

Faculty of Electronic and Computer Engineering

NOVEL FRAMEWORK FOR AUTOMATED APPLIANCE REGISTRATION IN HOME ENERGY MANAGEMENT SYSTEMS

Daphne Tang Hui Zyen

Master of Science in Electronic Engineering

2016

NOVEL FRAMEWORK FOR AUTOMATED APPLIANCE REGISTRATION IN HOME ENERGY MANAGEMENT SYSTEMS

DAPHNE TANG HUI ZYEN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronics and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this thesis entitle "Novel Framework for Automated Appliance Registration in Home Energy Management Systems" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature	:	
Supervisor Name	:	
Date	:	

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved parents and siblings

ABSTRACT

Studies in home energy management systems (HEMS) have been focused in improving its monitoring and control capabilities to help user conserve electricity. Depending on its system features, HEMS are shown to be capable of conserving more than 12% electricity annually. As an improvement strategy, appliance recognition technology was later integrated into HEMS to enhance the usability of these systems. Appliance recognition allowed HEMS to identify home appliances based on the unique power signatures of appliances instead of pre-configured plug locations. This meant that the system can identify registered appliances when operated at different outlets around the premise. Such system capability facilitated better study of user behavior and enhances the accuracy of load demand analysis provided to users. With accurate usage statistics, HEMS can thus provide better load demand optimization suggestions/advices. However, time consuming training procedures required for appliance recognition solutions prevents real adaptation of such systems. As a solution, this study applies One-Class Support Vector Machine (OCSVM) for automated reasoning of the HEMS in identifying unregistered appliances to eliminate the manual procedures needed for appliance training. A proposed design of the framework required for automation is also presented in this study. The performance of OCSVM was evaluated with by varying 4 eigenvector based feature extraction methods; namely, Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Weighted PCA (WPCA), and Independent Component Analysis (ICA). Evaluation of raw and normalized appliance signatures were also performed during feature extraction stages to study how normalizing data can affect recognition classification accuracy of the OCSVM model. Ten different appliance profiles were used in the experiments and OCSVM was shown to work best with NR-PCA feature extraction method using raw appliance profiles. The method achieved 100% Precision and 83.5% Recall in detecting unregistered appliances through leave-one-out cross validation and acquired an F(1)-score of 97.50%. The result acquired showed strong positive relationship based on analysis of Matthews Correlation Coefficient. Methods used in this study show promising results towards the development of fully automated smart HEMS.

ABSTRAK

Kajian berkenaan dengan sistem pengurusan tenaga rumah (HEMS) telah lama ditumpukan dari segi penambahbaikan fungsi pemantauan dan pengawalan perkakas elektrik demi penjimatan tenaga elektrik. Bergantung kepada ciri-ciri yang ada pada sistem HEMS, ia mampu mengurangkan lebih daripada 12% tenaga elektrik setiap tahun. Bagi meningkatkan lagi kualiti kebolehgunaan sistem tersebut, teknologi pengecaman perkakas elektrik telah disepadukan ke dalam HEMS. Pengecaman perkakas elektrik ini penting untuk mengenal pasti jenis perkakas rumah melalui ciri-ciri isyarat elektrik tersendiri dan bukannya berdasarkan lokasi yang didaftar dalam sistem. Ini bermakna bahawa sistem tersebut boleh mengenal pasti identiti perkakas yang dipasangkan di dalam rumah secara automatik. Keupayaan ini membolehkan sistem HEMS memantau tingkah laku penggunaan sesebuah perkakas elektrik di mana ia akan meningkatkan ketepatan analisis terhadap permintaan beban elektrik yang diperlukan oleh pengguna. Dengan statistik penggunaan yang tepat, HEMS ini boleh memberikan cadangan/nasihat yang bersesuaian dengan cara penggunaan perkakas elektrik. Walaubagaimanapun, pengecaman perkakas elektrik masih tidak digunapakai dalam sistem HEMS komersial hari ini atas sebab masa yang lama diperlukan untuk mendaftar semua perkakas-perkakas elektrik. Dalam kajian ini, kaedah 'One-Class Support Vector Machine' (OCSVM) digunakan untuk mengecam perkakas elektrik yang belum didaftar dalam HEMS sistem secara automatik. Di samping itu, rangka kerja yang diperlukan untuk membenarkan pendaftaran perkakas elektrik rumah ini juga diperkenalkan. Sistem yang dicadangkan tersebut dinilai berdasarkan prestasi OCSVM dalam membezakan sepuluh perkakas elektrik. Empat kaedah penvarian sifat vektor eigen iaitu, Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Weighted PCA (WPCA), dan Independent Component Analysis (ICA) digunakan dalam proses penilaian tersebut. Akhir sekali, penilaian juga dilakukan untuk membandingkan penggunaan isyarat elektrik perkakas yang asal dengan isyarat yang diproses menggunakan kaedah penormalan. Sepuluh perkakas elektrik telah digunakan dalam kajian ini dan OCSVM memerolehi keputusan terbaik dengan kaedah NR-PCA. Kaedah ini berjaya mencapai 100% kadar Ketepatan dan 83.5% kadar Pengingatan dalam pengecaman perkakas baru. keputusan ini telah diperolehi melalui cara pengesahan tinggal-luar-satu dan mencatatkan nilai F(1)-skor sebanyak 97.50%. Hasil kajian ini menunjukkan hubungan positif yang kukuh berdasarkan analisis Korelasi Pekali Matthews. Hasil penemuan kajian ini membolehkan pembangunan HEMS pintar vang berfungsi secara automatik.

ACKNOWLEDGEMENTS

First and foremost, I wish to say my sincere acknowledgement to my supervisor Dr. Soo Yew Guan from the Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his utmost support and encouragement towards the completion of this thesis. I would also like to express gratitude towards my co-supervisor, Professor Dr. Abdul Rani Bin Othman and Engr. Ranjit Singh Sarban Singh for their guidance and support for me to enhance the quality of this research. This thesis would not be completed without the help of many individuals who have contributed in many different ways at different times. They provide their thoughts, ideas, valuable suggestions and constructive criticisms that made this thesis what it is today from inception until successful completion. Special thanks to MyBrain UTeM for providing me with financial support throughout the period of this project. Also, I would like to take this opportunity to express my gratitude and heartfelt thanks to UTeM for offering me a scholarship and financial support to allow me to complete this thesis. Last but not least, I wish to express my endless gratitude to my family in particular my beloved mom and dad, together with all my four siblings for their invaluable company, encouragement and their continuous moral support throughout the course of my work. Without their support and love, it would have been impossible for me to complete this research.

TABLE OF CONTENTS

DE	CLAR	ATION	
AP	PROV	AL	
DE	DICA	ΓΙΟΝ	
AB	STRA	СТ	i
AB	STRA	K	ii
AC	KNOV	VLEDGEMENTS	iii
ТА	BLE C	DF CONTENTS	iv
LIS	ST OF	TABLES	vii
LIS	ST OF	FIGURES	viii
LIS	ST OF	ABBREVIATIONS	xi
LIS	ST OF	APPENDICES	xiv
LIS	ST OF	PUBLICATIONS	XV
СН	ілртғ	P	
1	INTI	RODUCTION	1
	1.1	Introduction to Home Energy Management Systems	1
	1.2	Background	3
	1.3	Problem Statement	7
	1.4	Research Objectives	10
	1.5	Scope of Research	10
	1.6	Contributions	11
	1.7	Thesis Organization	11
2	LITI	ERATURE REVIEW	14
_	2.1	Introduction	14
	2.2	Types of Appliances	14
		2.2.1 Resistive	15
		2.2.2 Capacitive	16
		2.2.3 Inductive	17
	2.3	Appliance Load Types	18
		2.3.1 Linear Loads	18
		2.3.2 Non-linear Loads	19
	2.4	Components in a Home Energy Management System	20
		2.4.1 Sensor Node Structure	20
		2.4.2 Sensor	21
		2.4.3 Microcontroller	24
		2.4.4 Relay	24
		2.4.5 Transceiver	25
		2.4.6 Network Structure	26
		2.4.7 User Interaction Interface	27
	2.5	System Functionality	28
		2.5.1 Passive Response	29
		2.5.2 Active Response	29
	2.6	Appliance Recognition Technology	30
		2.6.1 Single Sensor Monitoring Systems	31
		2.6.1.1 Non-Intrusive Load Monitoring Systems	32

2.6.1.1 Non-Intrusive Load Monitoring Systems

		2.6.1.2 Derived NILM Systems	41
		2.6.1.3 Limitation of Single Sensor Systems	45
		2.6.2 Multi sensor Monitoring Systems	46
		2.6.2.1 Limitations of Multi sensor Monitoring System	51
	2.7	Automation of Appliance Registration in HEMS	56
	2.8	One-class Classification	59
	2.9	Support Vector Machine	61
		2.9.1 Linear Kernel	64
		2.9.2 Polynomial Kernel	65
		2.9.3 Sigmoid Kernel	66
		2.9.4 Gaussian Radial Basis Function Kernel	67
	2.10	Kernel Selection for OVSVM	70
	2.11	Chapter Summary	70
3	MET	HODOLOGY	73
	3.1	Introduction	73
	3.2	LIBSVM	73
	3.3	Feature Extraction	74
		3.3.1 Principal Component Analysis	76
		3.3.2 Weighted Principal Component Analysis	78
		3.3.3 Linear Discriminant Analysis	78
		3.3.4 Independent Component Analysis	79
	3.4	Appliance Data Acquisition	80
	3.5	Data Organization	83
	3.6	Data Preprocessing	85
		3.6.1 Normalization of Current Waveform	85
		3.6.2 Feature Extraction Process	85
	3.7	Training and Validation of OCSVM	88
	3.8	Performance Index	90
	3.9	Chapter Summary	93
4	RESU	JLTS AND DISCUSSION	95
	4.1	Introduction	95
	4.2	Framework for Detection of Unregistered Appliances	95
		4.2.1 Hardware Requirements	95
		4.2.2 Smart Plug Logic Design	98
		4.2.3 Server Framework and Operation	101
	4.3	Detection of Unregistered Appliances using OCSVM	106
		4.3.1 Appliance Data Sampling	106
		4.3.2 Feature Extraction	107
		4.3.3 OCSVM Model Training	110
		4.3.4 OCSVM Classification Results	112
	4.4	Discussion	119
		4.4.1 Classifying Normalized and Raw Profiles	119
		4.4.2 Effects of γ Value on Performance	121
		4.4.3 Consistency and Size of Scatter Patterns	122
		4.4.4 Performance Analysis based on Number of Components	123
	4.5	Chapter Summary	126

5 CONCLUSION AND FUTURE RECOMMENDATIONS		127
5.1	Conclusion	127
5.2	Limitations of Research	129
5.3	Future recommendations	129
REFER	ENCES	131
APPENI	DIX A	147
APPENI	DIX B	157

LIST OF TABLES

TABLE

TITLE

PAGE

1.1	Consumption Figures from 3 Year Study	7
2.1	Comparison of Linear and Non-linear loads	19
2.2	Comparison of Current Sensing Technologies	23
2.3	Top 10 Relevant Features by Information Gain	51
2.4	Summary of Appliance Recognition Implementation in NILM	54
	Systems	
2.5	Summary of Appliance Recognition Implementation in Intrusive	55
	Systems	
2.6	Comparison of SVM Kernels	69
3.1	Comparison of Feature Extraction Methods	80
3.2	Appliance Information	82
3.3	Feature Extraction Acronym	86
3.4	Experiment Runs Using LOO-CV Method	90
3.5	Explanation for Matthews Correlation Coefficient Values	93
4.1	Result Deduction from Main and Secondary Classifier	104
4.2	Relation of Eigenvalues to Eigenvectors	108
4.3	Description of Training Function Syntax	110
4.4	Description of Prediction Function Syntax	112
4.5	Performance Index at Optimized γ	115
4.6	Performance Comparison on Number of Components at $\gamma = 2$	124

LIST OF FIGURES

FIGURE

TITLE

PAGE

1.1	Review of annual average household power savings according to	2
	HEMS feedback	
1.2	Hunt's master and slave energy monitoring design	3
1.3	Energy usage display in Hunt's master unit	4
1.4	Energy management system in a smart grid	4
2.1	Part of an Akita Microwave oven electrical circuit	15
2.2	Voltage in phase with current	16
2.3	VI Phase of Capacitive Appliances	17
2.4	VI Phase of Inductive Appliances	18
2.5	Current waveforms of Linear vs Non-linear load	19
2.6	Components in a home energy management system	20
2.7	Block diagram of a sensor node	21
2.8	Schematic of HCPL3700 Optocoupler	22
2.9	Intefacing AC and DC Voltages from HCPL3700 to MCU units	23
2.10	Mechanical relay	25
2.11	Zigbee network structure	26
2.12	DEHEMS graphical user interface design	28
2.13	Example power consumption of a residential home through a single	32
2.14	Event detection based on real power measured in NILM system	33
2.15	Top: Power drawn with ON event of a lamp. Bottom: Power drawn	33
	with ON event of an air conditioner	
2.16	Edge Detection Module	34
2.17	Appliance recognition framework by Chang H. H. et al. (2011)	35

2.18	Flowchart of Genetic Algorithm by Chang H. H. et al. (2011)	37
2.19	Sequence signatures of appliances	38
2.20	Typical operation hours of appliances on a weekend	39
2.21	Electrical wiring in North America residences	39
2.22	Training and classifying flowchart of the Bayesian NILM algorithm	42
	by Marchiori et al. (2011)	
2.23	Estimated and actual power of the LCD and fan	42
2.24	Multi-layer decision framework with acoustic sensing	43
2.25	EMF sensor aided NILM platform	44
2.26	Architecture of an intrusive monitoring system	47
2.27	Bit-watt energy management system	48
2.28	Main modules in Bit-Watt system	49
2.29	Appliance recognition process diagram	50
2.30	Accuracy trend of k-NN versus GMMs model for detection of	58
	unseen appliances by Ridi et al. (2013)	
2.31	ROC curve for classification of unregistered appliances by Kato et	58
	al. (2009)	
2.32	Performance of OCC versus Binary Classifiers	60
2.33	Taxonomy of OCC Techniques	61
2.34	Data non-separable using linear methods	62
2.35	Visualization of SVM with Polynomial Kernel	63
2.36	Decision boundary with Polynomial Kernel	63
2.37	Linearly separable data	64
2.38	Linear kernel used on non-linear or circular dataset	65
2.39	Decision boundary of classifier via tightness detecting	68
2.40	Decision boundary of classifier via geometric interpretation	68
2.41	Decision boundary of classifier via statistics optimization	69
3.1	Dimensionality reduction through feature extraction	75
3.2	Principal Component Analysis	77
3.3	Linear Discriminant Analysis	79
3.4	Electronic Oscilloscope by Analog Discovery	81
3.5	Graph of Appliance Power Rating Versus RMS Current	83
3.6	Sample format and dataset arrangement	84

3.7	Data organization procedure	84
3.8	Feature extraction	86
3.9	Training and Validation of OCSVM Model	89
4.1	System Configuration in Home Environment	96
4.2	System Process Block Diagram	97
4.3	Smart Plug Operation Part 1	99
4.4	Smart Plug Operation Part 2	100
4.5	Main Server Operation	102
4.6	Server Operation – Secondary Classifier	103
4.7	Server Operation – Main Classifier	105
4.8	Acquired Appliance Profiles	106
4.9	Truncated Appliance Profiles	107
4.10	Histogram with Distribution Fit of First PCA Component	109
4.11	Histogram with Distribution Fit of Second PCA Component	109
4.12	Comparison of 'nu' Value on Data Fitting	111
4.13	LIBSVM Cross-validation for selection of γ value	113
4.14	Evaluation of γ value for 'R' FE-variants	113
4.15	Evaluation of γ value for 'N' FE-variants	114
4.16	Evaluation of γ value for 'NR' FE-variants	114
4.17	PI Response Chart	116
4.18	NR-PCA Cross Validation Performance Breakdown at $\gamma = 2$	116
4.19	NR-LDA Cross Validation Performance Breakdown at $\gamma = 8$	117
4.20	R-LDA Cross Validation Performance Breakdown at $\gamma = 2$	117
4.21	N-ICA Feature Map	120
4.22	Misclassification caused by Overlapping Scatters in N-ICA	120
4.23	NR-PCA Feature Map	121
4.24	Comparison between tight and loose boundaries in R-PCA feature	122
4.25	Comparison of Scatter Size for Low and High Powered Appliance	123
4.26	PI Response chart at $n = 2$	125
4.27	PI Response Chart at $n = 3$	125

LIST OF ABBREVIATIONS

1	Alternating Current
K A	Acknowledge
C A	Analog to Digital Converter
C A	Average Energy Consumption
A	Artificial Intelligence
N A	Artificial Neural Network
A	Appliance Recognition
CU C	Communication and Energy Care Units
Ι	Direct Current
W I	Dynamic Time Warping
Ε	Edge Counts
Ε	Euclidean distance
PROM E	Electrically Erasable Programmable Read-Only Memory
F E	Electromagnetic Field
F	Feature Extraction
AR F	Feature Fused Appliance Recognition
BE F	Frequency Filtered Band Energies
È F	Fast Fourier Transform
MM F	Factorial Hidden Markov Model
F	False Negative
F	False Positive
(Genetic Algorithm
G (Green House Gas
M C	Gaussian Mixture Model
	Grev Relational Analysis
A (
M (Gaussian Mixture Model Grev Relational Analysis

HEMS	Home Energy Management System
HMM	Hidden Markov Models
HP	Horse Power
HW	Hamming window
IC	Integrated Circuit
ICA	Independent Component Analysis
IFFT	Inverse Fast Fourier Transform
ILM	Intrusive Load Monitoring
IV	Current-Voltage
k-NN	k-Nearest Neighbor
LCD	Liquid Crystal Display
LDA	Linear Discriminant Analysis
LOO-CV	Leave-One-Out Cross Validation
LpO-CV	Leave-p-Out Cross Validation
MAP	Maximum A Posteriori
MCC	Matthew Correlation Coefficient
MCU	Microcontroller
MDL	Multi-Interval Discretization
MFCC	Mel Frequency Cepstral Coefficient
MFNN	Multi-layer Feed-forward Neural Network
MLP	Multilayer Perceptron
NC	Normally Closed
NSGA-II	Non-dominated Sorting Genetic Algorithm-II
NILM	Non-Intrusive Load Monitoring
OCC	One-Class Classification
OCSVM	One-Class Support Vector Machine
Р	Real Power
PAN	Personal Area Network
PCC	Pearson Correlation Coefficient
PEC	Percentage Energy Consumption
PLC	Power Line Carrier
Q	Reactive Power
RBF	Radial Basis Function

REDD	Reference Energy Disaggregation Dataset
RMS	Root Mean Square
ROC	Receiver Operating Characteristic
SSR	Solid State Relay
SVD	Singular Value Decomposition
SVM	Support Vector Machines
TFB	Triangular Filter Bank
TN	True Negative
ТР	True Positive
WPCA	Weighted Principal Component Analysis

xiii

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
А	MATLAB Simulation		147
В	Simulation Results		157

xiv

LIST OF PUBLICATIONS

INDEX

TITLE

- 1 Daphne H.Z. Tang and Yewguan Soo, 2014. Developing User Centric HEMS through Automated Appliance Recognition Framework, JTEC Journal of Telecommunication Electronic and Computer Engineering (Q4), Vol. 6, No. 2.
- Daphne H.Z. Tang, A. Rani Othman, S. S. S. Ranjit, and Yewguan Soo, 2013.
 Design of a New User Centric Home Energy Management System, 2013, IEEE
 Conference on Systems, Process & Control (ICSPC), December 2013, pp. 57-61.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Back in the early 80s, home energy monitoring systems were developed with hopes to encourage power saving in domestic homes. Installation of the system allowed detailed monitoring of electrical power consumption within a premise. These systems were designed to provide disaggregated usage data to allow better understanding of power wastages so that users are aware of their expenditures and may learn to conserve electricity.

As the basis platform of home automation systems were similar to those of home energy monitoring systems, combination of these two systems were widely implemented and were later known as home management systems (HEMS). Unlike early monitoring systems, HEMS provide additional functionality to control the power supply of the monitored plug outlet. As various advancements were later introduced into HEMS, effects of the advancements were questioned by researchers and various studies were performed to realize the actual impact of these systems when installed in real households.

A meta-review of systems up to 2010 as shown in Figure 1.1 revealed that an average of 4 to 12% of power consumption in a domestic home can be reduced with help from HEMS. While this figure may improve with persistent feedback over time, it also revealed how certain features in HEMS may improve the achievable power savings of these systems (Martinez E., 2010). Nonetheless, such systems still required passive

response from users, relying completely on users' actions to modify their behavior in order to conserve power. In this modern world, such actions are often considered troublesome, possibly causing power conservation interests to fade over time.

Figure 1.1: Review of annual average household power savings according to HEMS feedback (Martinez E., 2010)

Statistics by the World Nuclear Association records that electricity production caters up to approximately 37% of greenhouse gas (GHG) emitted into the atmosphere. This contributes to a release of around 10 gigatonnes of GHG from electricity production alone; with expected increase in electricity production of up to 14% by 2035 (Anon n.d., 2015). Out of the total electricity produced, 40% of it is used to power residential and commercial buildings. GHG affects the earth atmosphere whereby high concentration of it depletes the ozone layer, resulting in global warming. By instilling power conservation awareness at a domestic level, its effects could be spread widely across all line of work.

HEMS address these issues by providing power consumption feedback to users and helping users identify wastages while offering advises to conserve power.

1.2 Background

The earliest HEMS was developed using master-slave protocols through power-line carrier (PLC) communication where the master unit can be plugged into any outlet in the house while the slave units were installed as intermediates between the appliances and the power outlet (Hunt et al., 1986). Power consumption data were updated every 10 minutes and may be observed through the master unit in form of daily and monthly bar graphs or in tabular formats. The slave units were designed with relays and can be commanded through PLC by the master unit to turn on or off its load. To reduce cost, only the master unit is built with non-volatile memory to store all consumption data even during power outages.

(a) Master Unit

(b) Slave unit

Figure 1.2: Hunt's master and slave energy monitoring design

(a) Time and temperature (b) Monthly bar graph

Figure 1.3: Energy usage display in Hunt's master unit

Back then, researchers were more concerned with development costs and there were various technological limitations to improving the systems design. The flourishing of inexpensive Internet and wireless technologies today allows realization of various design ideas by system researchers to create and command conclusive studies on factors affecting the reliability of these systems in real-life situations. Rapid advancement in sensornet (networked sensors) research from the past decade has allowed more comprehensive understanding toward underlying problems of past HEMS designs to create systems that are more deployable into real-life scenarios.

Figure 1.4: Energy management system in a smart grid (Aman, 2013)

4