

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Manufacturing Engineering

BOTTOM UP COST ESTIMATION MODEL FOR PROJECT MANAGEMENT IN SEMICONDUCTOR INDUSTRY

Cheah Chin Puay

Master of Manufacturing Engineering

2016

BOTTOM UP COST ESTIMATION MODEL FOR PROJECT MANAGEMENT IN SEMICONDUCTOR INDUSTRY

CHEAH CHIN PUAY

A thesis submitted in fulfillment of the requirements for the degree of Master of Manufacturing Engineering

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA

TAJUK: BOTTOM UP COST ESTIMATION MODEL FOR PROJECT MANAGEMENT IN SEMICONDUCTOR INDUSTRY

SESI PENGAJIAN: 2015/16 Semester 2

Saya CHEAH CHIN PUAY

mengaku membenarkan Laporan Projek Sarjana ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan Projek Sarjana adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan Projek Sarjana ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan olehr.

Cop Rasmi:

Dr. Chong Kuan Eng Associate Professor Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka

Alamat Tetap:

NO. 56 Jalan TM 20,

Taman Tanjong Minyak, 75250

Tanjong Minyak, Melaka

Tarikh:

Tarikh:

** Jika Laporan Projek Sarjana ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan Projek Sarjana ini perlu dikelaskan sebagai SULIT atau TERHAD.

FAKULTI KEJURUTERAAN PEMBUATAN

Tel: +606 331 6019 | Faks: +606 331 6431/6411

Rujukan Kami (Our Ref) : Rujukan Tuan (Your Ref) :

14 July 2016

Pustakawan Perpustakaan UTeM Universiti Teknikal Malaysia Melaka Hang Tuah Jaya, 76100 Durian Tunggal, Melaka.

Tuan/Puan,

PENGKELASAN LAPORAN PROJEK SARJANA SEBAGAI SULIT/TERHAD LAPORAN PROJEK SARJANA KEJURUTERAAN PEMBUATAN (KEJURUTERAAN SISTEM PEMBUATAN): CHEAH CHIN PUAY

Sukacita dimaklumkan bahawa Laporan Projek Sarjana yang tersebut di atas bertajuk **"BOTTOM UP COST ESTIMATION MODEL FOR PROJECT MANAGEMENT IN SEMICONDUCTOR INDUSTRY"** mohon dikelaskan sebagai *SULIT / TERHAD untuk tempoh LIMA (5) tahun dari tarikh surat ini.

2. Hal ini adalah kerana <u>IANYA MERUPAKAN PROJEK YANG DITAJA OLEH</u> <u>SYARIKAT LUAR DAN HASIL KAJIANNYA ADALAH SULIT</u>.

Sekian dimaklumkan. Terima kasih.

Yang benar,

In

Tandatangan dan Cop Penyelia

* Potong yang tidak berkenaan

NOTA: BORANG INI HANYA DIISI JIKA DIKLASIFIKASIKAN SEBAGAI SULIT DAN TERHAD. <u>JIKA LAPORAN DIKELASKAN SEBAGAI TIDAK TERHAD, MAKA</u> <u>BORANG INI TIDAK PERLU DISERTAKAN DALAM LAPORAN PSM</u>.

> KOMPETENSI TERAS KEGEMILANGAN Universiti Teknikal Malaysia O Universiti Teknikal Malaysia Melakaggal, Melaka, Malaysia. www.utem.edu.my

DECLARATION

I declare that this thesis entitled "Bottom Up Cost Estimation Model for Project Management in Semiconductor Industry" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature Name

Date

: CHEAH CHIN PUAY : July 14th, 2016

APPROVAL

I hereby declare that I have read this dissertation/report and in my opinion this dissertation/report is sufficient in terms of scope and quality as the award of Master of Manufacturing Engineering (Manufacturing System Engineering)

:

2

:

Ch they

Signature Supervisor Name Date

PM DR CHONG KUAN ENG

July 14th, 2016

DEDICATION

To my beloved families:

My Wife, My Father, My Mother, My Brother and My Sister

.

ABSTRACT

Cost estimation is a process of estimating and forecasting the total cost required of executing the engineering activities from project initiation till project completion. In semiconductor manufacturing industry, project managers encountered several obstacles with regards to cost estimation. There are no proper guidance, no standardization and no project budget breakdown overview on the cost estimation. Consequently, these have incurred no consistency in project cost estimation among project managers, poor cost management and mitigation plan shown by project managers with regards to high percentage difference between the actual and estimate (plan) which is more than 20 percent. Hence, there is a need to develop a systematic framework or a proposed approach for cost estimation in order to help and support the project managers which handling the package assembly project in INN Company, Malacca. This research proposes a methodology that uses bottom up approach via Activity Based Costing (ABC) to estimate a project cost with five key cost elements using Excel-based cost estimator. The package assembly projects that are being discussed and analyzed are projects complexity of 1, 2 and 3. The cost model is validated with the historical data while the testing data are validated with the actual data. Mean absolute percentage error (MAPE) is calculated to measure the forecast accuracy. With the full implementation of the established cost model, it helps the company to achieve 7 percent of MAPE in 2015 as compared to 13 percent (2014) and 16 percent (2013). The outcome of the cost model is satisfactory as the MAPE of 7% is obtained as compared to an industrial target of 10%. It is recommended that thorough studies and analysis could be studied to understand greater details of cost element. Web Portal is the recommended tool for the cost estimation in future as it is a collection of webpages that support multiple web browsers.

ABSTRAK

Anggaran kos model adalah satu proses untuk menganggar dan mengira jumlah kos yang diperlukan untuk melaksanakan aktiviti-aktiviti kejuruteraan dari permulaan projek sehingga selesai projek. Dalam industri semikonductor, pengurus projek menghadapi beberapa halangan dari segi kos anggaran. Antaranya ialah tiada bimbingan yang betul, tiada piawaian. Oleh itu, tidak ada konsisten dalam membuat anggaran kos projek di kalangan pengurus projek, pengurusan yang lemah dan rancangan yang tidak rapi ditunjukkan oleh pengurus projek apabila berlaku sisihan yang ketara di antara anggaran kos pelan dan kos sebenar, iaitu melebihi 20 percent. Dengan itu, ada perlunya pendekatan sistematik untuk membantu pengurus projek yang untuk merangka mengendali projek pemasangan pakej dalam industri semikonduktor di INN Company. Melaka. Kajian ini mencadangkan satu kaedah yang menggunakan pendekatan bawah ke atas melalui kos berlandaskan aktiviti dan teknik untuk menganggar kos projek dengan sumber pemasangan (kos buruh) sebagai parameter utama menggunakan Excel. Projek pemasangan yang akan dibincangkan dan dianalisa adalah projek kelas 1, 2, dan 3. Anggaran kos model is disahkan dengan data-data yang diperolehi daripada projectproject dulu dan keputusan ujian pula disahkan dengan data-data yang sebanar. MAPE dikira untuk menguji ketepatan kos anggaran. Dengan anggaran kos model ini, MAPE vang dicapai di tahun 2015 adalah 7%. 2014 (13%) dan 13% (2013). Keputusan daripada kos anggaran model itu memuaskan kerana piawaian peratus perbezaan antara anggaran dan sebear adalah 10% dalam sektor perindustrian. Adalah disarankan untuk mengaji lebih teliti dalam element-element kos dan Web Portal digalakkan pada masa akan datang keran ia boleh menggabungkan beberapa jenis rangkaiwan web dalam penanggaran kos.

ACKNOWLEDGEMENTS

I would like to take this opportunity to express and convey my sincere appreciation to my supervisor, Prosefor Madya Dr. Chong Kuan Eng for his full guidance, supervision, encouragement, patience, motivation, ideas' provision as well as the commitment. Apart from the direct supervisor, I would also like to thank to all lecturers of FKP for their advices and guidance whether given me lectures or not. Without the supports and guidance from them, this research would not have been accomplished as presented.

Not to forget, I would like to also thank my fellow postgraduate for the full co-operation and support given. My kind and sincere appreciation also extended to all my colleagues who help me directly and indirectly. Lastly, my full-hearted thanks to my beloved family, parents, wife for their full understanding, supports and time throughout the whole course.

TABLE OF CONTENTS

			PAGE
DE	CLAR	RATION	
AP	PROV	AL	
DE	DICA	TION	
AB	STRA	CT	i
AB	STRA	K	ii
AC	KNO	WLEDGEMENTS	iii
TA	BLE (OF CONTENTS	iv
LIS	ST OF	TABLES	vii
LIS	ST OF	FIGURES	ix
LIS	ST OF	APPENDICES	xii
LIS	ST OF	ABBREVIATIONS	xiii
СН	арте	R	
1.	INT	TRODUCTION	1
-	1.1	Background of Study	1
	1.2	Problem Statement	3
	1.3	Objectives	5
	1.4	Scope of Project	5
	1.5	Significance of the Study	6
2.	LIT	ERATURE REVIEW	8
	2.1	An Overview of Semiconductor Industry	8
	2.2	Package Assembly Project	10
	2.3	Project Management	11
		2.3.1 Project Cost Management	11
		2.3.2 Planning the Project Resources	12
	2.4	Cost Estimation	14
		2.4.1 Cost Estimating in New Product Development	14
		2.4.2 Project Cost Estimates	15
		2.4.3 The Purpose of Project Cost Estimate	16
		2.4.4 Cost to Estimate	16
		2.4.5 Project Cost Estimation via Project Life Cycle	17
		2.4.6 Project Cost Elements	18
		2.4.7 Project Cost Estimation Process	19
		2.4.8 Project Cost Estimation Approach	20
	2.5	Accuracy of the Cost Estimate	21
		2.8.1 Category of Estimating Accuracy	23
		2.8.2 Causes of Inaccurate Estimates	24
	2.6	Cost Control	25
	2.7	Cost Estimating Techniques	25
		2.7.1 Expert Judgement	27
		2.7.2 Bottom-up Estimating	27
		2.7.3 Parametric Estimating	28
		2.7.4 Analogous Estimating	28
		2.7.5 Three-Point Estimating	29
	2.8	Activity Based Costing	30

	2.9	Cost Estimation Methodology Selection	33
	2.10	Practice of Cost Modelling	33
		2.10.1 Cost Model	35
		2.10.2 Cost Estimator	36
	2.11	Application and Implementation in Industry	37
	2.12	Summary of Literature Review	39
3.	RES	EARCH METHODOLOGY	40
	3.1	Introduction	40
		3.2 Details of Company's Profile	41
	3.3	Research Outline	43
		3.3.1 Phase A: Preliminary Study	46
		3.3.2 Phase B: Experimental Design	50
		3.3.3 Phase C: Experimental Testing	56
	3.4	Summary of Methodology	59
4.	RES	ULT AND DISCUSSION	60
	4.1	Introduction	60
	4.2	Project Execution Flow in Case Company	60
	4.3	Conceptual Cost Modelling	63
	4.4	Scope of the Cost Modelling	63
		4.4.1 Assumptions	65
		4.4.2 Model Data	66
	4.5	Structure of Cost Model	71
		4.5.1 Project Planning	71
		4.5.2 Cost Estimating	73
		4.5.3 Statistical Analysis	78
	4.6	Developing Cost Model	79
		4.6.1 Developing Material Cost	79
		4.6.2 Developing Package Assembly Cost (Sample Build Order)	80
		4.6.3 Developing Reliability Cost	81
		4.6.4 Developing Failure Analysis Cost	82
		4.6.5 Developing Backend Testing Cost	83
	4.7	Model Translation in M.S. 2010	85
	4.8	Verification and Validation	85
	4.9	Experimental Testing	87
	4.10	Improvement of the Cost Model	89
	4.11	Summary of Model and Experiments Development	89

a.

5.	RE	SULTS AND DISCUSSIONS	91	
-	5.1	Conclusion	91	
	5.2	Results for Case Projects	91	
		5.2.1 Test Results for Case Projects in 2013	92	
		5.2.2 Test Results for Case Projects in 2014	94	
		5.2.3 Results for Case Projects in 2015	96	
	5.3	Comparison Results of Actual versus Estimate (Plan)	98	
		5.3.1 Comparison Results of Actual versus Test Estimate (2013)	98	
		5.3.2 Comparison Results of Actual versus Test Estimate (2014)	99	
		5.3.3 Comparison Results of Actual versus Test Estimate (2015)	101	
		5.3.4 Summary of Comparison Results	102	
	5.4	Forecasting Accuracy	104	
		5.4.1 MAPE for Case Projects in 2013	105	
		5.4.2 MAPE for Case Projects in 2014	107	
		5.4.3 MAPE for Case Projects in 2015	109	
	5.5	Summary of Case Projects; Result and Discussion	111	
	5.6	Example of Actual Run of Project Cost Estimation (2015), CC3	113	
	5.7	Research Contribution	116	
6.	CO	NCLUSION AND RECOMMENDATIONS	118	
	6.1	Conclusions	118	
	6.2	Recommendations	119	
RE	FERF	INCES	121	
BIBLIOGRAPHY 1				
AP	APPENDICES 1			

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Causes of Inaccurate Estimation	24
2.2	Activity Based Costing vs. Resource Based Costing	31
3.1	INN Company's Organisation Chart	42
3.2	Project Complexity Class	51
3.3	Detailed Breakdown of Cost Elements	54
4.1	Scope of the Cost Model	64
4.2	Material Breakdown	67
4.3	Sample Build Breakdown	67
4.4	Backend Test Breakdown	68
4.5	Failure Analysis Breakdown (Location A)	68
4.6	Failure Analysis Breakdown (Location B)	69
4.7	Reliability Breakdown (Location A)	70
5.1	Results for Actual Cost and Test Estimate (Plan) for Case Project in	93
	2013	
5.2	Results for Actual Cost and Test Estimate (Plan) for Case Project in	95
	2014	

2

5.3	Results for Actual Cost and Test Estimate (Plan) for Case Project in	97
	2015	
5.4	Cost Elements Breakdown with Delta (%) in 2013	98
5.5	Cost Elements Breakdown with Delta (%) in 2014	100
5.6	Cost Elements Breakdown with Delta (%) in 2015	101
5.7	Percentage of Difference of Cost Elements in Year Chronology	103
5.8	Mean Absolute Percentage Error (MAPE) for Case Projects in 2013	106
5.9	Mean Absolute Percentage Error (MAPE) for Case Projects in 2014	108
5.10	Mean Absolute Percentage Error (MAPE) for Case Projects in 2015	110

.

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Variety of Package Types for Plastic Surface and through Hole	9
	Amount	
2.2	Generic Electronics Packaging Assembly Sequence	10
2.3	Typical Project Cost Components	12
2.4	Cost Estimating in New Product Development	15
2.5	Risk Increases throughout the Project Life Cycle	17
2.6	Cost Elements	18
2.7	Cost Estimating Process	19
2.8	Cost Estimate Processes for the Bottom Up and Top Down	21
	Approach	
2.9	Characteristics Curve of Estimate Accuracy vs. Time Spent to	22
	Estimate	
2.10	Categories of Estimating Accuracy	23
2.11	The Estimating Technique: Key Advantages and Limitation	32
2.12	Decision-support Model for Cost Estimation Methodology	34
	Selection	
2.13	Relative Accuracy of Estimate Types	35

ix

2.14	Diagram of Computer Program Integrating CAD/CAM - Cost	38
	Estimation	
2.15	Cost Estimation using a Computer Program	38
3.1	Research Outline 1	44
3.2	Research Outline 2	45
3.3	Project Decision Meeting Process	47
3.4	Main Results and Deliverables	48
3.5	Total Project Cost	52
3.6	Cost Estimation	53
4.1	Project Execution Flow	61
4.2	Conceptual Cost Modelling and its Relationship	62
4.3	Structure of Cost Model and Linkage to Cost Estimating	72
4.4	Cost Estimating via Activity-Based Costing	73
4.5	Material Cost Estimation	74
4.6	Package Assembly Cost Estimation	75
4.7	Reliability Stress Test Cost Estimation	76
4.8	Failure Analysis Cost Estimation	77
4.9	Backend Electrical Testing Cost	78
4.10	Steps in Developing Material Cost	80
4.11	Steps in Developing Package Assembly Cost (Sample Build)	81
4.12	Steps in Developing Reliability Cost	82
4.13	Steps in Developing Failure Analysis Cost	83
4.14	Steps in Developing Backend Testing Cost	84

×

4.15	Cost Model in Microsoft Excel 2010	86
4.16	Process Flow of Project Cost Estimation	88
5.1	Total Project Cost (Actual vs. Test Estimate (Plan)) in 2013	92
5.2	Total Project Cost (Actual vs. Test Estimate (Plan)) in 2014	94
5.3	Total Project Cost (Actual vs. Test Estimate (Plan)) in 2015	96
5.4	Comparison Actual versus Test Estimate in 2013	99
5.5	Comparison Actual versus Test Estimate in 2014	100
5.6	Comparison Actual versus Test Estimate in 2015	102
5.7	Average Actual versus Average Estimate	103
5.8	Percentage Difference (Ai-Fi/Ai) and MAPE for Case Projects in	105
	2013	
5.9	Percentage Difference (Ai-Fi/Ai) and MAPE for Case Projects in	107
	2014	
5.10	Percentage Difference (Ai-Fi/Ai) and MAPE for Case Projects in	109
	2015	
5.11	Mean Absolute Percentage Error in Year 2013, 2014, and 2015	112
5.12	Actual Run of Material Cost with CC3	113
5.13	Actual Run of Assembly Resource (Sample Build) and Reliability	114
	Cost with CC3	
5.14	Actual Run of Failure Analysis and Backend Testing Cost with	115
	CC3	

 $\left| \boldsymbol{x} \right|$

LIST OF APPENDICES

APPEN	DIX TITLE	PAGE
A	Project Classification Guideline	128
В	Activity Based Costing vs. Resource Based Costing	129
С	Key Deliverables of Assembly Project	130
D	Package Assembly Resource Guideline of Complexity Class 3	131
E	Package Assembly Resource Guideline of Complexity Class 2	132
F	Package Assembly Resource Guideline of Complexity Class 1	133
G	Leadframe Guideline	134
Н	Proejct Timeline Guideline	135
Ι	K-Chart	136
J	Gantt Chart	138

xii

LIST OF ABBREVIATIONS

ABC	- Activity Based Costing
AOC	- Annual Operating Cost
CAD	- Computer aided design
CAM	- Computer aided manufacturing
CBO	- Cost Breakdown Overview
CC	- Complexity Class
СР	- Capital Purchase
DoE	- Design of Experiment
EMWG	- Economic Modelling Workshop Group
ESFC	- Engineering Sample Forecast
FMEA	- Failure Mode Effect Analysis
GR&R	- Gage repeatability and reproducibility
HTOL	- High Temperature Operating Life
HTS	-High Temperature Stress
MSDS	- Material and Safety Data Sheet
MSP	- Mark, Scan, Pack
M & O	- Maintenance and Operation
MOTI	- Ministry of Transportation and Infrastructure
NDA	- Non Disclosure Agreement

¥

xiii

РМВОК	- Project Management Body of Knowledge
Q Plan	- Qualification Plan
RoHS	- Restriction of Hazardous Substance
ROM	- Rough of Magnitude
SAT	- Scanning Acoustic Tomography
SEM	- Scanning Electron Microscopy
SME	- Subject Matter Expert
THB	- Temperature, and Humidity Bias
TC	- Temperature Cycling
TCM	- Total Cost Management
VRFC	- Volume Rolling Forecast
WBS	- Work Breakdown Structure
WSDOT	- Washington State of Department Transportation

xiv

÷.

CHAPTER 1

INTRODUCTION

1.1 Background of Study

A lot of effort is required for a company to have innovative products especially during the development stage (Chwastyk and Kolosowski, 2013). The automotive sector is also not exempted from the global market place, the companies have to be innovative in various areas, including cost, functionality, design, manufacturing, and quality (R.Roy et al., 2011). The establishment of any proposed innovative ideas, frameworks or any systems launching are major challenges for a company. Any projects have its uncertainties and risks where systematic tools and methods are significantly important to ensure project success. Attaining company's objective and achieving project success is largely relying on the effective implementation of the deployment process in a company. This research paper shows an approach to estimate the total cost of the package assembly project in semiconductor manufacturing industry. The intention is to help project managers in providing quality project cost estimation within the stipulated time. Not only that, cost estimation is crucial in decision making process. If the project cost is underestimated, authorization of a new project could waste the limited resource and jeopardize the expected contribution and credibility of a project manager. In contrast, if it is overestimated, a new project could be refrained which may beneficial to the organization.

Cost engineering is the engineering practice related to the management of project cost, involving tasks such as planning, cost estimating, cost controlling and monitoring, cost managing so that the project can be completed within the approved budget (Roy and Griggs, 2004). The cost engineer seeks optimum balance according to project triangle, which is cost, time requirement, project scope trade off with quality requirement in the middle.

Cost estimating is the process of developing an approximation of the monetary resources required to complete the project activities or work-packages. There are many methods and techniques in cost estimating, such as using expert judgment, analogous estimating, parametric estimation, bottom-up estimating, three-point estimating and activity based estimating (PMI, 2013). Cost estimates include the identification and consideration of costing alternatives to kick off and complete the project. Cost trade-offs and risks should be taken into consideration to achieve optimal costs for the project. According to Ramasubbu and Balan (2010), their research has shown that project cost estimate is always a challenge, time-consuming which took longer time to accomplish, unavoidable cost overruns and schedule slips due to poor cost estimates may delay of overall project progress.

1.2 Problem Statement

In actual scenario, project managers encountered several obstacles and problems related to project cost estimation in semiconductor package assembly manufacturing industry. This research work is based on the actual case occurred in INN Company, located in Malacca.

There are no proper guidelines, no standardization and no project budget breakdown overview on project budget estimation in 2013. The first common problem encountered is no proper guideline which resulted in no consistency on project budget estimation thus created big gap or deviation (more than 10%) and variation in terms of comparison between actual versus test estimate (forecast) which can be illustrated in Figure 1.1 for different project complexity in 2013. In semiconductor industry particularly, project complexity plays an utmost role in determining how much the project budget is. Without proper guidelines, project managers have no visibilities comparing projects by projects, having difficulties on decision making whether to buy or make, to start a project in in-house's assembly site or in subcontractor's site.

In INN Company for example, no standardization can be seen, ranging from smallscale design of experiment (DoE), engineering evaluation or engineering assessment up to a single project level. This common dilemma caused the project cost estimation calculated without standardized work breakdown structure (WBS) by the project managers. As a consequence, issue like no transparency throughout the entire project cost estimation among the requestor, the project manager as an executor and stakeholders of the project occurred. Thus, when the project is executing based on this lacking-structure practice, resource management and effective prioritization became big challenge for the project managers in the scenario of resource constraints.

3

Lastly, project managers always have the difficulties to explain the project budget or cost breakdown overview (CBO) during project decision meeting. The lacking of comprehensive work breakdown structure has not only resulted in poor project execution quality but also unclear relationship among project cost, project scope, quality requirement, timeline. Subsequently, project managers were taking longer time in preparing the project cost estimation which may not be accurate and meet the expectation of the requestor or sponsor.

