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Abstract—Lately, numerous nature inspired optimization
techniques has been applied to combinatorial optimization
problems, such as Travelling Salesman Problem. In this
paper, we study the implementation of one of the nature
inspired optimization techniques called Magnetic
Optimization Algorithm in Travelling Salesman Problem.
In this implementation, each magnetic agent or particle in
Magnetic Optimization Algorithm represents a candidate
solution of the Travelling Salesman Problem. The strength
of the magnetic force between these particles is inversely
proportion to the distance calculated by the Traveling
Salesman Problem’s solution they represented. Particles
with higher magnetic force will attract other particles with
relatively lower magnetic force, towards it. The pracess
repeated until satisfying a stopping condition, and the
solution with lowest distance is considered as the best-
found solution. The performance of the proposed
approach is benchmarked with a case study taken from a
well-known test bank.

Index Terms — Combinatorial Problem; Magnetic
Optimization Algorithm; Travelling Salesman Problem.

I. INTRODUCTION

RAVELING Salesman Problem (TSP) is a well-known

problem which contains a study for finding the shortest

probable distance that could be taken by the salesman to
travel to several number of given cities just once. Next section
will explained in great details the mathematical formulation of
TSP. Application of TSP can be seen in many areas such as

Mohd Muzafar Ismail is with the Faculty of Electronic and Computer
Engineering, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal,
Hang Tuah Jaya, Melaka, Malaysia. (email: muzafar@utem.edu.my),

Muhammad Iqbal Zakaria, Amar Faiz Zainal Abidin, Juwita Mad Juliani
and Asrani Lit are/were with Faculty of Electrical Engineering, Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia (email:
iqbal.zakmia@ﬂ:egraduale.utm.my, anarfaiz@fke.utm.my)

Amar Faiz Zainal Abidin is also with the Laboratoire Electronique,
Informatique et Image Université de Bourgogne Le2i,12 rue de la fonderic,
71200 Le Creusot, France,

Seyedali Mirjalili, and Nur Anis Nordin are with the Faculty of
Computer Science and Information System, Universiti Teknologi Malaysia,
81310 UTM Johor Bahru, Johor, Malaysia. (email: ali.mirjalili@gmail.com,
Nuranisnordin@gmail.com)

Muhammad Faiz Mohamed Saaid is with the Department of Biomedical
Enginecring, Faculty of Engineering, Universiti Malaya, 50603 Kuala
Lumpur, Malaysia.(email; faizsaaidl 7@gmail.com) ‘

- ¥

Iqbal Zakaria, Amar Faiz Zainal Abidin, Juwita Mad Juliani,

Mohamed Saaid.

<l

routing for automated holes drilling process [1-3] and wires
routing in very large scale integrated circuit (VLSI) [4]. In the
applications mentioned, additional distance covered involved
additional costs in term of monetary or time. This is a great
motivation for academician, engineers & mathematicians to
propose new methods in solving TSP effectively.

In 1985, V. Cemy wrote a paper proposing the
thermodynamically approach to this problem. In the research,
the author presented a Monte Carlo algorithm [5]. S. Lin and
B.W. Kernighan used the heuristic algorithm to solve TSP.
They used a highly effective heuristic procedure for up to 110
cities [6]. F. H. Khan et. al proposed a representation method
based on chromosome model using binary matrix and
suggested a new fittest criteria to find the optimal solution for
TSP. This method is better known as genetic algorithm [7]. In
2011, Weiqi Li introduced a multi-start search approach to
dynamic TSP [8]. The algorithm includes the interaction of
change and search over time. M. Dorigo and L. M.
Gambardella proposed the ant colony system (ACS) algorithm
where a set of cooperating agents using an indirect
communication mediated by a pheromone they produce on the
edges of TSP graph for good solution [9]. S. Yadlapalli et. a/
presented an approximation algorithm for a two-depot,
heterogenous TSP with an approximation ratio of 3 with
condition of symmetrical cost and satisfaction of triangle
inequality [10]. In 2006, Z. Pizlo et al tested the human
performance on Euclidean TSP with a pyramid model [11]. C.
S. Helvig et. al introduced a time-dependent generalization of
TSP where a pursuer must intercept in minimum time a set of
targets which move with constant velocities [12]. Gilbert
Laporte used the fundamental approach of solving TSP which
is the exact and approximate algorithms. The author discussed
the best of the two algorithms that have been developed to
solve TSP [13].

I1.

Many literatures describes the mathematical representation
of TSP. In [15], the authors described TSP as follows:
“The TSP can be defined on a complete undirected graph
G = (V,E) if it is symmetric or on a directed graph G =
(V,A) if it is asymmetric. The set V = {1, ...,n} is the vertex
set, E={(i,j):i,jEV,i<j} is an edge set and A=
{(L.)):i,j €V,i=j}is an arc set. A cost matrix C = (c;;) is
defined on E or on A. The cost matrix satisfies the triangle
inequality whenever ¢; < ¢y + ¢; for all i,j,k. In
particular, this case planar problems for which the vertices are
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Cij = \; (Xi = X,) + (Y} - Y,) is the Euclidean distance. The
riangle inequality is also satisfied if ¢;; is the length of a
shortest path from i to j on G.”
In several literatures, ¢;; is calculated using Manhattan
distance as (1).

CU =

X; = X[+ 1Y, - Y] ()

Other than the definition above, the cost mathematical
formulation of a TSP can be said as in (2) [16].

Croral = Di=1 Lj=1Cij X byj (2)
where

Dby =1forieV,i=j 3)

Xiaby=1forjev,j#i (4)

bijj=0o0r1for(i,j) €A (5)

Figure 1 and Table | shows a simple example on how the
mathematical notation works. Given that a salesman from #0
and he wants to visit #1. #3 and #2 before going back to #0.
The distance traveled by the salesman can be calculated as
shown in Table 1. In this case the cost formulation or distance
traveled is calculated using (2). This to help reader to digest
the information, easily. In practice, the cost (distance) is
calculated using Euclidean distance. For implementation, a
case study taken from TSPLIB [17]. This case study consists
of 14 cities in Burma. The Cartesian coordinates (x,y) of the
cities are given in Table 2.

[T, MODELING TRAVELING SALESMAN PROBLEM USING
MAGNETIC OPTIMIZATION ALGORITHM

The magnetic force is one of four basic forces that occurred
in our universe [14]. In magnetic field, a particle with higher
mass will have a greater magnetic force that attracts other
particles with smaller masses to move towards it. This simple
concept is adapted to MOA where the mass of a particle at a
given time is proportional to the fitness of the problem.
According to [14], the cellular lattice mode] defines how
magnetic particle could relate to each other. In other words,
this model suggested that each particle could only be
influenced by the magnetic force of its neighborhood. This as
shown in Figure 2. This model is proposed to ensure that
MOA will not prematurely convergence, which leads to local
optima solution.

The important part of this paper is how TSP can modeled
using MOA. We suggested that each particle in MOA
fepresented a candidate solution of TSP. The candidate
solution can be described by its position in the search space.
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Fig. 1. Example of a TSP with 4 cities.

TABLE]
CALCULATION OF TOTAL DISTANCE IN FIGURE |
i—j Cy Py ciy X py
0 -0 0=0l+10=0}= 0 (4] 0
0 =1 J0~31+0-3[=6 ! 6
0 -2 [0-8]+ {0-2 0 0
= 10
0-—3 10 -7+ {0 — 6] [} 0
= 13
1 -0 3-0]+13—-0]{=6 0 0
1 -1 13-3]+13-3|=0 0 0
1 -2 3-8+ [3-2]=6 0 0
1 -3 3-7+3-6]=7 | 7
2 = 18 ~ 0} + |2~ 0] | 10
= 10
2 =1 8-3l+]2-3|=6 {1 0
2 -3 8—7|+ {2-6|=5 0 0
2 =2 B-—8l+2-2]=0 0 Q
3 -0 |7—0]4+ |6 - 0] 0 0
= 13
3 =1 [7=-31+ [6—3=7 0 0
3 2 [7-8l+6-=2|= 5 ! 3
3 -3 1 7-7l+16-6]l=0 0 0
& 28 units
d:rnval = ZZEU x pii
i=1 j=1
TABLE Il
COORDINATES OF THE CASE STUDY, BURMA 14
Cities | Coordinates Cities Coordinates
i (1647, 96.10) | 2 {16.47.94.44)
3 (20.09,92354) | 4 (22.39,.93.37)
5 (2523,9724) | 6 (22.00. 96.05)
7 (20.47.97.02) | 8§ (17.20, 96.29)
g (16.30,97.38) | 10 (14.05,98.12)
11 (16.33.97.38) | 12 (21.52,95.39)
13 (19.41,97.13) | 14 (20.09, 94.33)

e
OO

gE

Fig. 2. Structure of cellular lattice
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I'SP can be generalized as in (6).
xlzjtk = [vote for 1st city, ..., vote for nth city]  (6)

where x? is the 2" particle position in search space. i and j
indicate the coordinate of the particle in cellular lattice
formation mentioned earlier. k is the dimension of the particle
position. Maximum dimension of a particle position in TSP is
equal to the number of city need to be visited. The city with
highest vote will be the 1* city to be visited by the salesman
while the city with the least vote will be the last city to be
visited before the salesman returned to the original city (#0).
For example given that x77'=[1,10,3] andx’ =
[12,—7,2]. The 1* particle suggests a solution of 0 = 2 —
35 1-0 and the 7" particle suggests the solution of 0 —
1—-3-2-0.

Similar to other nature-inspired optimization techniques,
MOA consists of 3 main parts: initialization, fitness
evaluation, and improvement of agents. Algorithm 1 shows
the pseudo code of MOA for TSP.

Algorithm 1: Pseudo Code of MOA for Travelling Salesman
Problem (TSP)

01 Initialize TSP parameters: n and ¢;;

02 Initialize MOA parameters: S, p, @, w and h

03 Randomly positioned the particle in search space with a
04 cellular lattice-like structure

05 while not termination condition do

06 t=t+1

07 Find each particle’s fitness using (2) and store it as

08 magnetic field, b?

09 if the particle fitness greater than global best do

10 Store solution offered by the particle and the distance
11 value

12 end

13 Normalizg b? using (8)

14 Evaluate the particle’s mass, m{;" using (9)

15 for all particles x;* in X* do

16 Letf=0

17 Find n;

18 for all particles x* in Ny; do

19 update f;7 using (10)

20 end
21 for all particles xizj‘t in Xt do
22 update 5" using (11)

23 update x7;"" using (12)

24 perform correction if necessary
25  end

26 end

27 end

28 Display global best solution

The algorithm starts by initializing TSP and MOA parameters.
The parameters and the suggested values are listed in table 2

using the proposed model mentioned earlier. This can be
mathematically written as (7).

i = R(ug b) for i,j = 1,2,.., S,k = 1,2,..,nand ¢ = 0(7)

By taking the example earlier with additional particle, these
particles position after randomly assigned are xll’l0 =
(1,10,3], x5y = [12,-7,2] and x50 =[7,10,21],. These
steps are the first phase of any nature-inspired optimization
techniques: the initialization phase.

In this paper, the proposed approach uses maximum
iteration as the stopping condition. Then, we enter the 2™
phase of any nature-inspired optimization techniques: the
fitness evaluation. The fitness of the particles are calculated
using equation X and stored as magnetic field, h?. In this
example the fitness values of particles 1, 5 and 7 are 0.0357,
0.0333 and 0.0357, respectively. Thus, b*=! = 0.0357,
b?=% = 0.0333 and h*=7 = 0.0357. Then, we normalized the
magnetic value using (8).

. t
b= ming j=y..5(Bf;)
max; j=1-5(Bf;)-min; j=15(Bf;)

zZ
b =

®

In this case the new magnetic field value for particle 1, 5 and 7
are 1, 0 and 1. After the magnetic fields of the particles are
calculated, the mass of the particles, m; are calculated using
(9). @ and p are constant parameters of MOA. Following are
the 3" phase of any nature-inspired optimization algorithm,
the improvement of the agents or the learning phase.

mi =a+p X b 9
If «a =1 and p = 1, the mass of the particles are 2, 1 and 2.

Then, identify the lattice neighbors of the particles. Next, the
magnetic force, fi7 is calculated using (10).

2t zt \ &t
(xuv,k_xij,k)XZ’uv

(10)

zZ _
fij = e
15m xfw,k_“zii.k -
n fe=1( up=lp )

Based on the force, the particle velocity and the particle
position is updated using (11) and (12).

Vi
vz.t+1 =2 5 R(uk: lk)

Gt = (11)
zZt+1 __ zZt zZ,t+1
Xije = Xijxt Vijx (12)

After updating the particle position, it is necessary to check for
any redundancy in the value of the voting. For example,
xll‘l1 =[9,9,6] leads to an invalid solution. Here, it can be
simply corrected by initializing that particle using (7). The
process continues to repeat until maximum iteration is met.
Then the global best solution is taken as final solution.



As mentioned in section 2, the case study is taken from a
website hosted by University of Heidelberg. The website
provided ample number of problems related to TSP. A TSP
consists of 14 cities in Burma is taken as a case study due to
its popularity. The coordinates of the cities have been listed in
table 2. For the case study, MOA parameters used are as listed
in table 3. The computation is done using a laptop equipped
with Intel Centrino Duo, 1.8GHz with 2GB RAM. The result
obtained from the case study listed in table 4. Table 5 listed all
the images of the best-found route for all computations. The
best solution found is on the 10" run, which has a distance of
31.376. This solution is better than the suggested solution by
TSPLIB, which are 33.23.

V. CONCLUSION

This paper presents the application of MOA with voting
modeling in TSP. The objective is to find the shortest distance
for the salesman to visit all the cities once. Result obtained
from the case study shows that the proposed approach
managed to find a better solution compared to the solution
suggested by TSPLIB. This study can be extended by tuning
the parameters of MOA.
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