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Abstract: 
Peristaltic pumping by a sinusoidal traveling wave in the porous walls of a two-dimensional channel 
filled with a viscous incompressible fluid is studied under long wavelength and low Reynolds number 
assumptions. The fluid is injected into the channel perpendicular to the low porous layer with 

constant velocity v 0 and is sucked out into the upper permeable layer with the same velocity v 0 • 

The physical quantities of interest like pumping, the velocity, the stream function and the frictional 
force are discussed for various parameters of interest governing the flow like permeability, amplitude 
ratio etc. It is observed that the behaviour of frictional force is opposite to that of pressure rise. 

Introduction 

The study of peristaltic pumping has received considerable attention for the past few 
decades because of its importance in both biological and· mechanical situations. 
Peristalsis consists of narrowing and transverse shortening of a portion of the tube 
which then relaxes, while the lower portion becomes shortened and narrowed. Some 
Bio-medical instruments are manufactured based on the principles of peristaltic 
pumping. A detailed review on peristalsis was presented by Jaffrin and Shapiro (1971). 
The analysis given for a single fluid was extended by Bra.sseur et al. (1987) for a two 
fluid model in a channel. All these investigations are made with the assumptions that 
the wall of the duct is impermeable. 

Viscous fluid flow through and past porous media has wider applications in many 
branches like Bio-medical Engineering, Chemical engineering and such other important 
fields. Tang and Fung (1975) and Gopalan (1981) reported that the Jung can be 
described as a channel bounded by two thin layers of porous media. Shivakumar et al. 
(1986) discussed the flow in a channel of varying gap with permeable walls. A thesis on 
the peristaltic pumping in a channel with flexible porous wall has been presented by 
Reese (1985). Sreenadh and Arunachalam (1986) studied the Couette flow between 
two permeable beds with suction and injection. In view of the several physiological 
applications it is necessary to study the peristaltic transport of a viscous fluid in a 
channel with suction and injection. 

ln this paper per.istaltic flow of a viscous fluid in a channel with blowing and suction is 
investigated under long wavelength and low Reynolds number assumptions. The fluid 
is injected into the channel perpendicular to the lower porous bed with constant velocity 
vo and is sucked out to t'he upper permeable bed with the same velocity vo. The velocity, 
the stream function, the pressure rise and friction force are obtained. The results are 
deduced and discussed. 
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2 Mathematical formulation and solution 

Consider the peristahic pumping ofa viscous fluid in a porous channel ofl)alfwidth a (Figure 1). A 
longirudinal train of progressive sinusoidal waves takes place on the upper and lower permeable walls 
of the channel. The fluid is injected into the channel perpendicular to the lower permeable wall witn a 
constant velocity v0 and is sucked out of the upper permeable •vall with the same velocity v0• For 
simplicity, we =trlct our discussion to the half width of the channel as shown in figure!. The wall 
deformation is given by 

21t 
H(X, t) = a + b Sin - (X - ct) 

A. 
(1) 

where bis the amplitude, ). is the wave length and c is the wave speed. 

2.1 Equations of motion 
Under the assumptioM that the 1ube length is an intcgr.il multiple of the wavelength ). nnd the 
pressure difference, ncross the ends of the tube is a constant, the flow becomes steady in the wave 
fmm.e (x, y) moving with ve locity c B"''llY ITom the fixed (laboratory) frnmc (X. Y). The 
transformation between these two frames is given by 

x =X-ct ,y=Y 

u (x, y) = U (X- ct, Y) - c (2) 

v(x,y)=V(X-ct, Y) 

where U and V are velocity components in the laboratory frame and u, v are velocity 
components in the wave frame. Further, we assume that the wavelength is infinite . So 
the flow is Poiseuille type at each local cross - section. 

We use the following non - dimensional quantities, 

x. - y. - ct - u. ~=~ x=-· y=-· t=- U=-, 
')... a ')... c ac 

- b - H ( r &=(~); am . 
cP =-; h=-; a.= .Jk J 

a a 

a . - a2 Ql=~ - v 
cr=-· p=-p; Vo :::-o 

.Jk A.µc c c 
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where R is Reynolds number, 4> is the amplitude ratio, ex is the permeability (including 
slip) parameter. 

The equation governing the motion (ignoring the bars) is 

a2u - kau =P 
a~/ ()y 

where k = R. vo , and p = _ ap 
Ox 

p 
Q1 = 2 CDarcy's law) 

cr 

The non-dimensional boundary conditions are : 

111=0 aty = 0 

ol.jl au 
u= -=-1 - a- aty=h 

()y ()y 

au 
()y = 0 aty= 0 

where ~1 is the stream function. 

2.2 Solution 

(3) 

(3a) 

(4) 

(5a) 

(5b) 

Solving the equation (3) with the boundary conditions(4) and (5). we obtain the velocity 
as 

u =-1 + ~ [(eky - ekh )+ ak(l-ekh)-k(y-h)] (6) 

Integrating the equation (6) and using the boundary condition II' = 0 at y = 0, 
we get 

l.jl=-y+i[(e:-~-yekh)+ak(l-ekh)y-k(y;-hy)] (7) 

The volume flux q through each cross-section in the wave frame is given by 

h 

q =Judy 
0 

= -h+~[ekh(l-kh)-1+ h
2

k
2 

+hak2 (l-ekh] 
k" 2 

(8) 

The instantaneous volume flow rate Q (X, t) in the laboratory frame between the central 
line and the wall is 

H 

Q ex. tl = JU(X, Y, t)dY 
0 

= L ekh(l-kh) +--+ ahk2 (l- ekh)-1 [ 
h

2

k
2 

] 

K3 2 
(9) 

From equation (3.8) we have 

dp -2k3 (q + h) 
dx = 2ehk(l-hk) + 2ahk 2 (l - ehk)+ h 2 k 2 -2 

(10) 

Averaging equation (9) over one period yields the time mean flow (time-averaged 
volume flow rate) Q as 

Q=I_JQdt 
To 

=q+l (11) 

2.3 The Pumping Characteristics 
Integrating the equation (10) with respect to x over one wavelength, we get the pressure 
rise (drop) over one cycle of the wave as 

I 
tip= f .. . -2k"(q +h) 

o - - • .. , - ·- • dx (12) 

The time-averaged flux at zero preSBure rise is denoted by Qo and the pressure rise 
required to produce zero flow rate is denoted by f.po. 

The dimensionless friction force Fat the wail across one wavelength is given by 



I ( dp) 
F= fh -dx d.x 

f 2hk3 (q + h) 
--..,.-----.:.,._------ch 
2ehk (1-hk) + 2ahk1(l-ehk) + h 2k 2 -2 

(13) 

3 Discussion of the results 

From equation (12) we have calculated the pressure difference as a function of Q for 
different values of tt for fixed <jl , k and is depicted in figure 2 . It is observed that for a 

given tt, 6p increases with increase in Q. For a given 6p, the flux Q depends on tt and 

it increases with increasing in slip parameter tt . For a given U , t.p decreases with 
increasing tt. 

The variation of pressure rise with time averaged flow rate is calculated from equation 
(12) for different amplitude ratio's <jl and is shown in figure 3 f~ fixed k = 0.1 and tt = 
0.1. We observe that for a given <jl, t.p increases with increasing Q. 

From equation (12) we have cal.culated the p.ressure rise with time-averaged £low rate 
for a different values of k and js shown in figure 4 for fixed tt = 0.1 and~ = 0.3 . It is 

observed that for a given k ,t.p increases with increasing Q. For a given t.p, 0 
increases with increasing suction I injection parameter k. For a given flux Q, t.p 
decreases with increasing k. From figure 5 we observe that the frictional force shows 
opposite behaviour compared to the pressure rise. 
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