

AN INTEGRATED MODEL OF AUTOMATED ELEMENTARY
PROGRAMMING FEEDBACK USING ASSISTED AND

RECOMMENDATION APPROACH

SUHAILAN SAFEI

DOCTOR OF PHILOSOPHY

2017

Faculty of Information and Communication Technology

AN INTEGRATED MODEL OF AUTOMATED ELEMENTARY
PROGRAMMING FEEDBACK USING ASSISTED AND

RECOMMENDATION APPROACH

Suhailan Safei

Doctor of Philosophy

2017

AN INTEGRATED MODEL OF AUTOMATED ELEMENTARY
PROGRAMMING FEEDBACK USING ASSISTED AND RECOMMENDATION

APPROACH

SUHAILAN SAFEI

A thesis submitted
in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

DECLARATION

I declare that this thesis entitled "An Integrated Model of Automated Elementary

Programming Feedback Using Assisted and Recommendation Approach" is the result of

my own research except as cited in the references. The thesis has not been accepted for any

degree and is not concurrently submitted in candidature of any other degree.

 Signature : ..

 Name : ..

 Date : ..

Suhailan Safei

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in

terms of scope and quality for the award of Doctor of Philosophy.

 Signature : ..

 Supervisor Name : ..

 Date : ..

Associate Professor Dr. Abdul Samad Shibghatullah

DEDICATION

This thesis is lovingly dedicated to the memory of my late father, Dato' Hj. Safei bin Daud.
He may not live long enough to see his son through his Ph.D. journey, but still, he planted
the thirst for knowledge and profound impact on me. For that, I thank him dearly. This
thesis is also dedicated to my mother, To' Puan Che A'eshah binti Sulaiman, who always
pray for my success and give affection to me. Special thanks to all my brothers (Abang
Haji, Abang Za, Abang Man, Adik Li), sisters (Kak Da, Kak Mah) and their caring
families who continuously equipped me with their generosity, loving kindness and constant
support.

I am particularly indebted to my wife, Zuliana binti Mat Ali, for all her love and
encouragement. She has always been there with me from day one of my academic career.
My gratitude to all my children; Shazwani, Shahiran, Shadi Asyraf and Shakir Ahmad who
illuminate my life with lively atmosphere and joy.

My appreciation as well to all my former experts from Sekolah Menengah Agama Sheikh
Abdul Malek (SHAMS), lecturers from Universiti Teknologi Malaysia (UTM) and Mr.
Abu Bakar bin Hj. Hasan (my former employer) who have shared with me their respective
knowledge and expertise which implicitly influenced me to be who I am today.

Without all of this supports, I doubt this research work could have been accomplished in
time.

i

ABSTRACT

Many studies on automated programming assessment tools with automated feedbacks have
been addressed to assist students rectifying their solution’s difficulty. However, many
students will depend on an expert's assistance (e.g. expert) to debug their programs towards
meeting the question's requirements. While several studies have produced feedback on the
specific need of programming’s question using a static template analysis, there is still a
lack of an automated programming feedback model that is dynamically enriched through a
live assisted feedback from an expert. Thus, this research proposed an integrated
programming feedback model of elementary programming question using assisted and
recommended approach. The assisted feedback was done by an expert through a similar
difficulty analysis of computer programs that were grouped together based on their
difficulty features. The features were proposed to enable ranking among computer
programs and they were proven to be strongly correlated with the manual ranking of an
expert's rubric assessment (rs = 0.914, p < 2.2e-16). Meanwhile, similar difficulty groups of
the computer programs were generated using a K-Means clustering algorithm that was
enhanced with ranking consideration. This enhancement was evaluated on three ordinal
datasets on different application domain covering 67 Java programs, 92 students’ marks on
computer architecture subject and 456 EUFA’s football club coefficient ranking list. The
results showed that not only a rank cluster representation was achieved, but the purity
value was also increased by 1%. As the computer programs were clustered based on
ranking consideration, expert's feedback analysis can be effectively done from worst to
least for the programs' difficulty. Hence, two kinds of assisted feedbacks were proposed;
general and specific assisted feedback. These feedbacks were automatically indexed using
general program features and specific statement pattern rule for automated retrieval on
general and specific recommended feedbacks respectively. An experiment was executed
real programming lab dataset that consists of 475 elementary programming answer
submissions from 67 participants. Expert's assisted feedbacks were provided at the end of a
program submission. It shows that the technique has successfully clustered 67 computer
programs into 24 similar groups of programming logic’s mistake. Based on the groups,
general feedbacks were provided on 6 groups covering 33 programs. Then, by using the
proposed indexing technique, the same feedback has efficiently recommended to other 148
programs that are having similar mistakes along the lab session. On the other hand, 7
specific feedbacks were provided on 7 computer statements’ mistake and were
recommended to other 64 programs who were having similar statement mistakes along the
lab session. Thus, the proposed technique can effectively help the expert providing
continuous and dynamic feedback in rectifying logic’s requirement of a problem.
Unfortunately, the model is not suitable for complex programming question where their
solution logics can be diversified. However, future work on the automatic extraction of
acceptable program answer as a solution template may solve such limitation.

ii

ABSTRAK

Banyak kajian telah dibuat untuk membangunkan alatan sokongan bagi automasi
maklumbalas penyelesaian bagi kesilapan aturcara yang dibuat oleh pelajar. Namun,
pelajar masih memerlukan bantuan guru untuk mengenalpasti kesilapan berkaitan dengan
keperluan spesifik sesuatu soalan. Walaupun terdapat banyak kajian dalam mengautomasi
maklumbalas berkaitan keperluan sesuatu soalan menggunakan kaedah analisa skima
jawapan, model yang mampu mengautomasi dan mengindek maklumbalas langsung
daripada pakar masih belum diteroka sepenuhnya. Sehubungan itu, penyelidikan ini
mengkaji model maklumbalas bagi soalan pengaturcaraan melalui pendekatan integrasi
maklumbalas bantuan pakar dan maklumbalas saranan. Maklumbalas bantuan tersebut
dibuat melalui analisa kesukaran membangunkan aturcara yang dikumpul mengikut ciri
persamaan berdasarkan skema arahan komputer. Apabila ciri persamaan yang
dicadangkan ini digunakan dalam menghasilkan penarafan pada 67 aturcara komputer,
didapati ia mempunyai korelasi yang tinggi terhadap laporan penarafan yang dibuat
menggunakan penilaian rubrik oleh pakar (rs = 0.914, p < 2.2e-16). Sementara itu,
pengumpulan aturcara berdasarkan ciri tersebut telah dibuat menggunakan teknik K-
Means yang ditambahbaik dengan elemen penarafan. Tiga set data ordinal daripada
domain aplikasi berlainan telah diuji menggunakan teknik tersebut meliputi 67 aturcara
Java, 92 markah pelajar bagi subjek senibina komputer dan 456 senarai kedudukan kelab
bolasepak EUFA. Eksperimen menunjukan bukan sahaja perwakilan kluster bertaraf dapat
dicapai, malah analisis nilai purity juga menunjukkan peningkatan sebanyak 1%. Dengan
adanya elemen penarafan dalam teknik pengklusteran, ia membolehkan analisa untuk
sesuatu maklumbalas difokuskan daripada kumpulan aturcara yang paling banyak kepada
yang paling kurang bermasalah. Maklumbalas bantuan pakar ini meliputi maklumbalas
bantuan umum dan bantuan khusus. Ia diindek menggunakan jarak cirian aturcara dan
penapisan pernyataan yang digunakan untuk menghasilkan automasi maklumbalas
dikenali sebagai maklumbalas saranan umum dan khusus. Eksperimen telah dilaksanakan
menggunakan data yang mengandungi 475 jawapan daripada 67 peserta dalam makmal
pengaturcaraan. Maklumbalas pakar telah disediakan di akhir penghantaran jawapan
aturcara. Teknik ini telah berjaya mengumpulkan 67 aturcara kepada 24 kumpulan yang
mempunyai kesilapan logik. Maklumbalas umum telah diberikan hanya kepada 6
kumpulan meliputi 33 aturcara. Ia telah disarankan kepada 148 aturcara lain yang
mempunyai kesilapan yang sama sepanjang pelaksanaan sesi makmal tersebut. Selain itu,
7 maklumbalas khusus diberikan pada 7 kesilapan pernyataan komputer dan berjaya
disarankan kepada 64 aturcara lain. Oleh itu, teknik ini berkesan membantu pakar
menyediakan maklumbalas berterusan dan dinamik dalam mengenalpasti keperluan logik
bagi satu permasalahan. Walaubagaimanapun, model ini tidak sesuai untuk digunakan
pada soalan yang melibatkan logik yang kompleks. Namun, kekangan ini dapat diatasi
melalui kajian mendatang dalam pengekstrakan automatik aturcara jawapan yang betul
sebagai templet penyelesaian.

iii

ACKNOWLEDGMENTS

"He grants wisdom to whom He wills, and he whom wisdom is granted receives indeed a
benefit of overflowing; but none will grasp the message except those of understanding"

Quran al-Baqarah (2):269

"Whoever removes a worldly grief from a believer, Allah will remove from him one of the
griefs of the Day of Resurrection. And whoever alleviates the need of a needy person,

Allah will alleviate his needs in this world and the Hereafter. Whoever shields (or hides the
misdeeds of) a Muslim, Allah will shield him in this world and the Hereafter. And Allah

will aid His slave so long as he aids his brother. And whoever follows a path to seek
knowledge therein, Allah will make easy for him a path to Paradise."

Prophet Muhammad (P.B.U.H.)

Undertaking this Ph.D. research has been a truly life-changing experience for me and it
wouldn't have been possible without the support and guidance that I received from many
people. Foremost, I am indebted to my supervisor, Associate Professor Dr. Abdul Samad
bin Shibghatullah from the Faculty of Information Communication and Technology,
Universiti Teknikal Malaysia Melaka (UTeM) for his continuous support throughout my
Ph.D. journey with inspiration and aspiration through the years of my research as the road
ahead. I would like to express my sincere gratitude as well to Associate Professor Dr.
Burhanudin bin Mohd Aboobaider for his guidance and assistance all over the way to the
completion of this study.

A big thank you to all my fellow academics from Universiti Sultan Zainal Abidin
(UniSZA) for sharing their expertise and experience, especially to Assoc. Prof. Dr.
Mokhairi Makhtar, Nazirah Abd Hamid and Prof. Dr. Mohd Nordin Abdul Rahman. I
would like to acknowledge UniSZA and the Ministry of Higher Education (MOHE)
Malaysia for granting the financial support and giving me the opportunity to embark on
this journey under the ‘Skim Latihan Akademik IPTA (SLAI) programme’.

iv

TABLE OF CONTENTS

PAGE
DECLARATION
APPROVAL
DEDICATION
ABSTRACT i
ABSTRAK ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES vii
LIST OF FIGURES viii
LIST OF APPENDICES x
LIST OF ABBREVIATIONS xi
LIST OF PUBLICATIONS xii

CHAPTER
1. INTRODUCTION 1

1.0 Motivation 1
1.1 Background 3
1.2 Problem Statement 6

1.3 Research Questions 8
1.4 Research Objectives 8

1.5 Scopes and Operational Definitions 9
1.6 Thesis Structure 10

2. REVIEW OF THE LITERATURE 12
2.0 Introduction 12

2.1 Types of Programming Feedback 13
2.2 Model of Problem-solving Based Feedback 14

2.2.1 Automated Feedback 14

2.2.1.1 Template-based parser 15
2.2.1.2 Test cases automation 19
2.2.1.3 Agent-based system 21

2.2.2 Assisted Feedback 23
2.2.3 Recommended Feedback 26

2.3 Framework of Problem-solving Based Feedback 31
2.3.1 Constant Feedback 32

2.3.2 Continuous Feedback 33
2.4 Automated Features of a Computer Program 35
2.5 Problem-Solving Based Correctness Feature 37

2.6 Feature Analysis for Identification of a Feedback Rule 38
2.6.1 Ranking analysis 39

2.6.2 Classification analysis 39
2.6.3 Clustering analysis 40

2.6.4 Ranking-based clustering analysis 41
2.6.4.1 Feature Selection 42
2.6.4.2 Initial Centroid 43

2.6.4.3 Distance Measurement 44

v

2.7 Summary 44

3. RESEARCH METHODOLOGIES 46
3.0 Introduction 46
3.1 Problem Analysis 47

3.2 Conceptual Feedback Model 48
3.3 Integrated Feedback Framework 51

3.3.1 Assisted Feedback Framework 51
3.3.1.1 Program Pre-processing 54
3.3.1.2 Features extraction 55

3.3.1.3 Computer program ranking 60

3.3.1.4 Clusterisation using GRank K-Means 64

3.3.1.5 Feature cluster association 68
3.3.1.6 Feature statement extraction 71

3.3.2 Recommended Feedback Framework 73
3.3.2.1 Similar feature retrieval 74
3.3.2.2 Statement pattern retrieval 75

3.3.3 Data Model 76
3.3.3.1 Feature data 76
3.3.3.2 Rule data 77

3.4 Experiments 79

3.4.1 Main materials 79

3.4.1.1 Dataset A 81

3.4.1.2 Dataset B 81
3.4.2 Other materials 82

3.4.2.1 Dataset C 82
3.4.2.2 Dataset D 82

3.4.3 Setting 83

3.4.3.1 Score features using the IGR and ICR 83
3.4.3.2 Ranking-based cluster using the GRank K-Means 84

3.4.3.3 Assisted feedback using the cluster-based and statement-
based feature 84
3.4.3.4 Recommended feedback using the similar feature and
statement’s pattern 85

3.5 Validation Analysis 87

3.6 Summary 89

4. RESULTS AND FINDINGS 91
4.0 Introduction 91
4.1 Problem-solving Based Score Features for Program's Ranking Effectiveness 92
4.2 Ranking-based Clustering Effectiveness 96

4.2.1 GRank's initial centroid selection 100
4.2.2 GRank re-clustering process 102

4.3 Assisted Feedback Effectiveness 110
4.3.1 General assisted feedback 110

4.3.2 Specific assisted feedback 115
4.4 Recommended Feedback Efficiency 119

4.4.1 General recommended feedback 120
4.4.2 Specific recommended feedback 123

vi

4.5 Summary 129

5. DISCUSSION 131
5.0 Introduction 131
5.1 Feedback Model Effectiveness 131

5.2 Program’s Ranking of Problem-solving Completeness 136
5.3 Ranking-based Clustering of K-Means 138
5.4 Mistake’s Indexing Technique on Problem-solving Logics 140
5.5 Threats to Validity 142
5.6 Summary 144

6. CONCLUSION 145
6.0 Introduction 145

6.1 Summaries 145
6.2 Contributions 148
6.3 Limitations 149
6.4 Future Works 151

REFERENCES 153
APPENDICES 175

vii

LIST OF TABLES

TABLE TITLE PAGE

2.1 Model of problem-solving based programming feedback 30

3.1 Example of Instruction Count Ratio 60

3.2 Example of pair-wise comparison matrix of feature-A 63

3.3 List of the experiments 86

3.4 Model measurement techniques 88

4.1 Ranking result using rubrics and features 93

4.2 Rank correlation between proposed features and expert’s assessment 95

4.3 Initial centroids for K-Means and GRank K-Means clustering 99

4.4 Purity measurement on the clustering result of dataset A 106

4.5 Purity measurement on the clustering result of dataset C 107

4.6 Purity measurement on the clustering result of dataset D 108

4.7 Distinctive rules for general assisted feedback 111

4.8 General assisted feedback provided for dataset A 113

4.9 Specific assisted feedback on a computer statement's mistake 116

4.10 Sample of general recommended feedback 122

4.11 Example of specific recommended feedback 126

viii

LIST OF FIGURES

FIGURE TITLE PAGE

2.1 General framework of problem-solving based programming feedback 31

3.1 Integrated programming feedback model 49

3.2 Feature ranking and clusterization for assisted feedback framework 53

3.3 Instruction Gram Ratio with Skippable Instruction 57

3.4 Instruction Count Ratio 59

3.5 General assisted feedback 69

3.6 Feature-distance threshold feedback rule 70

3.7 Specific assisted feedback 71

3.8 Feature-statement rule extraction 72

3.9 General recommended feedback 74

3.10 Specific recommended feedback 75

3.11 Feature data 77

3.12 Rule data for general recommended feedback 78

3.13 Rule data for specific recommended feedback 78

3.14 Automated Online Programming Contest (AOPC) 80

4.1 Basic K-Means of dataset A 100

4.2 Basic K-Means of dataset C 101

4.3 Basic K-Means of dataset D 102

4.4 Clustering result of GRank K-Means on dataset A 103

4.5 Clustering result of GRank K-Means on dataset C and D 104

4.6 Nearby distance measurement 109

4.7 General assisted feedback screenshot 112

4.8 Snapshot of a specific assisted feedback prototype 115

4.9 Snapshot of general recommended feedback prototype 120

file:///D:/PhD/Dropbox2/PhD/MyThesis/Submission%20Correction/PhDThesis.docx%23_Toc467173104
file:///D:/PhD/Dropbox2/PhD/MyThesis/Submission%20Correction/PhDThesis.docx%23_Toc467173105
file:///D:/PhD/Dropbox2/PhD/MyThesis/Submission%20Correction/PhDThesis.docx%23_Toc467173109

ix

4.10 General recommended feedback (GRF) coverage 121

4.11 Snapshot of a specific recommended feedback prototype 124

4.12 Specific recommended feedback (SRF) coverage 125

x

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Dataset A (Students' answer of Java Lab Test) 175

B Clustering Result of Dataset A 190

C Dataset C (COA Full Marks) and its Clustering Result 192

D Dataset D (Club Co-Efficient Rank of Season 2013/14- 2014/15) and

its Clustering Result

195

E PHP Codes On Features Extraction 205

F PHP Codes on AHP Ranking 212

G Prototype's Instruction Manuals 219

H General Recommended Feedback 222

I Specific Recommended Feedback 234

xi

LIST OF ABBREVIATIONS

AF - Assisted Feedback

AHP - Analytic Hierarchy Process

AOPC - Automated Online Programming Contest

AST - Abstract Syntax Tree

CBR - Case-Based Reasoning

CFG - Context Free Grammar

COA - Computer Organization and Architecture
CW - Coursework

CT - Cognitive Tutor
DAO - Data Access Object

EML - Error Model Language

FCC - Feedback, context and content

GRF - General Recommended Feedback

IDEAS - Interactive domain-specific exercise assistants

IPO - Input-Process-Output

ICR - Instruction count ratio

IGR - Instruction-gram ratio

PAC - Problem Analysis Chart

RF - Recommended Feedback

RS - Recommender System

SRF - Specific Recommended Feedback

TOPSIS - Technique for Order of Preference by Similarity to Ideal Solution

WSM - Weighted Sum Method

xii

LIST OF PUBLICATIONS

Journals

Suhailan Safei, Abdul Samad Shibghatullah and Burhanuddin Mohd Aboobaider, (2014).
A Perspective of Automated Programming Error Feedback Approaches in Problem
Solving Exercise. Journal of Theoretical and Applied Information Technology (JATIT),
70(1), pp. 121-129 (SCOPUS)

Suhailan Safei, Abdul Samad Shibghatullah, Burhanuddin Mohd Aboobaider and Mohd
Kamir Yusof (2015). A Targeted Ranking-Based Clustering Using AHP K-Means.
International Journal of Advances in Soft Computing and Its Application (IJASCA), 7 (3).
pp. 100-113. (SCOPUS)

Proceeding

Suhailan Safei, Abdul Samad Shibghatullah and Burhanuddin Mohd Aboobaider (2014).
Enhanced k-Mean Clustering Algorithm Using Expert Features Weighting for Assisted
Programming Feedback. The 6th International Conference on Postgraduate Education.
Melaka, Malaysia, 17-18 December 2014. Universiti Teknikal Malaysia Melaka.

1

CHAPTER 1

INTRODUCTION

1.0 Motivation

 A new plan for 2015-2020 higher education development was launched to produce

graduates who are able to think critically and innovatively with problem-solving initiatives

and an entrepreneurial mindset. As for ICT graduates, computer programming is one of the

core subjects that could grant these skills and attributes (Taheri et al., 2015). In many

examples, those who are very competent in programming tend to write their own computer

programs and eventually able to earn some cash on their own efforts. On the other hand, as

mentioned by Cyberjaya’s chairman, Tan Sri Mustapha Kamal, it is expected that 120,000

of the workforce in ICT with critical thinking skills from 2020 onwards (Azura, 2013).

 Unfortunately, learning computer programming seems to be difficult among

students. There are high failure rate among students in introductory programming in higher

learning institution (Suliman et al., 2011; Ribeiro et al., 2014). Although most students are

able to understand reading an existing program, but that does not mean that they are

capable of solving any encountered programming errors during code writing (Swigger and

Wallace, 1988). Many students will encounter difficulty in developing programming logics

in solving a problem. As programming logic is a thinking skill, only continuous practice

and experience of doing problem-solving exercises can develop the skill among the

students.

2

 In leveraging students to practice programming, a lot of automated programming

assessment tools with automated feedbacks have been continuously developed (Ihantola et

al., 2010; Le et al., 2013). From there, students could constructively build up the

programming syntax and logic skills after experiencing some errors and mistakes. Such

feedback messages will be instantly given by a compiler or any automated programming

tools. The feedback is essential in helping students to stimulate both of their conscious and

unconscious knowledge towards a correct program solution in meeting a problem’s

specification (Huitt, 2004).

 However, current practice of the automated feedback is still insufficient to the

novice students, especially when involving problem-solving techniques on a variety of

programming exercises. They still require feedback from an expert to help them to

interpret the automated feedback or rectify their problem-solving based mistakes. The

expert can provide more dynamic feedback contents (what, why and how) and is able to

interact with students in various contexts (when and where). Unfortunately, it seems

difficult for the expert to provide individual feedback for each mistake during the

programming lab exercises, especially when involving with a large group of students. In

most cases, the mistakes or errors during a programming lab are repeated among

individuals that require the expert to repeat the same feedback. Considering this situation,

the feedback from the expert during a lab session could be effectively delivered by

gathering the same programming difficulty into certain groups. This scenario should

warrant for a further research to model an automated programming feedback model that

can incorporate live expert's feedback and assistance during a programming lab session.

This model should also promote an indexing mechanism to associate such expert’s assisted

feedback to be reactivated as a recommended feedback based on a similar difficulty case.

3

1.1 Background

 Researchers have put efforts to automate computer-programming feedback that

would not only cover on the syntax or semantic errors but also the program structure, styles

and performance. Feedbacks are instantly provided via text messages when errors or

mistakes are found in the students' program. However, when it comes to a feedback that is

related to a problem’s specification, it gives more challenges for a feedback to be modelled

as the specification is varies. Thus, many resources are need to be spent especially for the

expert to model a feedback on each set of the specification. It also difficult to predict and

model all the possible feedback’s cases especially when a new problem’s specification

arises. This is due to the automated programming feedback model that is constructed based

on a pre-defined feedback library. All the feedback context and content needs to be

determined prior or after a programming lab execution, but not during the lab execution.

Although the automated feedback model has been effectively used to assist user in

detecting certain programming mistakes, the feedback is still not effective as the expert’s

feedback model especially in the rectifying problem’s specification mistake (Queirós et al.,

2012; Rubio-sánchez et al., 2014). This is some of the limitation of the model that lack of

method to assess the program intention. For example, although rectifying mistake will

relate to the output formatting is easy, most novice students may have difficulties in

rectifying the mistake (Rubio-sánchez et al., 2014; Pieterse, 2013). The automated

feedback usually does not know which part of the program that represents a specific goal

of the problem’s specifications. However, the goal of a program can be assessed by

performing a static analysis to the program. The analysis requires a solution template to be

provided and matched with the program. Then, a goal-based feedback can be specifically

reported based on the discrepancy location of the template and the program.

4

Unfortunately, customising a program debugger such as using the solution template

resource is costly to be built (Tam, 2011). As there are varieties of correct solution

templates that can solve a problem, it is inefficient for the expert to design all the feedback

cases on the different template’s structure. Moreover, in a programming lab exercise,

guiding a correct structure of the program logics among the novice students should be

concerned more than the capability of automated feedback in detecting a mistake (Lee and

Ko, 2011).

 In contrast, the expert’s feedback model does not only capable of alerting a

mistake, but also it can suggest what is missing in answering the problem. Considering

this, the live expert's feedback is still the best feedback model compared to the automated

programming feedback (Rubio-sánchez et al., 2014; Queirós et al., 2012; Mungunsukh and

Cheng, 2002). The expert can provide a more specific feedback to be tailored to a specific

content (what, why and how) based on the students' background. They can also interact in

a more dynamic context (when and where) in assisting students to rectify a programming

problem. Furthermore, continuous guidance and instant feedback by the expert are among

the key factors (Brito and Sá-soares, 2014) in learning how to program a solution. Without

the proper feedback or guidance, students will fail to learn and construct their own

knowledge on programming (Yadin, 2011). Unfortunately, guiding students can be a

challenging task for the expert particularly when it involves many groups of students. It is

also too costly to maintain a continuous interactive feedback with students (Wang et al.,

2012). The expert needs to provide a specific feedback on each student based on a quick

assessment of the student’s computer program. Some of the computer program's

assessment may take a longer time to be analysed, especially when the program's

statements are not well organized. As a result, not many students can be entertained in a

5

programming lab session.

 Considering there are different programming lab sessions that will be using a same

question, a same expert's feedback maybe repeated on a similar mistake made by the other

students. This problem also occurs in the expert’s feedback model of online forum

discussion where there are multiple questions and answers that are duplicated on a same

issue. Furthermore, as the expert is assisted feedback in the electronic forum are not

indexed as a recommender feedback, students are required to self-explore the discussion

contents in seeking a solution to their program’s mistake. This kind of approach is not

suitable for a novice student that may has no clue on the mistake.

 This research is focusing on developing a new model of automated programming

feedback by integrating expert’s assisted feedback into a recommended feedback. This

model is meant to support continuous growth of feedback resources made by the expert in

rectifying students' difficulties during elementary programming exercises. It enhances the

effectiveness of the automated feedback content with the continuous growth of new

expert’s assisted feedback. In order to ease the expert’s analysis in identifying the

programming mistakes on a large group of students, ranking and clustering analysis of

computer program is needed. The analysis will help the expert to extract and select certain

features of the computer programs for automatically recommending the existing feedback

based on a similar association index.

 There are several important areas where this research makes an original

contribution to the body of knowledge and solution to the domain of study. The study aims

to model an automated programming feedback that integrates the expert’s assisted

feedback as a recommended feedback. In realizing the model, contributions are made on

the automated computer program features and ranking-based clustering algorithm for

6

sorting and grouping the computer programs towards correctness level based on their

problem-solving solution acceptability. The research is also contributing to a recommender

system algorithm by proposing a new index mechanism to associate a feedback with a

computer program’s pattern. Hopefully, this research can eventually assist students to self-

rectify their problem-solving based difficulty during a programming lab session without

the need of an expert.

1.2 Problem Statement

 Learning computer programming is one of a compulsory skill for a computer

science student. According to constructivism learning theory, rather than having a

knowledge transmission, one can understand better through his own experience or practice

(Brito and Sá-soares, 2014). Therefore, in order to master the programming skill, lots of

programming exercises need to be practised (Kwiatkowska, 2016). Nowadays, many

automated programming tools are available to help the student in developing a computer

program (Ihantola et al., 2010; Vaessen et al., 2014; Gulwani et al., 2014). A student can

submit a computer program on a problem-solving exercise while the tool will instantly

provide automated feedback to highlight any encountered errors or mistakes during the

compilation or execution of the program. However, when it comes to a mistake that related

to a question specification, current automated feedback is still lacking and insufficient as

compared to the expert's feedback (Pieterse, 2013; Rubio-sánchez et al., 2014). Among the

feedback models are template-based parser, test case automation and intelligent agent.

However, the template-based parser and test case automation requires all the feedback’s

elements to be pre-designed by an expert before a programming lab exercise is conducted

among the students. Meanwhile, the feedback using the intelligent agent tends to be too

