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ABSTRACT 

 

 

Many studies on automated programming assessment tools with automated feedbacks have 
been addressed to assist students rectifying their solution’s difficulty. However, many 
students will depend on an expert's assistance (e.g. expert) to debug their programs towards 
meeting the question's requirements. While several studies have produced feedback on the 
specific need of programming’s question using a static template analysis, there is still a 
lack of an automated programming feedback model that is dynamically enriched through a 
live assisted feedback from an expert. Thus, this research proposed an integrated 
programming feedback model of elementary programming question using assisted and 
recommended approach. The assisted feedback was done by an expert through a similar 
difficulty analysis of computer programs that were grouped together based on their 
difficulty features. The features were proposed to enable ranking among computer 
programs and they were proven to be strongly correlated with the manual ranking of an 
expert's rubric assessment (rs = 0.914, p < 2.2e-16). Meanwhile, similar difficulty groups of 
the computer programs were generated using a K-Means clustering algorithm that was 
enhanced with ranking consideration. This enhancement was evaluated on three ordinal 
datasets on different application domain covering 67 Java programs, 92 students’ marks on 
computer architecture subject and 456 EUFA’s football club coefficient ranking list. The 
results showed that not only a rank cluster representation was achieved, but the purity 
value was also increased by 1%. As the computer programs were clustered based on 
ranking consideration, expert's feedback analysis can be effectively done from worst to 
least for the programs' difficulty. Hence, two kinds of assisted feedbacks were proposed; 
general and specific assisted feedback. These feedbacks were automatically indexed using 
general program features and specific statement pattern rule for automated retrieval on 
general and specific recommended feedbacks respectively. An experiment was executed 
real programming lab dataset that consists of 475 elementary programming answer 
submissions from 67 participants. Expert's assisted feedbacks were provided at the end of a 
program submission. It shows that the technique has successfully clustered 67 computer 
programs into 24 similar groups of programming logic’s mistake. Based on the groups, 
general feedbacks were provided on 6 groups covering 33 programs. Then, by using the 
proposed indexing technique, the same feedback has efficiently recommended to other 148 
programs that are having similar mistakes along the lab session. On the other hand, 7 
specific feedbacks were provided on 7 computer statements’ mistake and were 
recommended to other 64 programs who were having similar statement mistakes along the 
lab session. Thus, the proposed technique can effectively help the expert providing 
continuous and dynamic feedback in rectifying logic’s requirement of a problem. 
Unfortunately, the model is not suitable for complex programming question where their 
solution logics can be diversified. However, future work on the automatic extraction of 
acceptable program answer as a solution template may solve such limitation. 
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ABSTRAK 

 

 

Banyak kajian telah dibuat untuk membangunkan alatan sokongan bagi automasi 
maklumbalas penyelesaian bagi kesilapan aturcara yang dibuat oleh pelajar. Namun, 
pelajar masih memerlukan bantuan guru untuk mengenalpasti kesilapan berkaitan dengan 
keperluan spesifik sesuatu soalan. Walaupun terdapat banyak kajian dalam mengautomasi 
maklumbalas berkaitan keperluan sesuatu soalan menggunakan kaedah analisa skima 
jawapan, model yang mampu mengautomasi dan mengindek maklumbalas langsung 
daripada pakar masih belum diteroka sepenuhnya. Sehubungan itu, penyelidikan ini 
mengkaji model maklumbalas bagi soalan pengaturcaraan melalui pendekatan integrasi 
maklumbalas bantuan pakar dan maklumbalas saranan. Maklumbalas bantuan tersebut 
dibuat melalui analisa kesukaran membangunkan aturcara yang dikumpul mengikut ciri 
persamaan berdasarkan skema arahan komputer. Apabila ciri persamaan yang 
dicadangkan ini digunakan dalam menghasilkan penarafan pada 67 aturcara komputer, 
didapati ia mempunyai korelasi yang tinggi terhadap laporan penarafan yang dibuat 
menggunakan penilaian rubrik oleh pakar (rs = 0.914, p < 2.2e-16). Sementara itu, 
pengumpulan aturcara berdasarkan ciri tersebut telah dibuat menggunakan teknik K-
Means yang ditambahbaik dengan elemen penarafan. Tiga set data ordinal daripada 
domain aplikasi berlainan telah diuji menggunakan teknik tersebut meliputi 67 aturcara 
Java, 92 markah pelajar bagi subjek senibina komputer dan 456 senarai kedudukan kelab 
bolasepak EUFA. Eksperimen menunjukan bukan sahaja perwakilan kluster bertaraf dapat 
dicapai, malah analisis nilai purity juga menunjukkan peningkatan sebanyak 1%. Dengan 
adanya elemen penarafan dalam teknik pengklusteran, ia membolehkan analisa untuk 
sesuatu maklumbalas difokuskan daripada kumpulan aturcara yang paling banyak kepada 
yang paling kurang bermasalah. Maklumbalas bantuan pakar ini meliputi maklumbalas 
bantuan umum dan bantuan khusus. Ia diindek menggunakan jarak cirian aturcara dan 
penapisan pernyataan yang digunakan untuk menghasilkan automasi maklumbalas 
dikenali sebagai maklumbalas saranan umum dan khusus. Eksperimen telah dilaksanakan 
menggunakan data yang mengandungi 475 jawapan daripada 67 peserta dalam makmal 
pengaturcaraan. Maklumbalas pakar telah disediakan di akhir penghantaran jawapan 
aturcara. Teknik ini telah berjaya mengumpulkan 67 aturcara kepada 24 kumpulan yang 
mempunyai kesilapan logik. Maklumbalas umum telah diberikan hanya kepada 6 
kumpulan meliputi 33 aturcara. Ia telah disarankan kepada 148 aturcara lain yang 
mempunyai kesilapan yang sama sepanjang pelaksanaan sesi makmal tersebut. Selain itu, 
7 maklumbalas khusus diberikan pada 7 kesilapan pernyataan komputer dan berjaya 
disarankan kepada 64 aturcara lain. Oleh itu, teknik ini berkesan membantu pakar 
menyediakan maklumbalas berterusan dan dinamik dalam mengenalpasti keperluan logik 
bagi satu permasalahan. Walaubagaimanapun, model ini tidak sesuai untuk digunakan 
pada soalan yang melibatkan logik yang kompleks. Namun, kekangan ini dapat diatasi 
melalui kajian mendatang dalam pengekstrakan automatik aturcara jawapan yang betul 
sebagai templet penyelesaian.  
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CHAPTER 1 

INTRODUCTION 

1.0 Motivation 

 A new plan for 2015-2020 higher education development was launched to produce 

graduates who are able to think critically and innovatively with problem-solving initiatives 

and an entrepreneurial mindset. As for ICT graduates, computer programming is one of the 

core subjects that could grant these skills and attributes (Taheri et al., 2015). In many 

examples, those who are very competent in programming tend to write their own computer 

programs and eventually able to earn some cash on their own efforts. On the other hand, as 

mentioned by Cyberjaya’s chairman, Tan Sri Mustapha Kamal, it is expected that 120,000 

of the workforce in ICT with critical thinking skills  from 2020 onwards (Azura, 2013).  

 Unfortunately, learning computer programming seems to be difficult among 

students. There are high failure rate among students in introductory programming in higher 

learning institution (Suliman et al., 2011; Ribeiro et al., 2014). Although most students are 

able to understand reading an existing program, but that does not mean that they are 

capable of solving any encountered programming errors during code writing (Swigger and 

Wallace, 1988). Many students will encounter difficulty in developing programming logics 

in solving a problem. As programming logic is a thinking skill, only continuous practice 

and experience of doing problem-solving exercises can develop the skill among the 

students. 
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 In leveraging students to practice programming, a lot of automated programming 

assessment tools with automated feedbacks have been continuously developed (Ihantola et 

al., 2010; Le et al., 2013). From there, students could constructively build up the 

programming syntax and logic skills after experiencing some errors and mistakes. Such 

feedback messages will be instantly given by a compiler or any automated programming 

tools. The feedback is essential in helping students to stimulate both of their conscious and 

unconscious knowledge towards a correct program solution in meeting a problem’s 

specification (Huitt, 2004).  

 However, current practice of the automated feedback is still insufficient to the 

novice students, especially when involving problem-solving techniques on a variety of 

programming exercises. They still require feedback from an expert to help them to 

interpret the automated feedback or rectify their problem-solving based mistakes. The 

expert can provide more dynamic feedback contents (what, why and how) and is able to 

interact with students in various contexts (when and where). Unfortunately, it seems 

difficult for the expert to provide individual feedback for each mistake during the 

programming lab exercises, especially when involving with a large group of students. In 

most cases, the mistakes or errors during a programming lab are repeated among 

individuals that require the expert to repeat the same feedback. Considering this situation, 

the feedback from the expert during a lab session could be effectively delivered by 

gathering the same programming difficulty into certain groups. This scenario should 

warrant for a further research to model an automated programming feedback model that 

can incorporate live expert's feedback and assistance during a programming lab session. 

This model should also promote an indexing mechanism to associate such expert’s assisted 

feedback to be reactivated as a recommended feedback based on a similar difficulty case. 
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1.1 Background 

 Researchers have put efforts to automate computer-programming feedback that 

would not only cover on the syntax or semantic errors but also the program structure, styles 

and performance. Feedbacks are instantly provided via text messages when errors or 

mistakes are found in the students' program. However, when it comes to a feedback that is 

related to a problem’s specification, it gives more challenges for a feedback to be modelled 

as the specification is varies. Thus, many resources are need to be spent especially for the 

expert to model a feedback on each set of the specification. It also difficult to predict and 

model all the possible feedback’s cases especially when a new problem’s specification 

arises. This is due to the automated programming feedback model that is constructed based 

on a pre-defined feedback library. All the feedback context and content needs to be 

determined prior or after a programming lab execution, but not during the lab execution.  

Although the automated feedback model has been effectively used to assist user in 

detecting certain programming mistakes, the feedback is still not effective as the expert’s 

feedback model especially in the rectifying problem’s specification mistake (Queirós et al., 

2012; Rubio-sánchez et al., 2014). This is some of the limitation of the model that lack of 

method to assess the program intention. For example, although rectifying mistake will 

relate to the output formatting is easy, most novice students may have difficulties in 

rectifying the mistake (Rubio-sánchez et al., 2014; Pieterse, 2013). The automated 

feedback usually does not know which part of the program that represents a specific goal 

of the problem’s specifications. However, the goal of a program can be assessed by 

performing a static analysis to the program. The analysis requires a solution template to be 

provided and matched with the program. Then, a goal-based feedback can be specifically 

reported based on the discrepancy location of the template and the program.  
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Unfortunately, customising a program debugger such as using the solution template 

resource is costly to be built (Tam, 2011). As there are varieties of correct solution 

templates that can solve a problem, it is inefficient for the expert to design all the feedback 

cases on the different template’s structure. Moreover, in a programming lab exercise, 

guiding a correct structure of the program logics among the novice students should be 

concerned more than the capability of automated feedback in detecting a mistake (Lee and 

Ko, 2011). 

 In contrast, the expert’s feedback model does not only capable of alerting a 

mistake, but also it can suggest what is missing in answering the problem. Considering 

this, the live expert's feedback is still the best feedback model compared to the automated 

programming feedback (Rubio-sánchez et al., 2014; Queirós et al., 2012; Mungunsukh and 

Cheng, 2002). The expert can provide a more specific feedback to be tailored to a specific 

content (what, why and how) based on the students' background. They can also interact in 

a more dynamic context (when and where) in assisting students to rectify a programming 

problem. Furthermore, continuous guidance and instant feedback by the expert are among 

the key factors (Brito and Sá-soares, 2014) in learning how to program a solution. Without 

the proper feedback or guidance, students will fail to learn and construct their own 

knowledge on programming (Yadin, 2011). Unfortunately, guiding students can be a 

challenging task for the expert particularly when it involves many groups of students. It is 

also too costly to maintain a continuous interactive feedback with students (Wang et al., 

2012). The expert needs to provide a specific feedback on each student based on a quick 

assessment of the student’s computer program. Some of the computer program's 

assessment may take a longer time to be analysed, especially when the program's 

statements are not well organized. As a result, not many students can be entertained in a 
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programming lab session. 

 Considering there are different programming lab sessions that will be using a same 

question, a same expert's feedback maybe repeated on a similar mistake made by the other 

students. This problem also occurs in the expert’s feedback model of online forum 

discussion where there are multiple questions and answers that are duplicated on a same 

issue. Furthermore, as the expert is assisted feedback in the electronic forum are not 

indexed as a recommender feedback, students are required to self-explore the discussion 

contents in seeking a solution to their program’s mistake. This kind of approach is not 

suitable for a novice student that may has no clue on the mistake. 

 This research is focusing on developing a new model of automated programming 

feedback by integrating expert’s assisted feedback into a recommended feedback. This 

model is meant to support continuous growth of feedback resources made by the expert in 

rectifying students' difficulties during elementary programming exercises. It enhances the 

effectiveness of the automated feedback content with the continuous growth of new 

expert’s assisted feedback. In order to ease the expert’s analysis in identifying the 

programming mistakes on a large group of students, ranking and clustering analysis of 

computer program is needed. The analysis will help the expert to extract and select certain 

features of the computer programs for automatically recommending the existing feedback 

based on a similar association index. 

 There are several important areas where this research makes an original 

contribution to the body of knowledge and solution to the domain of study. The study aims 

to model an automated programming feedback that integrates the expert’s assisted 

feedback as a recommended feedback. In realizing the model, contributions are made on 

the automated computer program features and ranking-based clustering algorithm for 
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sorting and grouping the computer programs towards correctness level based on their 

problem-solving solution acceptability. The research is also contributing to a recommender 

system algorithm by proposing a new index mechanism to associate a feedback with a 

computer program’s pattern. Hopefully, this research can eventually assist students to self-

rectify their problem-solving based difficulty during a programming lab session without 

the need of an expert. 

 

1.2 Problem Statement 

 Learning computer programming is one of a compulsory skill for a computer 

science student. According to constructivism learning theory, rather than having a 

knowledge transmission, one can understand better through his own experience or practice 

(Brito and Sá-soares, 2014). Therefore, in order to master the programming skill, lots of 

programming exercises need to be practised (Kwiatkowska, 2016). Nowadays, many 

automated programming tools are available to help the student in developing a computer 

program (Ihantola et al., 2010; Vaessen et al., 2014; Gulwani et al., 2014). A student can 

submit a computer program on a problem-solving exercise while the tool will instantly 

provide automated feedback to highlight any encountered errors or mistakes during the 

compilation or execution of the program. However, when it comes to a mistake that related 

to a question specification, current automated feedback is still lacking and insufficient as 

compared to the expert's feedback (Pieterse, 2013; Rubio-sánchez et al., 2014). Among the 

feedback models are template-based parser, test case automation and intelligent agent. 

However, the template-based parser and test case automation requires all the feedback’s 

elements to be pre-designed by an expert before a programming lab exercise is conducted 

among the students. Meanwhile, the feedback using the intelligent agent tends to be too 




