

Faculty of Electronic and Computer Engineering

BRAIN LESION SEGMENTATION AND CLASSIFICATION USING DIFFUSION-WEIGHTED IMAGING (DWI)

Ayuni Fateeha Binti Muda

Master of Science in Electronic Engineering

2016

BRAIN LESION SEGMENTATION AND CLASSIFICAATION USING DIFFUSION-WEIGHTED IMAGING (DWI)

AYUNI FATEEHA BINTI MUDA

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

DECLARATION

I declare that this thesis entitle "Brain Lesion Segmentation And Classification Using Diffusion-Weighted Imaging (DWI)" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:	
Name	:	AYUNI FATEEHA BINTI MUDA
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature	:	
Name	:	DR. NORHASHIMAH BINTI MOHD SAAD
Date	:	

DEDICATION

To my beloved family especially my husband; Mohd Hafiz Bin Sulaiman ,my mother; Rohani Binti Abd Rahman, my late father; Muda Bin Jusoh, my father and mother in law; Saliah Binti Ghani and Sulaiman Bin Liudin and my siblings; Norliza Binti Muda, Mohd Nazroi Shukri, Normuslim, Nor Armiza, Adly Hisham, Mohd Aiman and Aishah Masturah, Nurul Asyikin, Mohd Yazid and Nurul Amirah Nadhira.

ABSTRACT

Research and development of brain detection and diagnosis system for brain disorder based on Magnetic Resonance Imaging (MRI) have become one of the most common interest in the past few years. Out of various MRI techniques, Diffusion-Weighted Imaging (DWI) remains the most accurate technique for early detection and discrimination of several brain lesions such as stroke. This study proposed the image analysis technique for automatically segmenting and classifying abnormal lesion structures from DWI. Four lesions namely acute stroke, chronic stroke, solid tumor and necrosis were analyzed. The proposed analysis framework were pre-processing, segmentation, features extraction and classification. Four different segmentation techniques were proposed based on Thresholding with Morphological Operation (TMO), Fuzzy C-Means (FCM), Fuzzy C-Means with Active Contour (FCMAC) and Fuzzy C-Means with Correlation Template (FCMCT) to segment the lesion's region. Next, the statistical parameters from spatial and wavelet transforms were extracted from the Region of Interest (ROI) as features. These features were classified using a rule-based classifier for automatic classification. The results indicate that FCMCT offered the best performance for Jaccard Index, Dice Index, False Positive Rate and False Negative Rate which were 0.6, 0.73, 0.19 and 0.2 respectively. The overall accuracy, sensitivity and specificity for the classification were 89 %, 86 % and 96 %. In conclusion, the proposed hybrid analysis has the potential to be explored as a computer-aided tool to detect and diagnose of human brain lesion.

ABSTRAK

Sejak beberapa tahun ini, pembangunan dan penyelidikan tentang pengesanan dan diagnosis otak untuk kecacatan otak berdasarkan pengimejan magnetik resonan (MRI) telah menjadi salah satu kepentingan. Salah satu diantara teknik MRI ialah Pengimejan magnetik resonan pemberat-resapan (DWI) kekal teknik yang paling tepat bagi pengesanan awal dan diskriminasi beberapa lesi otak seperti strok. Kajian ini mencadangkan satu teknik untuk mengsegmenkan dan mengkelaskan struktur lesi yang tidak normal daripada DWI. Empat lesi yang dikenali lesi tumor, strok akut, strok kronik dan nekrosis telah dianalisis. Analisis rangka kerja yang dicadangkan adalah pra-pemproses, pengsegmenan, pengekstrakan ciri dan pengkelasan. Empat teknik pengsegmenan yang berbeza telah dicadangkan berdasarkan pengsegmenan iaitu teknik ambang dengan operasi morfologi (TMO), fuzzy Cmeans (FCM), fuzzy C-means dengan kontur aktif (FCMAC) dan fuzzy C-means dengan template kolerasi (FCMCT) untuk mengsegmen kawasan lesi. Kemudian, parameter statistik daripada ruang dan ubahan wavelet diekstrak daripada kawasan yang terpenting (ROI) sebagai ciri-ciri. Ciri-ciri ini telah dikelaskan dengan menggunakan pengelas yang peraturan untuk pengelasan automatik. Keputusan menunjukkan bahawa FCMCT mempunyai prestasi yang terbaik untuk segmentasi berdasarkan Jaccard indeks, Dice Indeks, kadar positif salah (FPR) dan kadar negatif salah (FNR) masing –masing iaitu 0.6, 0.73, 0.19 dan 0.2. Keseluruhan kejituan,sensitiviti dan spesifisiti untuk pengkelasan adalah 89 %, 86 % dan 96 %. Sebagai kesimpulannya, analisis hybrid yang dicadangkan mempunyai potensi untuk diterokai sebagai alat bantuan komputer untuk mengesan dan mengdiagnosis lesi otak manusia.

ACKNOWLEDGEMENT

First and foremost, I would like to give my highest gratitude to the Almighty God for His blessings that I have now completed my Master of Science in Electronic Engineering. I would like to express my highly appreciation to my main supervisor Dr. Norhashimah binti Mohd Saad who had guided, motivated me throught this research and her advice had greatly improved my thesis writing. I also would like to thank my co-supervisor, Dr Low Yin Fen for her advices during the duration of my research. They have helped and guided me very well regarding useful informations and research techniques to complete this thesis. I want to thank my lecturers; especially Mr.Sani Irwan bin Md. Salim for his advice and motivation throughtout this study. My deep gratitude also goes to Miss Nazreen binti Waeleh in securing grants to support the continuation of my research.

I also thank Universiti Kebangsaan Malaysia Medical Centre (UKMMC) for collaborating in medical knowledge and providing dataset for this research work. Special thanks to neuroradiology Associate Professor Dr. Ahmad Sobri bin Muda as collaborator for this research.

Special dedications also to the Ministry of Higher Education Malaysia for funding my research project under Research Grant RAGS (RAGS/2013/FKEKK/SG04/01/B00037) and the authority of University Teknikal Malaysia Melaka (UTeM), especially to the Faculty of Electronic and Computer Engineering (FKEKK) for the university short term research (PJP)

grant (PJP/2013/FKEKK (4B)/S01142). FKEKK had also provided useful and conductive facilities for me to conduct my research works.

Furthermore, I would like to convey my grateful appreciations to my dear husband, Mohd Hafiz bin Sulaiman for his moral support and sacrifice. I want to thank my friend in UTeM especially to Muhammad Zuhair Bolqiah bin Edris who has teach and help me to complete this research.

Last but not least, I would like to extend my gratitudes to my late father; Muda bin Jusoh, my mother; Rohani binti Abd Rahman; my parent-in law; Sulaiman bin Liudin and Saliah Binti Ghani, my siblings, and my friends for their encouragement, love and motivations throughout my whole journey. Once again, thank you so much.

TABLE OF CONTENTS

DE		A THON	Inde
DE		(ATION	
AP	PROV	AL	
DE	DICA	TION	
AB	STRA	CT	i
AB	STRA	.K	ii
AC	KNO	WLEDGEMENTS	iii
TA]	BLE (OF CONTENTS	V
LIS	T OF	TABLES	viii
LIS	T OF	FIGURES	Х
LIS	T OF	APPENDICES	xvii
LIS	T OF	ABBREVIATIONS	xviii
LIS	T OF	SYMBOLS	XX
LIS	T OF	PUBLICATIONS	xxi
AW	ARD		xxiii
СН	АРТІ	R	
1	IN	FRODUCTION	1
1.	1.0	Introduction	1
	1.0	Problem Statement	3
	1.1	Objectives	5
	1.2	Scope of Works	5
	1.5	Pasarah Mathadalagu	5
	1.4	Thesis Organization	10
	1.3	Thesis Organization	10
2.	LIT	ERATURE REVIEW	12
	2.0	Introduction	12
	21	Brain	12
		2 1 1 Function of Brain	13
		2 1 2 Type of Brain Disease	14
	2.2	Magnetic Resonance Imaging	16
	2.2	2.2.1 Diffusion-Weighted Imaging (DWI)	18
	23	Brain Lesion Segmentation	21
	2.5	2.3.1 Region Growing	21
		2.3.1 Thresholding	23
		2.3.2 Thresholding	24
		2.3.4 Split and Merge Segmentation	25
		2.3.4 Spin and Weige Segmentation	20
		2.3.5 Euge Dased Segmentation	20
	<u>າ</u> 4	2.3.0 WaitIslitus	20 20
	2.4	Diffusion-weighted imaging Segmentation and Classification	29
	2.5	reatures Extraction	<i>5</i> 4
		2.5.1 wavelet Iransform	34
	•	2.5.2 Features Analysis Techniques	34
	2.6	Classification	37
	2.7	Summary	38

2.7 Summary

3.	SEC	GMENTATION ANALYSIS TECHNIQUE	40
	3.0	Introduction	40
	3.1	Data Collection	42
	3.2	Pre-Processing	44
		3.2.1 Normalization	44
		3.2.2 Background Removal	44
		3.2.3 Enhancement	45
	3.3	Segmentation	46
		3.3.1 Thresholding with Morphological Operationb(TMO)	46
		3.3.2 Fuzzy C-Means (FCM)	52
		3.3.3 Active Contour	56
		3.3.4 Correlation Template	59
	3.4	Performance Assessment Matrices	63
	3.5	Summary	64
4.	FEA	ATURES EXTRACTION	66
	4.0	Introduction	66
	4.1	Stastical Features	66
	4.2	Wavelet Transform	71
		4.2.1 Continous Wavelet Transform (CWT)	72
		4.2.2 Continous Wavelet Transform (CWT) Algorithm	73
	4.3	Classification	78
	4.4	Classification Evaluation	82
	4.5	Summary	83
5.	RES	SULTS AND DISCUSSION	84
	5.0	Introduction	84
	5.1	Performance Evaluation Based on Jaccard, Dice Index,	
		False Positive Rate (FPR) and False Negative Rate (FNR)	84
		5.1.1 Jaccard Index	84
		5.1.2 Dice Index	96
		5.1.3 False Positive Rate (FPR)	107
		5.1.4 False Negative Rate (FNR))	117
	5.2	Subjective Evaluation	126
		5.2.1 Segmentation Accuracy	134
	5.0	5.2.2 Identification of the Best Segmentation Technique	138
	5.3	Performance Evaluation of Brain Lesion Classification	142
	- 4	5.3.1 Confusion Matrix of Classification Results Using FCMC1	142
	5.4	Verification	145
		5.4.1 Sensitivity	145
		5.4.2 Specificity	146
	3.3	Ferformance Bencmarking with Other Techniques	14/
		5.5.1 Lesion Segmentation Benchmarking	14/
	5.6	Summary	150
	~~~		
6.	CO	NCLUSION AND FUTURE WORK	153
	0.U	Conclusion	155
	0.1	Contributions	150
	0.2	Recommendation	13/

6.3	Future Work	158
REFERE	ENCES	160
APPEND	DICES	186

#### LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Summary of technique for DWI segmentation and classification	31
3.1	Summary of dataset for segmentation	43
3.2	Correctional strength	62
4.1	Classifier input with 50% training data	78
4.2	Classifier input with 70% training data	78
4.3	Confusion matrix for classification of Class A	83
5.1	Segmentation results using Thresholding with Morphological	
	Operation (TMO)	127
5.2	Segmentation results using Fuzzy C-Means (FCM)	129
5.3	Segmentation results using Fuzzy C-Means with Active Contour	
	(FCMAC)	130
5.4	Segmentation results using Fuzzy-Means with Correlation	132
	Template (FCMCT)	
5.5	Comparison of active contour (FCMAC) and Correlation Template	133
	(FCMCT)	
5.6	Segmentation evaluation of TMO	135
5.7	Segmentation evaluation of FCM	135
5.8	Segmentation evaluation of FCMAC	136

5.9	Segmentation evaluation of FCMCT	137
5.10	Summary of training and validation dataset for features extraction	
	and classification	142
5.11	Confusion matrix for 50% training data	144
5.12	Confusion matrix for 70% training data	144
5.13	Evaluation results for proposed FCMCT	148
5.14	Performance comparison of stroke segmentation	149
5.15	Classification results for correlation template image (70 % training	
	samples)	150
5.16	Classification comparison with previous researchers	151

### LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Flowchart of the proposed system design	7
1.2	Image of acute stroke	8
1.3	Image of chronic stroke	8
1.4	Image of necrosis	8
2.1	Human brain image	13
2.2	MRI scanner	17
2.3	CT and conventional MRI of patient with tumor, (a) CT imaging, (b)	
	T1 - weighted MRI, (c) T2- weighted MRI, (d) PD-weighted MRI	18
	(Koh and Padhani, 2006).	
2.4	Acute stroke (a) $T_2$ -weighted, (b) DWI after 2 hours onset, (c) $T_2$ -	
	weighted, (d) DWI after 24 hours onset	20
2.5	Types of segmentation	23
3.1	Flow Chart Of DWI Image Analysis	41
3.2	DWI images of the brain and lesions indicated by neuroradiologists	43
3.3	Image and histogram after normalization	44
3.4	Image and histogram after background removal	45
3.5	Image and histogram after gamma law	46
3.6	Flowchart of the proposed Thresholding with Morphological	47
	Operation	

Х

3.7	32 x32 pixels per block region	48
3.8	Histogram distribution of each block region	48
3.9	Normal and abnormal histogram block regions	49
3.10	Superimposed histogram	50
3.11	Gradient function to determine the optimal threshold	51
3.12	Flowchart of morphological operation	52
3.13	Flowchart of FCM Segmentation	54
3.14	FCM histogram	55
3.15	Objective function value	56
3.16	Flow chart of Active Contour	58
3.17	Flow chart of Correlation Template	60
3.18	Template CSF for Normal Image	62
3.19	Segmentation assessment indices: (a) Original image (b) Manual	
	reference segmentation (c) Automatic segmentation (d) Three	
	assessment indices	64
4.1	Features extraction process	69
4.2	Median and mean	70
4.3	Mode and standard deviation	70
4.4	Compactness and mean boundary	71
4.5	Signal of the lesions	74
4.6	Wavelet transform for lesions	75
4.7	Distributions of standard deviation and median in wavelet	76
4.8	Distributions of variance and standard deviation in wavelet	76
4.9	Code for rule-based classifier	79

4.10	Rule-based classification process	80
4.11	Code for the classification process	81
5.1	Performance evaluation of 30 samples of acute stroke for TMO	
	technique	86
5.2	Performance evaluation of 30 samples of acute stroke for FCM	
	technique	87
5.3	Performance evaluation of 30 samples of acute stroke for FCMAC	
	technique	87
5.4	Performance evaluation of 30 samples of acute stroke for FCMCT	
	technique	87
5.5	Performance evaluation of 15 samples of tumor for TMO technique	89
5.6	Performance evaluation of 15 samples of tumor for FCM technique	90
5.7	Performance evaluation of 15 samples of tumor for FCMAC	
	technique	90
5.8	Performance evaluation of 15 samples of tumor for FCMCT	
	technique	90
5.9	Performance evaluation of 19 samples of chronic stroke for TMO	
	technique	92
5.10	Performance evaluation of 19 samples of chronic stroke for FCM	
	technique	93
5.11	Performance evaluation of 19 samples of chronic stroke for FCMAC	
	technique	93
5.12	Performance evaluation of 19 samples of chronic stroke for FCMCT	
	technique	93

5.13	Performance evaluation of 10 samples of necrosis For TMO	
	technique	95
5.14	Performance evaluation of 10 samples of necrosis for FCM technique	95
5.15	Performance evaluation of 10 samples of necrosis for FCMAC	
	technique	96
5.16	Performance evaluation of 10 samples of necrosis for FCMCT	
	technique	96
5.17	Performance evaluation of 30 samples of acute stroke based on a Dice	
	index by using TMO technique	98
5.18	Performance evaluation of 30 samples of acute stroke based on Dice	
	index by using FCM technique	98
5.19	Performance evaluation of 30 samples of acute stroke based on Dice	
	index by using FCMAC technique	98
5.20	Performance evaluation of 30 samples of acute stroke based on Dice	
	index by using FCMCT technique	99
5.21	Performance evaluation of 15 samples of tumor based on a Dice index	
	by using TMO technique	100
5.22	Performance evaluation of 15 samples of tumor based on a Dice index	
	by using FCM Technique	100
5.23	Performance evaluation of 15 samples of tumor based on a Dice index	
	by using FCMAC technique	101
5.24	Performance evaluation of 15 samples of tumor based on a Dice index	
	by using FCMCT technique	101
5.25	Performance evaluation of 19 samples of chronic stroke based on a	
	Dice index by using TMO technique	102

5.26	Performance evaluation of 19 samples of chronic stroke based on a	
	Dice index by using FCM technique	103
5.27	Performance evaluation of 19 samples of chronic stroke based on a	
	Dice index by using FCMAC technique	103
5.28	Performance evaluation of 19 samples of chronic stroke based on a	
	Dice index by using FCMCT technique	103
5.29	Performance evaluation of 10 samples of necrosis based on a Dice	
	index by using TMO technique	106
5.30	Performance evaluation of 10 samples of necrosis based on a Dice	
	index by using FCM technique	106
5.31	Figure 5.31 Performance evaluation of 10 samples of necrosis based	
	on a Dice index by using FCMAC technique	106
5.32	Performance evaluation of 10 samples of necrosis based on a Dice	
	index by using FCMCT technique	107
5.33	Performance of FPR for Acute Stroke for TMO technique	108
5.34	Performance of FPR for Acute Stroke for FCM	109
5.35	Performance of FPR for Acute Stroke for FCMAC	109
5.36	Performance of FPR for Acute Stroke for FCMCT	109
5.37	Performance of FPR for Tumor for TMO	111
5.38	Performance of FPR for Tumor for FCM	111
5.39	Performance of FPR for Tumor for FCMAC	111
5.40	Performance of FPR for Tumor for FCMCT	112
5.41	Performance of FPR for Chronic Stroke for TMO	113
5.42	Performance of FPR for Chronic Stroke for FCM	113
5.43	Performance of FPR for Chronic Stroke for FCMAC	114

5.44	Performance of FPR for Chronic Stroke for FCMCT	114
5.45	Performance of FPR for Necrosis for TMO	115
5.46	Performance of FPR for Necrosis for FCM	116
5.47	Performance of FPR for Necrosis for FCMAC	116
5.48	Performance of FPR for Necrosis for FCMCT	116
5.49	Performance of FNR for acute stroke for TMO	118
5.50	Performance of FNR for acute stroke for FCM	118
5.51	Performance of FNR for acute stroke for FCMAC	118
5.52	Performance of FNR for acute stroke for FCMCT	119
5.53	Performance of FNR for tumor for TMO	120
5.54	Performance of FNR for tumor for FCM	120
5.55	Performance of FNR for tumor for FCMAC	121
5.56	Performance of FNR for tumor for FCMCT	121
5.57	Performance of FNR for chronic stroke for TMO	122
5.58	Performance of FNR for chronic stroke for FCM	123
5.59	Performance of FNR for chronic stroke for FCMAC	123
5.60	Performance of FNR for chronic stroke for FCMCT	123
5.61	Performance of FNR for necrosis for TMO	125
5.62	Performance of FNR for necrosis for FCM	125
5.63	Performance of FNR for necrosis for FCMAC	125
5.64	Performance of FNR for necrosis for FCMCT	126
5.65	Average Jaccard index for each technique	138
5.66	Average Dice index for each technique	139
5.67	Average false positive rate for each technique	140

5.68	Average false negative rate for each technique	141
5.69	Sensitivity of the lesion classification for 70 % training data	145
5.70	Specificity of the lesion classification for 70 % training data	146
5.71	Overall classification accuracy for 70 % training data	147

### LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
Α	Acute Stroke Image	186	
В	Chronic Stroke Image	189	

### LIST OF ABBREVIATIONS

2-D	-	Two-Dimensional
AO	-	Area Overlap
BW Area	-	Binary Area Open
Opened		
CAD	-	Computer-Aided Diagnosis
CSF	-	Cerebral Spinal Fluid
СТ	-	Computed Tomography
CWT	-	Continuous Wavelet Transform
Dev	-	Deviation
DICOM	-	Digital Imaging And Communications In Medicine
DNNs	-	Deep Neural Network
DTI	-	Diffusion-Tensor Imaging
DWI	-	Diffusion-Weighted Imaging
Entr	-	Entrophy
FCM	-	Fuzzy C-Means
FCMAC	-	FCM With Active Contour
FCMCT	-	FCM With Correlation Template
FN	-	False Negatives
FNR	-	False Negative Rate
FP	-	False Positive

## xviii

FPR	-	False Positive Rate
GHKL	-	Kuala Lumpur General Hospital
GM	-	Gray Matter
MRI	-	Magnetic Resonance Imaging
NMR	-	Nuclear Magnetic Resonance
PPUKM	-	Pusat Perubatan Universiti Kebangsaan Malaysia
RF	-	Radio Frequency
ROI	-	Region Of Interest
STIR	-	Short-TI Inversion Recovery
SVM	-	Support Vector Machine
TE	-	Echo Time
ТМО	-	Thresholding With Morphological Operation
TN	-	True Negative
ТР	-	True Positive
TR	-	Repetition Time
UKMMC	-	Universiti Kebangsaan Malaysia Medical Centre
WHO	-	World Health Organization
WM	-	White Matter