	N ₂ O Emissions in the Industrial Processes	18
	2.3.4	N ₂ O emission control	20

2.4	Catalytic Removal of N ₂ O Emissions	20
	 2.4.1 Catalytic Decomposition of N₂O 2.4.2 Mechanism of N₂O Decomposition 2.4.3 Catalytic Reduction of N₂O 	20 24 25
2.5	Porous Materials	26
2.6	Mesoporous Molecular Sieves	27
2.7	Mesoporous Silicate Types SBA-15.	28
	 2.7.1 The Synthesis of SBA-15 2.7.2 Mechanism for the Formation of SBA-15 2.7.3 The Characterisation of SBA-15 2.7.4 The Application of SBA-15. 	29 30 31 32
2.8	Metal Incorporated SBA-15.	33

CHAPTER 3 EXPERIMENTAL METHODS

3.1	Introduction	
3.2	Catalyst Preparation	39
	3.2.1 Preparation of SBA-153.2.2 Preparation of M/SBA-15 materials by impregnation method	39 40
	3.2.3 Preparation of Selected Transition Metal incorporated SBA-15	40
	3.2.3.1 Different acidity condition	40
	3.2.3.2 pH modified condition by addition of HMTA	40
	3.2.3 Preparation of Metal Oxide in the SBA-15 by Physical Mixture Method	41
3.3	Characterisation	42
	3.3.1 X-ray Diffraction	42
	3.3.2 N_2 adsorption-desorption Analysis	45
	3.3.3 Transmission Electron Microscopy	46
	3.3.4 Scanning Electron Microscopy	46
	3.3.5 Elemental Analysis	47
	3.2.5.1 Atomic absorption spectroscopy	47
	3.3.5.2 Energy-dispersive X-ray spectroscopy	47
	3.3.6 Fourier Transform Infrared Spectroscopy	48
	3.3.7 Diffuse Reflectance UV-visible Spectroscopy	49
	3.3.8 Thermogravimetric Analysis	50
	3.3.9 X-ray photoelectron spectroscopy	50
	3.3.10 Temperature Programmed Reduction	51
3.4	Catalytic Activities Studies	52
	3.4.1 N_2O decomposition	52
	3.4.2 N_2O reduction by CH_4	53

3.4.3	Kinetic studies	53
3.4.4	Stability Testing	53

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introd	luction	
4.2	Synthe	esis of SBA-15 under different acidity	55
	4.2.1	 Results and Discussion 4.2.1.1 pH value 4.2.1.2 X-Ray Diffraction (XRD) 4.2.1.3 N₂ adsorption-desorption analysis 4.2.1.4 Transmission Electron Microscopy (TEM) 4.2.1.5 Fourier Transform Infrared Spectroscopy (FTIR) 4.2.1.6 Thermogravimetric analysis (TGA) Summary 	55 55 58 62 68 72 75 81
4.3	Screen	ning Study of Transition Metals on SBA-15	82
	4.3.1	Results and Discussion4.3.1.1Elemental analysis4.3.1.2X-Ray Diffraction (XRD)4.3.1.3N2 adsorption-desorption analysis4.3.1.4Scanning Electron Microscope (SEM)4.3.1.5Catalytic activities for N2O decomposition4.3.1.6Kinetics Study on N2O decompositionSummary	82 83 85 87 89 91 94 96
4.4	Coppe	er Incorporated SBA-15 and Their Catalytic Activity	97
	4.4.2	Effect of HCl concentration on Cu/SBA-15 Effect of addition HMTA on Cu/SBA-15 at different Cu:Si molar ratio.	97 107
	4.4.3 4.4.4 4.4.5	Effect of HMTA on Cu/SBA-15 prepared in different acidic environment. Effect of different HMTA:Si molar ratio on Cu/SBA-15 Summary	118 128 139
4.5	Compa Metho	arative Study on Cu/SBA-15 Prepared Through Different	141
	4.5.1	 Results and discussion 4.5.1.1 Element analysis 4.5.1.2 XRD analysis 4.5.1.3 Textural properties 4.5.1.4 TEM image 4.5.1.5 FT-IR analysis 4.5.1.6 UV-Vis analysis 4.5.1.7 TPR analysis 4.5.1.8 XPS analysis 4.5.1.9 Catalytic Activity for N₂O decomposition 	141 142 146 149 151 152 154 156 158

		4.5.1.10 Kinetic study of N ₂ O decomposition for Cu-SBA-15	160
	4.5.2	Summary	162
4.6	Cataly	tic Decomposition of N ₂ O	163
	4.6.1	Catalytic Decomposition versus Homogenous Decomposition	163
		4.6.1.1 Homogenous N ₂ O decomposition	163
		4.6.1.2 Effect of pre-treatment on activity	164
	4.6.2	N ₂ O decomposition activity various Cu -SBA-15	167
	4.6.3	Catalytic Activity of various Cu-SBA-15 catalysts for N_2O reduction by CH ₄	169
		4.6.3.1 Effect of different N ₂ O:CH ₄ ratio	169
		4.6.3.2 Effect of various copper-SBA-15 catalysts	171
	4.6.4	The stability of various copper on SBA-15 for N_2O decomposition reaction	175
	4.6.5	Summary	177

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Conclusion	178
5.2	Recommendation	180
REFI	ERENCES	181
APPH	ENDICES	191

A	N_2O , N_2 and O_2 analysis b	y Gas Chromatography	191
---	-------------------------------------	----------------------	-----

LIST OF TABLES

Table	Title	Page
2.1	The Greenhouse Gases Atmospheric Lifetime and Global Warming Potential (GWP) and Radiative forcing	15
2.2	Metal incorporated SBA-15 preparation condition and catalytic activity.	34
4.1	The effect of preparation conditions of SBA-15 on pH values of reaction mixtures	56
4.2	Textural properties of SBA-15 samples prepared without and with addition of HMTA at different HCl concentration	63
4.3	Elemental analysis by AAS and EDX of SBA-15 and M/SBA-15 samples	83
4.4	2θ of dominant peaks in of XRD patterns for M/SBA-15 samples	87
4.5	Unit cell parameter and texture properties of M/SBA-15 samples	88
4.6	Turnover frequency at different reaction temperature for decomposition of N_2O over M/SBA-15	94
4.7	Activation energy (E _a) and pre-exponential factor (A) for the decomposition of N_2O over M/SBA-15	95
4.8	pH values of Cu/SBA-15 samples prepared under different acidity without addition of HMTA.	97
4.9	Element analysis by AAS and EDX of Cu/SBA-15 samples prepared under different acidity without addition of HMTA	98
4.10	XRD analysis for Cu/SBA-15 samples prepared without addition HMTA in different acidity	100
4.11	Texture properties of Cu/SBA-15 (1:30) molar ratio sample prepared without addition HMTA in different acidity	101
4.12	pH values of Cu/SBA-15 sample preparation under different Cu:Si molar ratio with addition of HMTA in 0.10 M HCl	107
4.13	Elemental analyses by AAS and EDX of Cu/SBA-15 samples in 0.1 M HCL prepared under different Cu:Si molar ratio with addition of HMTA.	108

4.14	XRD analysis for Cu/SBA-15 sample prepared with addition HMTA on different Cu/Si molar	110
4.15	Texture properties of Cu/SBA-15 samples prepared with addition HMTA under different Cu/Si molar ratio	112
4.16	pH values of Cu/SBA-15 sample preparation under different acidity with addition of HMTA	118
4.17	Element analysis by AAS and EDX Cu/SBA-15 sample preparation under different acidity with addition of HMTA	119
4.18	XRD analysis for sample prepared with HMTA addition on different acidity condition	121
4.19	Texture properties of Cu/SBA-15 samples prepared by addition of HMTA on different acidic environment	123
4.20	pH values of Cu/SBA-15 sample prepared under different HMTA:Si molar ratios	129
4.21	Element analysis by AAS and EDX of Cu/SBA-15 sample prepared under different HMTA:Si molar ratios	130
4.22	XRD analysis for Cu/SBA-15 sample prepared with addition HMTA on different HMTA:Si molar ratio	131
4.23	Texture properties of Cu/SBA-15 samples prepared with addition of HMTA on different HMTA:Si molar ratio	134
4.24	Element analysis of Cu/SBA-15 samples different method preparation	141
4.25	XRD analysis for Cu/SBA-15 samples different method preparation	145
4.26	Texture properties of Cu/SBA-15 samples different method preparation	146
4.27	Kinetic data for catalytic decomposition of N ₂ O over Cu/SBA-15 samples prepared through different methods.	161

LIST OF FIGURES

Figure	Title	Page
2.1	The schematic of greenhouse effect	11
2.2	Concentrations of greenhouse gases over the last 2,000 years	12
2.3	The resonance structures of nitrous oxide	15
2.4	Human-related sources of N2O production	18
2.5	Schematic of the mesoporous silica SBA-15 synthesis	29
2.6	Interaction between hydrophilic ethylenede of polymeric templating agent Pluronic-123 and silicate source.	30
2.7	Basic characteristic of SBA-15	31
3.1	Flow chart representing overall experimental approach	38
3.2	Schematic drawing of the principle of X-ray diffraction	43
3.3	XRD pattern (a) Wide angles (b): Low angles XRD for SBA- 15 samples	43
3.4	Instrumentation of Panalytical XPERT-PRO for XRD analysis	44
3.5	Instrumentation of of Micromeritics ASAP 2020 for N_2 adsorption-desorption Analysis.	45
3.6	Instrumentation of FEI Tecnai G2 for TEM analysis.	46
3.7	Instrumentation of ZEISS EVO 50 for SEM analysis.	47
3.8	Instrumentation of PerkinElmer Spectrum One for FTIR analysis.	49
3.9	Instrumentation of Evolution 300 UV-Visible spectrophotometer for Diffuse reflectance.	49
3.10	Instrumentation of TA Instruments- TGA Q 500 for thermogravimetric analysis.	50
3.11	Instrumentation of Micromeritics AutoChem II 2920 for H ₂ -TPR.	51
3.12	Schematic diagram of reaction test rig	52

4.1	Small-angle XRD pattern of SBA-15 samples prepared under different acidity	59
4.2	Small-angle XRD pattern of SBA-15 samples prepared under different acidity with HMTA added after 6 hours hydrolysis	60
4.3	The small-angle XRD pattern of SBA-15 (0.1M)y prepared with addition of HMTA samples after 6 hours hydrolysis under different ratio of HMTA:Si	61
4.4	Small-angle XRD pattern of SBA-15 (0.1 M) samples prepared with HMTA added after under different duration time of hydrolysis	62
4.5	N_2 adsorption-desorption isotherm (A) and pore size distribution (B) of SBA-15 samples prepared under different acidity	64
4.6	N_2 adsorption-desorption isotherm (A) and pore size distribution (B) of SBA-15 samples prepared under different acidity with HMTA added after 6 hours of hydrolysis	65
4.7	N_2 adsorption-desorption isotherm (A) and pore size distribution (B) of SBA-15 (0.1M)y samples prepared with HMTA addition after 6 hours hydrolysis under different ratio of HMTA:Si	66
4.8	N_2 adsorption-desorption isotherm (A) and pore size distribution (B) of SBA-15 (0.1 M) samples prepared with HMTA added after under different duration time of hydrolysis	68
4.9	TEM image and histogram profile of samples SBA-15 samples under different acidity	69
4.10	TEM image and histogram profile SBA-15 samples prepared under different acidity with HMTA added after 6 hours of hydrolysis	70
4.11	TEM image and histogram profile of SBA-15 $(0.1M)_y$ samples prepared with addition of HMTA samples after 6 hours of hydrolysis under different ratio of HMTA:Si	71
4.12	The TEM image and histogram profile of SBA-15 (0.1 M) samples prepared with HMTA added after under different duration time of hydrolysis	72
4.13	The FT-IR spectra of SBA-15 samples preprared (A) different acidity, (B) different acidity with HMTA added, (C) SBA-15 (0.1M)y addition of HMTA in different ratio HMTA/Si (D) addition of HMTA after certain duration time of hydrolysis	73

4.14	The FT-IR spectra of (a) HMTA (b) P123 (c) SBA-15 unwashed (d) SBA-15 washed and (e) SBA-15 calcined	74
4.15	TGA thermogram of (a) calcined SBA-15 (b) SBA-15 washed and (c) SBA-15 unwashed	76
4.16	DTG thermogram of (a) SBA-15 (b) SBA-15 washed and (c) SBA-15 unwashed	77
4.17	TEM image of samples SBA-15 prepared under different acidity condition	80
4.18	Plot of Surface Area and Pore Size of SBA-15 samples prepared under different pH value	81
4.19	Plot of Unit cell and Wall thickness of SBA-15 samples prepared under different pH value	81
4.20	EDX profiles of M/SBA-15 samples	84
4.21	Small-angle XRD pattern of M/SBA-15 samples	85
4.22	Wide-angle XRD pattern of M/SBA-15 samples	86
4.23	N2 adsorption-desorption isotherm of M/SBA-15 samples	88
4.24	The pore size distribution of M/SBA-15 samples	89
4.25	SEM images of M/SBA-15 samples	90
4.26	N_2O conversion by SBA-15 and M/SBA-15 samples at different reaction temperatures	92
4.27	Arrhenius plot of ln K verses $1/T$ for N_2O decomposition on various M/SBA-15 samples	95
4.28	The small-angle XRD pattern of Cu/SBA-15 (1:30) molar ratio without addition HMTA in different acidity	99
4.29	The wide-angle XRD pattern of Cu/SBA-15 (1:30) molar ratio without addition HMTA in different acidity.	100
4.30	N_2 adsorption-desorption isotherm (A) and pore size distribution (B) Cu/SBA-15 (1:30) molar ratio sample prepared without addition HMTA in different acidity (a) SBA-15, (b) 2.0 M, (c) 1.0 M, (d) 0.10 M, (e) 0.01 M, and (f) 0.005M.	102
4.31	The SEM image of Cu/SBA-15 samples with (1:30) molar ratio sample prepared without addition HMTA in different	103

acidity

4.32	The TEM image of Cu/SBA-15 samples with (1:30) molar ratio sample prepared without addition HMTA in differences acidity	104
4.33	The FTIR spectrum of Cu/SBA-15 samples with (1:30) molar ratio without addition HMTA in different acidity (a) SBA-15, (b) 2.0 M (c) 1.0 M, (d) 0.10 M, (e) 0.01 M, and (f) 0.005M.	105
4.34	The UV-vis spectrum of Cu/SBA-15 samples with (1:30) molar ratio in different acidity (a) SBA-15, (b) 2.0 M, (c) 1.0 M, (d) 0.10M, (e) 0.01 M, and (f) 0.005M.	106
4.35	The catalytic activity of N2O decomposition on Cu/SBA-15 sample with (1:30) molar ratio without addition of HMTA in different acidity	106
4.36	The small-angle XRD pattern of Cu/SBA-15 in 0.1M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio	109
4.37	The wide-angle XRD pattern of Cu/SBA-15 samples in 0.1M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio	111
4.38	The isotherm (A) and pore size distribution (B) of Cu/SBA-15 samples in 0.1M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio ; (a) SBA-15, (b) 1:40, (c) 1:30, (d) 1:20, (e) 1:10, and (f) 1:5	112
4.39	The TEM image of Cu/SBA-15 samples in 0.1M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio	113
4.40	The SEM image of Cu/SBA-15 samples in 0.1M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio	114
4.41	The FTIR spectrum of Cu/SBA-15 samples in 0.1M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio (a) SBA-15, (b) 1:40, (c) 1:30, (d) 1:20, (e) 1:10, and (f) 1:5	115
4.42	The UV-vis spectrum of Cu/SBA-15 samples in 0.1M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio: (a) SBA-15, (b) 1:40, (c) 1:30, (d) 1:20, (e) 1:10, and (f) 1:5	116

4.43	The catalytic activity of N2O decomposition on Cu/SBA-15 samples in 0.1M HCl with addition HMTA in HMTA:Cu molar ratio 1:1 at differences Cu/Si molar ratio: (a) SBA-15, (b) 1:40, (c) 1:30, (d) 1:20, (e) 1:10, and (f) 1:5	117
4.44	The small-angle XRD pattern of Cu/SBA-15 molar ratio (1:30) samples with addition of HMTA (HMTA:Si molar ratio 1:10) in different acidity.	120
4.45	The wide-angle XRD pattern of Cu/SBA-15 molar ratio (1:30) samples with addition HMTA (HMTA:Si molar ratio 1:10) in differences acidity.	121
4.46	The isotherm (A) and pore size distribution (B) of Cu/SBA- 15 molar ratio (1:30) samples with addition of HMTA (HMTA:Si molar ratio 1:10) in different acidity (a) SBA-15, (b) 2.0 M, (c) 1.0 M, (d) 0.10 M, (e) 0.01 M, and (f) 0.005 M.	122
4.47	The TEM image of Cu/SBA-15 molar ratio (1:30) samples with addition of HMTA (HMTA:Si molar ratio 1:10) in different acidity	124
4.48	The SEM image of Cu/SBA-15 molar ratio (1:30) samples with addition of HMTA (HMTA:Si molar ratio 1:10) in different acidity.	125
4.49	The FTIR spectrum of Cu/SBA-15 molar ratio (1:30) samples with addition of HMTA (HMTA:Si molar ratio 1:10) in different acidity (a) SBA-15, (b) 2.0 M, (c) 1.0 M, (d) 0.10 M, (e) 0.01 M, and (f) 0.005 M.	126
4.50	The UV-vis spectrum of Cu/SBA-15 molar ratio (1:30) samples with addition HMTA (HMTA:Si molar ratio 1:10) in different acidity (a) SBA-15, (b) 2.0 M, (c) 1.0 M, (d) 0.10 M, (e) 0.01 M, and (f) 0.005 M.	127
4.51	The catalytic activity of N_2O decomposition of Cu/SBA-15 molar ratio (1:30) samples with addition of HMTA (HMTA:Si molar ratio 1:10) in different acidity: (a) SBA-15, (b) 2.0 M, (c) 1.0 M, (d) 0.10 M, (e) 0.01 M, and (f) 0.005 M.	128
4.52	The small-angle XRD pattern of Cu/SBA-15 molar ratio (1:30) samples in 0.1 M HCl with addition HMTA in different HMTA:Si molar ratio	131
4.53	The wide-angle XRD pattern of Cu/SBA-15 molar ratio (1:30) samples in 0.1M HCl with addition HMTA in different HMTA:Si molar ratio.	132

4.54	The isotherm (A) and pore size distribution (B) of Cu/SBA- 15 molar ratio (1:30) samples in 0.1M HCl with addition of HMTA in different HMTA:Si molar ratio: (a) SBA-15, (b) 1:30, (c) 1:20, (d) 1:10 and (e) 1:5.	133
4.55	The TEM image of Cu/SBA-15 molar ratio (1:30) samples in 0.1M HCl with addition of HMTA in different HMTA:Si molar ratio: (a) 1:30,(b) 1:20, (c) 1:10 and (d) 1:5.	134
4.56	The SEM image of Cu/SBA-15 molar ratio (1:30) samples in 0.1M HCl with addition of HMTA in different HMTA:Si molar ratio:	135
4.57	The FTIR spectrum of Cu/SBA-15 molar ratio (1:30) samples in 0.1M HCl with addition of HMTA in different HMTA:Si molar ratio: (a) SBA-15, (b) 1:30, (c) 1:20, (d) 1:10 and (e) 1:5.	136
4.58	The UV-vis spectrum of Cu/SBA-15 molar ratio (1:30) samples in 0.1M HCl with addition HMTA in different HMTA:Si molar ratio: (a) SBA-15, (b) 1:30, (c) 1:20, (d) 1:10 and (e) 1:5.	137
4.59	The catalytic activity for N_2O decomposition on Cu/SBA-15 (1:30) molar ratio in 0.1M HCl with addition HMTA in different HMTA:Si molar ratio	138
4.60	The small-angle XRD pattern of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio	143
4.61	The small-angle XRD pattern of Cu/SBA-15samples prepared by pH modification method at different Cu:Si molar ratio	143
4.62	The wide-angle XRD pattern of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio	144
4.63	The wide-angle XRD patterns of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio.	144
4.64	The isotherm (A) and pore size distribution (B) of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) 1:50, (d) 1:30 and (e) 1:10.	148
4.65	The isotherm (A) and pore size distribution (B) of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) 1:50, (d) 1:30 and (e) 1:10.	148

4.66	The TEM image of Cu/SBA-15samples prepared by impregnation method at different Cu:Si molar ratio.	150
4.67	The TEM image of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio	150
4.68	The FTIR spectrum of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) 1:50, (d) 1:30 and (e) 1:10.	151
4.69	The FTIR spectrum of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) 1:50, (d) 1:30 and (e) 1:10.	152
4.70	The UV-vis spectrum of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) 1:50, (d) 1:30 and (e) 1:10.	153
4.71	The UV-vis spectrum of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) 1:50, (d) 1:30 and (e) 1:10.	153
4.72	The TPR profile of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio: (a) 1:70, (b) 1:50, (c) 1:30 and (d) 1:10.	155
4.73	The TPR profile of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio: (a) 1:70, (b) 1:50, (c) 1:30 and (d) 1:10.	156
4.74	The XPS spectra of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio: (a) 1:70, (b) 1:50, (c) 1:30 and (d) 1:10.	157
4.75	The XPS spectra of of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio: (a) 1:70, (b) 1:50, (c) 1:30 and (d) 1:10.	158
4.76	The catalytic activity for N_2O decomposition on Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio.	159
4.77	The catalytic activity for N_2O decomposition on Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio.	160
4.78	Arrhenius plot of ln K verses $1/T$ for N ₂ O decomposition on (A) Cu/SBA-15 prepared through impregnation method and (B) Cu/SBA-15 prepared through pH modification method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) (1:50),	161

(d) (1:30) and (e) (1:10).

4.79	The catalytic activity for N_2O decomposition on (a) blank samples, (b) SBA-15 and (c) Cu/SBA-15(1:30).	163
4.80	Arrhenius plot of ln K verses $1/T$ for N ₂ O decomposition in (a) homogeneous reaction, (b) catalysed by SBA-15 and (c) catalysed by Cu/SBA-15 (1:30).	164
4.81	The catalytic activity for N ₂ O decomposition on Cu/SBA-15 (1:30) at different pretreatment condition (a) without pre- treatment (b) pre-treatment with O ₂ (c) pre-treatment with He, and (d) pre-treatment with H ₂	165
4.82	The catalytic activity of N_2O decomposition on Cu/SBA-15 (1:30) at different catalysts loading (a) 0.100g (b) 0.200g, (c) 0.300g, and (d) 0.500g.	166
4.83	The catalytic activity for N ₂ O decomposition on Cu/SBA-15 (1:30) at different N ₂ O mixture (a) 1% of N ₂ O, (b) 3% of N ₂ O, (c) 5% of N ₂ O, and (d) 10 % of N ₂ O.	166
4.84	The catalytic activity of N_2O decomposition on (a) SBA-15, (b) CuO-SBA-15 (1:30) physical mixture, (c) Cu-SBA-15 (1:30) impregnated, and (d) Cu/SBA-15(1:30) substituted	168
4.85	N_2O conversion, N_2 and O_2 formation against temperature on (a) Cu/SBA-15(1:30) substituted, (b) Cu-SBA-15 (1:30) impregnated, and (c) CuO-SBA-15 (1:30) physical mixtures	168
4.86	Plotting graph of N_2 and O_2 formation verses N_2O conversion of (a) Cu/SBA-15(1:30) substituted, (b) Cu-SBA-15 (1:30) impregnated, and (c) CuO-SBA-15 (1:30) physical mixtures	169
4.87	The catalytic activity of N_2O reduction by CH_4 on $Cu/SBA-15$ (1:30) at different $N_2O:CH_4$ ratio (a) 1:0, (b) 1:1, (c) 4:1 and (d) 10:1.	171
4.88	(a) CH_4 conversion against Temperature and (b) Plotting N ₂ O conversion verses CH_4 conversion on Cu/SBA-15 (1:30) substituted at different N ₂ O:CH ₄ ratio (a) 1:1, (b) 4:1 and (c) 10:1.	171
4.89	The catalytic activity of N_2O reduction by CH_4 at $N_2O:CH_4$ (1:1) volume ratio on various copper condition of (a) SBA-15, (b) Cu/SBA-15 substituted, (c) Cu-SBA-15 impregnated, and (d) CuO-SBA-15 physical mixture	172

4.90	The catalytic activity of N_2O decomposition () and N_2O reduction by CH ₄ (—) on various copper on SBA-15 (1:30) at N_2O :CH ₄ (1:1) ratio for (a) Cu/SBA-15 substituted, (b) Cu-SBA-15 impregnated, (c) CuO-SBA-15 physical mixture and (d) SBA-15	173
4.91	Arrhenius plot of ln K verses $1/T$ for N ₂ O decomposition of (a) SBA-15 (b) Cu/SBA-15(1:30) substituted, (c) Cu-SBA-15 (1:30) impregnated, and (d) CuO-SBA-15 (1:30) physical mixtures.	174
4.92	Arrhenius plot of ln K verses $1/T$ for N ₂ O reduction by CH ₄ at N ₂ O:CH ₄ (1:1) ratio on various copper condition of (a) SBA-15, (b) Cu/SBA-15 substituted, (c) Cu-SBA-15 impregnated and (d) CuO-SBA-15 physical mixture	174
4.93	Stability test of N_2O decomposition for (a) Cu/SBA-15 substituted, (b) Cu-SBA-15 impregnated, and (c) CuO-SBA-15 physical mixture	175
4.94	Stability test of N_2O reduction by CH_4 for (a) Cu/SBA-15 substituted, (b) Cu-SBA-15 impregnated, and (c) CuO-SBA-15 physical mixture	176