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ABSTRACT

This paper presents a new method of pixel based stereo matching algorithm using illumination control. The
state of the art algorithm for absolute difference (AD) works fast, but only precise at low texture areas. Besides,
it is sensitive to radiometric distortions (i.e., contrast or brightness) and discontinuity areas. To overcome the
problem, this paper proposes an algorithm that utilizes an illumination control to enhance the image quality
of absolute difference (AD) matching. Thus, pixel intensities at this step are more consistent, especially at the
object boundaries. Then, the gradient difference value is added to empower the reduction of the radiometric
errors. The gradient characteristics are known for its robustness with regard to the radiometric errors. The
experimental results demonstrate that the proposed algorithm performs much better when using a standard
benchmarking dataset from the Middlebury Stereo Vision dataset. The main contribution of this work is a
reduction of discontinuity errors that leads to a significant enhancement on matching quality and accuracy of
disparity maps.

Keywords: computer vision, digital image processing, disparity map, gradient matching, pixel-based matching,
stereo matching algorithm.

INTRODUCTION

In recent years there have been various progresses
in the field of vision and image processing. These
researches are useful for commercial and scientific
purposes in many fields. One of the great advances
pertaining to these aspects is the extraction of three
dimensional (3D) information from two dimensional
(2D) data. Many research groups have studied this
discipline in depth, gaining mechanism for 3D
illustration by using more than one camera. Trying to
resemble the vision of human beings, the researchers
have investigated the camera-based system inspired
by human vision (Dominguez-Morales et al., 2011).
Following this, the stereo vision is established. It uses
two parallel digital cameras to acquire the depth of
a scene. The benefits of using the stereo camera are
high resolution, low price and the images can be used
for other application as well (Humenberger et al.,
2010). For robot applications such as people or scene
recognition and robot navigation, the stereo vision
camera is used. Schmid et al. (2013) used a stereo
camera as the main sensor for autonomous navigation
and obstacle avoidance on indoor and outdoor flying
robot. The task of the sensor is to continuously track
the state of the visualized environment in order to
provide visual information of the path planning and
decision modules of the robot. This is to adapt the

movement of the robotic system in tandem with to the
state variations appearing in the imaged scene. This
sensor provides 3D data perception of the surrounding
environment for on-board planning, frontier-based
exploration and wall following. Another interesting
function of stereo vision application is the visual
support system for blind navigation. Fernandes et al.
(2010) developed a prototype system to acquire a 3D
structure representing the environment in front of the
user. Then, the object recognition is executed. The
results are converted and provided to the user via a 3D
virtual sound for navigation. The loudness of the sound
is proportional to the intensity of the pixel. The usage
of the stereo camera is relatively suitable because it
is a purely passive technology and does not affect the
surrounding environment.

In the field of stereo vision, stereo matching is a
process of establishing the correspondence between
one pair of the images. The matching process which
is the search for corresponding predictions of the
same scene point onto both camera planes has to
be solved. The problems associated with developing
image matching are the computational cost required
to achieve the appropriate results (Humenberger et al.,
2010). The result of the matching process is presented
in a disparity map. This map provides the depth data
which is important to 3D image reconstruction. The
disparity map estimation comprises of finding the
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correspondence for each pixel pair from two images
at a designated coordinates (i.e., reference image
coordinates). According to Scharstein and Szeliski
(2002), most of the stereo matching algorithms rely on
four steps. The four steps are explained below:

Step 1: Matching cost computation (i.e., matching
process at each pixel from left and right images).

Step 2: Cost aggregation (i.e., aggregate initial costs
over support region).

Step 3: Disparity optimization (i.e., select the disparity
level that optimized the function).

Step 4: Disparity refinement (i.e., post-processing to
refine the final disparity map). The algorithm of
disparity map development can be classified as
either local or global methods. This classification
depends on the technique in which the disparity
map is calculated (Scharstein and Szeliski, 2002).

Local methods determine the disparity using
the correspondence between the gray colors, values
or texture patterns within a given local support
window. The local method applies a small number
of pixels around the pixel of interest. These methods
are also referred as window-based or area-based
methods (Hamzah and Ibrahim, 2016). There are
several approaches related to window-based such as
fixed window (Yang et al., 2014), multiple window
(Hirschmuller et al., 2002) and adaptive window
(Lu et al., 2008). Such methods use only local
information. Therefore, they have a low computational
requirement and a short runtime. The disparity map
is determined by selecting the smallest matching
cost value from disparity candidates. This selective
approach is commonly known as the winner take
all (WTA) approach. Although the local method can
produce disparity maps quickly, but the precision is
low, especially in depth discontinuity regions.

On the other hand, global optimization methods
perceive the disparity assignment problem as a
problem of minimizing a predefined global energy
function. This method applies energy minimization
in lines with the entire image itself. They are
usually less sensitive to local individualities and tend
to be computationally expensive. The measurement
is taken from the global data and an additional
smooth constraint for neighboring pixels (Wang et
al., 2013a). The smooth constraint is utilized in order
to preserve the disparity smoothness of the pixels
of the same region while simultaneously refines the
object boundaries. Numerous methods for solving
the global energy minimization problem by using a
graph from Markov random field (MRF), have been
proposed. These methods can be categorized as either

graph cut (GC) method (Wang et al., 2013b) or
belief propagation method (Xiang et al., 2012). The
GC method obtains the minimal energy solution by
applying a minimum cut and max-flow algorithm to the
energy flow structure extracted from the MRF graph.
In contrast, the belief propagation method minimizes
the energy function by iteratively passing the messages
from the current node to neighboring nodes in the
MRF graph. Global methods can obtain high accuracy,
but unfortunately they have a high computational
requirement.

CONTRIBUTION
In this work, the survey of the main challenge

of existing methods is conducted based on the steps
of algorithm development. By means of this survey
(Hamzah and Ibrahim, 2016), the crucial part is
to develop the preliminary of disparity map which
contributes to the overall performance of disparity
map accuracy. The preliminary of disparity map is
produced at the matching cost computation process
(i.e., Step 1). Based on this finding, this work
proposes a new approach of matching cost function to
increase the overall accuracy. The new proposed local
method algorithm uses a combination of two different
similarity measurements which consist of gradient-
based and absolute difference (AD) approaches. The
AD algorithm is imposed with an illumination control
to enhance the quality of the preliminary disparity
map. The aggregation step is implemented by using
a guided filter as proposed by He et al. (2013).
The implementation of post-processing steps use left-
right cross consistency checking, fill-in the invalid
pixels and a weighted bilateral filter. Based on the
proposed algorithm, the accuracy of the disparity
maps at low texture and discontinuity areas are
improved with the implementation of illumination
control. The computational complexity can also be
reduced if compared to window-based approaches at
the matching costs step (i.e., Step 1).

The rest of this paper is organized as follows.
The next section will provide a detailed discussion of
previous works on local stereo matching algorithms.
Then, the subsequent section will explain the structure
of the proposed stereo matching algorithm. This is
followed by the section for experimental arrangements
and the results. The conclusion and future works from
the proposed stereo matching algorithm are provided
in the last section.

STEREO VISION GEOMETRY
Basically, stereo vision can be illustrated by using

triangulation analysis. This analysis computes the 3D
position of points in the images. It gives the disparity

40



Image Anal Stereol 2016;35:39-52

selection and depth estimation from the geometry of
stereo setting as given by Eqs. 1,2.

d = xl− xr , (1)

z =
b f
d

, (2)

where d represents the disparity value while xl and
xr represent the coordinates of left and right image
planes respectively. The z is the depth of a target point,
b is the baseline and f denotes the focal length of
the stereo camera. The triangulation model from the
representation of P on the image plane is shown by
Fig. 1.

Fig. 1: Two pinhole camera models (i.e., left (L) and
right (R)) with parallel optical axes.

RELATED WORKS ON STEREO
MATCHING ALGORITHMS
Recently, many local methods have been

developed to obtain a disparity map. There are some
similarities in cost matching function through the use
of window-based techniques. They are the sum of
absolute differences (SAD) (Tippetts et al., 2011), the
sum of squared differences (SSD; Yang and Pollefeys,
2003) and the normalized cross correlation (NCC;
Satoh, 2011). Observed from all of these works,
the main problem of window based technique is
that it normally assumes that the pixels within the
support region have the same disparity. This is not
certainly valid for pixels near depth discontinuities
or edges. Hence, incorrect selection of the size
and shape of the matching window leads to poor
disparity value estimations. In the work by Gupta
and Cho (2010), the adaptive binary window was
used to build the matching cost. They formed a
variable shape adaptive binary window by marking
all positions into the support window as a one region.
Their approach increases the mismatch pixels at the
boundaries and textureless areas. This happens due to
wrong pixel assumptions in window-based matching
technique if there are boundaries or untextured areas
detected. In the work by Hu et al. (2011), the virtual

support window was introduced, which developed
a more complex solution to resize the windows.
Another complex solution is proposed by Einecke
and Eggert (2013), who implemented a modification
of normalized cross correlation (NCC) algorithm at
the matching stage. This method produced the same
problem as the implementation by Gupta and Cho
(2010). The window-based matching approach tends
to produce an incorrect matching approximations of
the pixel value at every support regions calculated
especially at the boundaries.

Sharma et al. (2011) and Wang et al. (2014)
introduced a method which used a feature based
matching technique. Sharma et al. (2011) developed
a matching technique using the scale invariant
feature transform (SIFT) algorithm. They adapted
SIFT algorithm by using self-organizing mapping to
perform a more efficient feature matching. Wang
et al. (2014) implemented feature-based matching
through two different expansion phases. The first
phase used image segmentation process to obtain
the sparse points of matching. Then, the second
phase used a regular seed-growing algorithm was
used to produce a quasi-dense disparity maps. From
their results, the feature-based matching accuracy was
low because this approach only targeted the object
features and less sensitive to occlusion and textureless
areas. Another approaches for pixel-based matching
technique were shown by the works of Samadi and
Othman (2013), Jung et al. (2014) and Ma et al.
(2013a). Samadi and Othman (2013) stated that the
census based pixel matching was implemented with
the reduction of bits on the comparison numbers. Their
modifications increase the speed and accuracy which
have been applied to the mobile robot navigation.
Jung et al. (2014) used a census filter based on
higher order matching cost with an assumption that
the patch of all disparities is at the same values. Their
work produce a better quality disparity map. Ma et
al. (2013a) implemented census transform based on
neighbourhood information. They have utilised more
bits to represent the difference between the pixel and
its neighbour. However, their results showed that the
discontinuity regions still produce high errors.

The essential property of the disparity maps
that support high quality processing is the accuracy
of the maps at the object boundaries and depth
discontinuities. Generally, local methods do not
achieve high accuracy in those regions due to
inappropriate selection of window sizes. However,
in previous years, at the cost aggregation stage,
the adaptive support weight (ASW) approaches have
gained consideration due to high quality disparity
map approximation as shown by Yoon and Kweon
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(2006) and Yang et al. (2009). This approach delivers
weighting between the support window-based on the
intensity similarity. Therefore, during the aggregation
process of each pixel, this approach marks the
neighbouring pixels which have closer intensities as it
will exert a greater weight (i.e., higher support). This
method produces a constant weight sharing for smooth
regions, thus increases robustness against noise which
helps to preserve the edge features. Therefore, some
approximations over ASW have been proposed in
order to increase their effectiveness. The most well-
organized approach that use ASW was proposed in
(Yang et al., 2009). They applied a constant time
complexity of bilateral filter in cost aggregation
stage. Through their approach, a piecewise linear
discretization of intensity levels was implemented
to reach the weighted average within a support
window. They produced good results but with high
computational complexity.

However, the support weight methods require
independent calculations for each pixel in
a neighbourhood that increases computational
complexity and a huge amount of memory. Moreover,
in the work of Kowalczuk et al. (2013), the two-stage
adaptive support weights (ASW) algorithm was used,
with a combination of window-based cost aggregation
and iterative refinement technique. Their work
produced high accuracy. However, the complexity of
their work was high as it used ASW and iterative
approaches in the same algorithm. ASW approach
requires high computational complexity to adaptively
determine the shapes or textures. Furthermore, the
iterative refinement technique comprises multiple
loops which involve complex programming technique
to refine the mismatch pixels. In the work by Liu
et al. (2012), the algorithm was implemented using
a multi-scale Weber (MSW) and weighted linear
regression bilateral filter. The MSW descriptor was
utilized to combine raw matching cost in two layers
of structures. The matching cost was aggregated by
spatial moving discrete sampling and weighted least
squares. Through this technique, the implementation
of bilateral in aggregation stage managed to produce
high complexity and resulted in slow processing time.

Usually, disparity map refinement methods reach
an effective refinement by manipulating the values
near the neighbouring pixels of interest (Gu et
al., 2008; Min et al., 2012). Two established local
disparity refinement techniques are median filtering
and Gaussian convolution. Median filter is able to
get rid of small, isolated mismatch disparities through
its edge preserving characteristic. This filter picks
the middle value within the window pixels to obtain
the final result of the center pixel. In the work by

Michael et al. (2013), the median filter was used
in refinement stage for real time applications. Ma et
al. (2013b) used a constant time weighted technique
at refinement stage. Their results demonstrated high
accuracy in removing noise and errors with respect to
the edge of depth map produced. Another approach
uses a Gaussian convolution, which combines disparity
estimation with those of its neighbours, according
to weights defined by a Gaussian distribution. This
method decreases the noise in the disparity map.
Unfortunately, it decreases the amount of fine detail
existing in the final disparity maps too. An effort
was made by Vijayanagar et al. (2013) who imposed
weights on the Gaussian filter, approximating the lost
depth values by using the nearby good depth pixels
as a guide to prevent the filtering across the object
boundaries.

MATERIAL AND METHODS

THE PROPOSED STEREO MATCHING
ALGORITHM

Similar to standard local stereo matching
approaches, the proposed development of an algorithm
involves the steps as shown in Fig. 2. The matching
cost computation uses the gradient and absolute
difference values with an illumination control. The
cost aggregation is implemented by using a guided
filter. Then, the disparity optimization using winner
take all (WTA) strategy. The WTA strategy absorbs
the minimal aggregated corresponding values for
each valid pixel. At this stage, the invalid pixels still
occurred especially at the occlusion and untextured
areas. The left-right (L-R) cross consistency checking
process is applied to determine those invalid pixel
areas. Then, the process of the invalid pixels fill-
in takes place. In this work, the invalid pixels are
replaced with a valid minimum pixel value detected
by the previous process. The final stage consists of
implementing the weighted bilateral filter to remove
the remaining noise which usually occurs in the fill-in
pixel processes.

MATCHING COST COMPUTATION

In this sub-section, the new proposed pixel-
based matching stage uses a combination of gradient-
based similarity measurement and absolute differences
(AD) with an illumination control. To calculate the
components of the gradient for each image, the
gradient value of Gx and Gy masks are used as
implemented in De-Maeztu et al. (2011) and von
Gioi et al. (2012). Fundamentally, the gradient process
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Fig. 2: A stereo matching system.

works in horizontal and vertical direction respectively
as given by Eqs. 3,4.

Gx =
[
1 0 −1

]
∗ I , (3)

Gy =

 1
0
−1

∗ I , (4)

where I is the image and ∗ is the convolution operation.
Using both gradient components, the magnitude m and
phase ϕ are computed using Eqs. 5,6 respectively.

m =
√

G2
x +G2

y , (5)

ϕ = arctan
(

Gy

Gx

)
. (6)

In the x-direction of gradient displacement, the
gradient matching cost CG′(p,d) is given by Eq. 7.

CG′(p,d) = |5x (ml(p))−5x(mr(p−d))| , (7)

where the coordinates pixel of interest (x,y) are
represented by p, and d is the disparity value, while
ml and mr are the magnitude of grayscale image
gradient operator that applied to the left and right
respectively. The final value of the gradient difference
CG(p,d) depends on the value which do not exceed
the truncated value at τCG. This is given by Eq. 8;

CG(p,d) =

{
τCG, if |CG′(p,d)|> τCG ,

|CG′(p,d)|, otherwise .
(8)

Meanwhile, the absolute difference algorithm AF is
given by the Eq. 9 which relies on the intensity
difference between two pixels at the left image Il and
right image Ir.

AF(p,d) = |β (Il(p)− Ir(p−d))| . (9)

In this work, the illumination control β is imposed
on the AF algorithm. This new control parameter will
enhance the image features on the preliminary of the
disparity map. The given Eq. 10 is the condition when

the truncated value of τAD is applied as implemented
by Yoon and Kweon (2006) in order to increase the
robustness against the outliers.

AD(p,d) =

{
τAD, if |AF(p,d)|> τAD ,

|AF(p,d)|, otherwise .
(10)

The final cost function M(p,d) at this stage is the
combination of AD(p,d) and CG(p,d) as given by
Eq. 11.

M(p,d) = αAD(p,d)+(1−α)CG(p,d) , (11)

where the α is added to balance the color and gradient
terms as implemented by Yang et al. (2014). The value
of α controls the sensitivity of radiometric differences.
However, in this work, the weighted of α value is
added to AD(p,d) instead of CG(p,d).

COST AGGREGATION
Cost aggregation is the most critical stage, which

minimize the matching uncertainties. It produces the
overall performance of the disparity maps for local
methods. From cost matching step, the raw disparity
values are vast and too sensitive to noise. In this work,
the guided filter is chosen since it is designed to reduce
the noise and preserve the edges (Yang et al., 2014).
The guided means that the filter is using the selected
guided imaging, (i.e., left or right grayscale image
as a guide for the filtering process). The left image
is selected in this work as a reference and guidance
for the process of filtering. The filter kernel of the
weighted guided filter is given by Eq. 12,

Gp,q(I) =
1
|w|2 ∑

q∈wk

(
1+

(Ip−µk)(Iq−µk)

σ2
k + ε

)
. (12)

I is the guidance grayscale image and p represents
the (x,y) coordinates pixel of interest within a support
window on the same image. q shows the neighbouring
pixels in the support region with the size of (r× r).
The σ and µ are the intensity values of variance
and mean in a squared window of wk, which is
centered at the pixel k on the guidance image. w is
the number of pixels in a square window of wk. The
ε value represents the control element for smoothness
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term.The aggregation cost volume CA(p,d) at this
stage is given by Eq. 13,

CA(p,d) = Gp,q(I)M(p,d) , (13)

where Gp,q(I) is the weight of the guided filter and
M(p,d) represents the filtering input image. The weight
of the edge preserving factor is determined by the sum
of neighbouring pixels of q in Eq. 12 within the support
region of the guidance image.

DISPARITY OPTIMIZATION

To obtain the accurate disparity map, this work
computes the final disparity by selecting the minimal
aggregated corresponding value for each pixel using
WTA strategy. The utilization of WTA strategy for
local algorithms is able to reduce the computational
complexity such as those implemented by Huang
and Wang (2010); Zhang et al. (2011). However,
through their findings, the disparity maps attained at
this stage still consist of errors in the unmatched
pixels or occluded regions. Given Eq. 14, the disparity
associated with the minimum aggregated cost dp
at each pixel is chosen. CA(p, d) means the cost
aggregation volume acquired after the process of cost
aggregation and D represents the set of all valid and
allowed discrete disparity values,

dp = argmin
d∈D

CA(p,d) . (14)

POST PROCESSING

The final stage of the proposed algorithm consists
of the post processing step. This step comprises three
sequential processes which are occlusion handling or
invalid pixels detection, fill-in the invalid pixels and
filtering. The occlusion or invalid areas are detected
by the left-right (L-R) cross consistency checking
process. The task of this process is to find out the
invalid pixels in the disparity map. This process
performs from left reference disparity map image
coincides with the right reference disparity map. The
result is the invalid and rejected pixels due to some
flat regions and occluded areas of the scene. Next,
the fill-in invalid pixels process takes place. In this
current work, since the left image is a reference, the
filling process starts with the right to the left valid
pixel replacement. The invalid pixel is replaced with
the nearest valid pixel value. The valid pixel must be
located on the same scan line or at the starting scan line
as shown by Eq. 15.

d(x) =

{
d(x−1), if d(x) = 0 ,

d(x), otherwise ,
(15)

where d(x) is a pixel with an intensity value and
x represents the location of the pixel. However,
this filling and replacing process will produce the
unwanted streak artefacts in the disparity maps. To
remove that noise, the weighted bilateral filter is
utilized as given by Eq. 16. This filter is an edge-
preserving filter and is able to improve the disparity
map quality,

WMBF
p,q = exp

(
−|p−q|2

σ2
s

)
exp
(
−
|Ip− Iq|2

σ2
c

)
,

(16)
where p is a pixel needs to be denoised using the
weight of the neighbouring pixel of q. σs represents
a spatial adjustment parameter and σc corresponds
to the color similarity parameter. The p− q refer to
spatial Euclidean distance and |Ip− Iq| is the Euclidean
distance in color space. This filter applies a higher
weight to pixels that are spatially close and have a
similar color according to the sigma adjustment (Tan
and Monasse, 2014). The summation of histogram h is
calculated from Eq. 17 where each value is weighted
from Eq. 16,

h(d) = ∑
q∈wp

WMBF
p,q , (17)

produce the results of Eq. 18;

d ∈ [dmin,dmax] , (18)

where the wp is the window size with the radius of
(r × r) at the centred pixel of the p. The dmin is
the minimum disparity value and dmax denotes the
maximum disparity value. The final disparity value is
determined by the median value of h(d) from Eq. 19.

d(p) = min
{

d | h(d)≥ 1
2

h(dmax)

}
. (19)

RESULTS

In this work, the experimental images and the
results use a standard benchmarking dataset that have
been widely used by researchers from the Middlebury
Stereo Vision database (Scharstein and Szeliski, 2015).
Fig. 3 shows the input images which consist of
Tsukuba, Venus, Teddy and Cones with the left scene
reference, ground truth images and the frame size.
According to (Scharstein and Szeliski, 2015), the
accuracy levels of an image are measured from bad
pixels percentage in all pixels in non-occluded regions
(nonocc), all pixels detected with valid pixels (all)
and pixels in regions near depth discontinuities and
occluded regions (disc). The experiments in this work
are carried out on the platform of Window 8.1 on
a desktop PC with a 3.2GHz processor and 8GB
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Fig. 3: A standard benchmarking datasets from the Middlebury.

Fig. 4: 2D slices of cone images on a different value of β .

memory. The parameters in this work are explained as
follows:

Step 1: The value of β is determined through the
simulation of a test image (i.e., in this work, cones
image is selected). As for the visualization of the
illumination difference, Fig. 4 shows the slice of the
cones image in two dimensional. In this work, the
β is selected at about 0.1. The image produced at
this value is more reliable in terms of its brightness
output compared to the other images. The τCG equals
to 0.00855 and τAD is 0.02155. The constant value of
α is 0.18.

Step 2: The selection of a filter at this step is based
on the experimental analysis of several established
methods or filters. They are guided filter (GF) (He
et al., 2013), non-local (NL)(Yang, 2012b), adaptive

support weight (ASW) (Hosni et al., 2013), segment
tree (ST)(Mei et al., 2013), recursive bilateral filter
(RBF) (Yang, 2012a), median (MD) and box (BX)
filters. The results are shown in Table 1. Based on
this experiments, the GF is selected due to the lowest
average error it produces. Since the cost aggregation
step is important for the local method algorithms, this
paper presents an analysis of the relationship of ε and
filter window size (r× r) on the GF. The range of ε is
about 0 to 1 and the filter window size is from 7 to 11.
Figs. 5-7 show the results on nonocc, all and disc. The
average results of these analyses are shown in Fig. 8
with the lowest average error at ε equals to 0.0001 and
window size size (9×9).
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(a) (7×7) (b) (9×9) (c) (11×11)

Fig. 5: All pixels in non-occluded regions (nonocc) for different filter size.

(a) (7×7) (b) (9×9) (c) (11×11)

Fig. 6: All pixels detected with the valid pixels (all) for different filter size.

(a) (7×7) (b) (9×9) (c) (11×11)

Fig. 7: Pixels in regions near the depth discontinuities and occluded regions (disc) with different filter size.
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Fig. 8: The comparison of average results based on different filter size from all attributes on the tested parameters.

Table 1: Comparison results with different methods or filters at Step 2.

Algorithm/Filter GF ST NL RBF ASW MD BX
Ave (%) 5.45 5.49 5.68 5.68 5.78 7.56 9.78

Step 3: The optimization stage in this work uses
WTA strategy which is similar to other local method
algorithms. The minimum value of disparity intensity
is chosen within the support region from Step 2.

Step 4: To make the algorithm robust against the
image size, different test set (i.e, Tsukuba image) is
used as test image to determine the weighted bilateral
filter parameters. Other parameters in the previous
steps remain unchanged. The test results are shown in
Fig. 9. The lowest average of bad pixel value from the
attributes (i.e., nonocc, all and disc) is chosen at σs
equals to 17 and σc is 0.3 respectively. The window
size of wp is 19.

The quantitative results of every disparity
map are submitted to the authoritative testing
website (Scharstein and Szeliski, 2015). Table 2
shows the comparative results with and without β

implementations while other parameters are fixed at
the same values. The results demonstrate that the
proposed algorithm with the illumination control
performs much better. The proposed algorithm with
β is able to reduce all of the attributes evaluated.
The most significant reduction is at the discontinuity
areas. This occurs due to the implementation of image
enhancement especially at the depth of the object
boundaries. The final results of this work are shown
in Fig. 10. The figure includes the results (i.e., images)
on the raw matching disparity at Step 1, before post
processing at Step 3, the L-R cross checking process
and the region of bad pixels images. The running time
is estimated at 0.01 second for each image.

DISCUSSION

The performance of the proposed algorithm is
compared with some other established local algorithms
in (Scharstein and Szeliski, 2015) through Table 3.
This table summarizes the quantitative performance
in descending order of the overall performances
and the best results are in bold for every attribute.
These algorithms are taken for comparison due
to their different approaches to the development
and their complexities compared to the proposed
algorithm. The proposed method is highly ranked
among the local approaches and more accurate than
the window-based matching cost algorithms such
implemented in RealTimeABW (Gupta and Cho,
2010), VSW (Hu et al., 2011) and SNCC+AM
(Einecke and Eggert, 2013). Moreover, the proposed
algorithm outperforms recently published well-known
census-based algorithm (i.e., Differential, Samadi and
Othman, 2013, RINCensus, Ma et al., 2013a, and
feature-based, i.e., TwoStep Wang et al., 2014) in most
parameters evaluated. The proposed algorithm also
outperforms two complex algorithms with iterative
method and two layer structures, (i.e., RTAdaptWgt,
Kowalczuk et al., 2013, and MSWLinRegr, Liu et
al., 2012) which produces the best result in nonocc,
all and disc regions for high texture of the cones
image. Additionally, Fig. 11 shows that the proposed
algorithm has the lowest average value of bad pixels
percentage on the discontinuity errors.
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(a) wp = (17×17) (b) wp = (19×19) (c) wp = (21×21)

Fig. 9: The results for Tsukuba image with different values of sigma space σs, sigma colour σc and window size
wp.

Fig. 10: The final results on the Middlebury dataset. The running time of the images is Tsukuba (0.005s), Venus
(0.009s), Teddy (0.01s) and Cones (0.01s).

Table 2: Results with and without β implementations.

Algorithms (threshold=1)
Tsukuba Venus Teddy Cones

Ave (%)
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Proposed algorithm without β 1.81 2.06 7.96 0.38 0.56 4.16 7.56 13.1 17.7 3.88 9.37 10.6 6.60
Proposed algorithm with β 1.63 1.91 7.14 0.28 0.49 2.63 6.10 11.4 15.6 2.62 8.11 7.49 5.45

Total difference 0.18 0.15 0.82 0.10 0.07 1.53 1.46 1.70 2.10 1.26 1.26 3.11 1.15

To test the capability of the proposed algorithm,
some other stereo images in Fig. 12 are tested
with the proposed algorithm. In general, the results
demonstrate that the proposed algorithm generates
a good disparity mapping. It can be seen that for
the Barn and Sawtooth images where the foreground
objects are detached from the background with clear
and precise contours and accurate disparity values in
accordance with their depth order. For the complex

scene objects (i.e., Reindeer, Books, Moebius, Art,
Dolls stereo pairs), the disparity values of the layered
objects are correctly reconstructed in accordance with
their respective depths. The scene objects are situated
at increasing depth and are assigned step by step
according to the disparity values from near too far. The
results testify that the proposed algorithm produces
an accurate and smooth disparity maps with clear and
detailed edge contours.
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Table 3: Performance comparison with established methods.

Algorithms (threshold=1)
Tsukuba Venus Teddy Cones

Ave (%)
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Proposed algorithm 1.63 1.91 7.14 0.28 0.49 2.63 6.10 11.4 15.6 2.62 8.11 7.49 5.45
HCFilter, 2013 1.56 1.78 8.07 0.22 0.34 2.96 6.18 11.5 16.1 3.02 8.07 8.19 5.67

MSWLinRegr, 2012 1.46 1.72 7.89 0.57 0.92 6.71 6.11 11.0 15.6 3.12 8.76 8.52 6.04
RTAdaptWgt, 2013 1.45 1.99 7.59 0.40 0.81 3.38 7.65 13.3 16.2 3.48 9.34 8.81 6.20

VSW, 2011 1.62 1.88 6.96 0.47 0.81 3.40 8.67 13.3 18.0 3.37 8.85 8.12 6.29
SNCC+AM, 2013 3.21 3.57 13.6 0.22 0.45 3.00 6.41 10.4 17.7 3.11 8.61 9.27 6.63

TwoStep, 2014 2.91 3.68 13.3 0.27 0.45 2.63 7.42 12.6 18.0 4.09 10.1 10.3 7.14
RealTimeABW, 2010 1.26 1.67 6.83 0.33 0.65 3.56 10.7 18.3 23.3 4.81 12.6 10.7 7.90

Differential, 2013 4.74 6.77 19.4 1.69 2.62 20.4 8.29 10.1 23.2 4.25 10.3 12.2 10.3
RINCencus, 2014 4.78 6.00 14.4 1.11 1.76 7.91 9.76 17.3 26.1 8.09 16.2 17.6 10.9

Fig. 11: The average of bad pixels percentage on
discontinuity regions for all images from Table 3.

Fig. 12: Results on the disparity maps tested from other
stereo images provided by Scharstein and Szeliski
(2015).

The performance of the proposed algorithm is
also tested for adaptability to the real environment.
The images from the KITTI dataset (Menze and
Geiger, 2015) and the Universiti Sains Malaysia
(USM) laboratory are taken into consideration. Fig. 13
shows the results of six continuous frames from
the KITTI database. Every frame consists of three
images which are the left image, ground truth and
results of the proposed algorithm. It demonstrates
that smooth disparity maps are generated from the
proposed algorithm and is able to identify the vehicles
and obstacles on each frame. The results on the USM
images show smooth disparity maps are produced.
Both of the above experiments show the good ability
of the proposed method to reconstruct disparity maps
from real environment.

CONCLUSION AND FUTURE WORKS

In this work, the accuracy of stereo matching
algorithm is presented. With the standard qualitative
benchmarking dataset tested, the proposed algorithm
with the illumination control imposed at AD algorithm
increases the robustness against the discontinuity
regions and is able to reduce the errors as shown
in Table 1. An average of error reduction with and
without β implementation is 1.15%. This proves that
this method is able to increase the accuracy and
most significantly reduces the discontinuity errors.
The proposed algorithm is also tested with other
dataset which contain low and high texture images.
The good results are produced as shown in Figs.
12-14. The aggregation of the matching cost uses a
guided filter. The advantage of applying this filter is
its edge-preserving property. The optimization stage
implements a WTA strategy which uses a proper
minimum value. In the last stage, the weighted bilateral
filter in post-processing step is able to reduce the
existing noise that smoothers the disparity maps.
For future works, this method will be tested in a
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Fig. 13: Results on the disparity maps from the KITTI dataset.

Fig. 14: Results on the disparity maps from the USM lab.

standalone system (i.e., FPGA) and provide the energy
consumption of the system to show the viability and its
behaviors.
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