

# **Faculty of Mechanical Engineering**

## WEAR FAILURE ANALYSIS OF EMPTY FRUIT BUNCH AND KENAF FIBRES COMPOSITES

Fairuz Fazillah Binti Shuhimi

Master of Science in Mechanical Engineering

2017

### WEAR FAILURE ANALYSIS OF EMPTY FRUIT BUNCH AND KENAF FIBRES COMPOSITES

### FAIRUZ FAZILLAH BINTI SHUHIMI

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

**Faculty of Mechanical Engineering** 

### UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

## DECLARATION

I declare that this thesis entitled "Wear Failure Analysis of Empty Fruit Bunch and Kenaf Fibres Composites" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

| Signature | : |
|-----------|---|
| Name      | : |
| Date      | · |

## APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering.

| Signature       | : |
|-----------------|---|
| Supervisor Name | · |
| Date            | · |

C Universiti Teknikal Malaysia Melaka

## **DEDICATION**

To my beloved family



### ABSTRACT

Several investigations have been explored the influence of test conditions, contact geometry and environment on the frictional and wear behaviour of polymers and composites. However, there is a lack of understanding about the tribological behaviour of thermoset composites based on natural fibres. Furthermore, the wastes of empty fruit bunches are abundantly available and have reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials. Kenaf also grown commercially and it is certainly one of the important plants cultivated for natural fibres globally. It has great potential to use as automotive and construction materials. The aim of this study is to compare the tribological characteristics of Empty Fruit Bunch Fibre/Epoxy (EFBF/E) composites to those of Kenaf Fibre/Epoxy (KF/E) composites. The matrix material used for the present investigation is epoxy resin as the most commonly used polymer matrix with reinforcing fibres for advanced composites applications and provide good performance at room and elevated temperatures. A pin sample with a diameter of 10mm was made using the hot compaction technique. The tribological test was carried out using a pin-on-disc tribometer in dry sliding conditions by applying various temperatures from 23 °C to 150 °C and it was further tested against JIS-SKD 11 (AISI D2) steel disc. Different fibre loadings were prepared in a range of 30 %-70 % weight percentage for both composites. The results revealed that increasing the temperature leads to increased wear and decreased friction coefficient for both composites. The surface morphology of worn surfaces was also presented to analyse the wear mechanism using Scanning Electron Microscopy (SEM). A wear mapping approach was undertaken to present a clear comparison of wear transition and wear mechanism for both composites. This resulted in increased fibre composition for the EFB leading to severe wear, while the fibre composition of the KF showed better wear performance. Conclusively, EFBF/E can be considered as a tribo-material with great potential, such as in bearing applications and for KF/E composite can expands as the potential of friction materials. However, wear improvement is required further study. The predominant wear mechanisms for the EFBF/E composite and KF/E composite are related to adhesive and abrasive wear.

i

### ABSTRAK

Terdapat beberapa siasatan telah mengkaji pengaruh keadaan ujian, geometri sentuhan dan persekitaran terhadap kadar geseran dan kadar kehausan polimer dan komposit. Walaubagaimanapun, terdapat kekurangan pemahaman mengenai tingkah laku tribologi komposit termoset berasaskan serat semula jadi. Tambahan pula, sisa tandan buah kosong adalah begitu banyak dan telah mencapai tahap yang boleh mengancam alam sekitar. Oleh itu, ia adalah satu keperluan yang besar untuk mencari aplikasi yang berguna daripada bahan-bahan buangan. Kenaf juga ditanam secara komersial dan ia sudah pasti salah satu tumbuhan yang penting untuk gentian asli di peringkat global. Ia mempunyai potensi yang besar untuk digunakan sebagai bahan automotif dan pembinaan. Tujuan kajian ini adalah untuk membandingkan ciri-ciri tribologi terhadap serat buah tandan kosong / epoksi komposit (EFBF/E) dengan serat kenaf / epoksi (KF/E) komposit. Sampel pin dengan diameter 10 mm dibuat menggunakan teknik pemadatan yang panas. Ujian tribologi telah dijalankan dengan menggunakan tribometer pin-pada-cakera dalam keadaan gelongsor kering dengan menggunakan pelbagai suhu dari 23 °C hingga 150 °C dan telah diuji terhadap cakera keluli "JIS-SKD 11(AISI D2)". Komposisi serat yang berbeza telah disediakan dalam lingkungan 30 % -70 % peratusan berat untuk kedua-dua komposit. Keputusan menunjukkan bahawa peningkatan suhu menyebabkan kadar kehausan meningkat dan penurunan pekali geseran untuk kedua-dua komposit. Mikrostruktur permukaan kehausan juga turut dipersembahkan untuk kajian mekanisma kehausan dengan menggunakan mikroskop elektron pengimbas (SEM). Pendekatan peta kadar kehausan telah dijalankan untuk perbandingan yang jelas terhadap peralihan kehausan dan mekanisma kehausan untuk kedua-dua komposit. Keputusannya adalah peningkatan komposisi gentian EFB membawa kepada kehausan yang teruk manakala peningkatan komposisi serat daripada KF menunjukkan prestasi kehausan yang lebih baik. Kesimpulannya, EFBF/E boleh dianggap sebagai bahan tribologi yang mempunyai potensi yang tinggi untuk aplikasi galas dan untuk KF/E komposit boleh berkembang sebagai bahan-bahan geseran yang berpotensi. Walau bagaimanapun, penambahbaikan dalam kadar kehausan memerlukan kajian lanjut. Mekanisma haus utama bagi EFBF/E komposit dan KF/E komposit berkaitan dengan haus lekatan dan haus lelas.

#### ACKNOWLEDGEMENT

All praise is due to Allah, the Beneficent the Merciful. We bear witness that there is no god except Allah, and that Muhammad is the Messenger of Allah.

It is a great pleasure to express my gratitude and indebtedness to my supervisor Associate Professor Dr. Mohd Fadzli bin Abdollah for his valuable guidance, encouragement, moral support and suggestion for improvement throughout my MSc research. I am also grateful to Associate Professor Dr. Md Abul Kalam as my second supervisor from University Malaya who took keen interest in the work and his supervising in shaping my ideas as well for valuable discussion.

I also appreciate the financial support of the Ministry of Higher Education Malaysia for supporting the grant of PPRUM (CG060-2013) for University of Malaya and scholarship from MyBrain15 throughout the duration of my study. Special thanks are also due to all staff from Chemistry Laboratory, Tribology Laboratory and Material and Science Laboratory for the use of facilities of laboratories and for conducting on SEM during my experimental work. I sincerely acknowledge all the staff for their support and appreciation to all my friends for their understanding, patience and active co-operation and help during my research.

The debt I owe to my parents and family has no measure. Finally, I would like to thank my father and mother Mr. Shuhimi Bin Ab Rahaman and Mrs. Fatimah Binti Yaakob, my sisters and brothers for always giving their support and love. I would have never achieved this if I did not get the moral encouragement from them.

### TABLE OF CONTENTS

9

| DECLARATION                       |      |
|-----------------------------------|------|
| APPROVAL                          |      |
| DEDICATION                        |      |
| ABSTRACT                          | i    |
| ABSTRAK                           | ii   |
| ACKNOWLEDGEMENTS                  | iii  |
| TABLE OF CONTENTS                 | iv   |
| LIST OF TABLES                    | viii |
| LIST OF FIGURES                   | ix   |
| LIST OF APPENDICES                | xi   |
| LIST OF ABBREVIATIONS AND SYMBOLS | xii  |
| LIST OF PUBLICATIONS              | XV   |

### CHAPTER

| 1. | INT | INTRODUCTION      |   |
|----|-----|-------------------|---|
|    | 1.1 | Background        | 1 |
|    | 1.2 | Problem Statement | 4 |
|    | 1.3 | Objectives        | 5 |
|    | 1.4 | Scope of Research | 6 |
|    | 1.5 | Thesis structure  | 6 |
|    |     |                   |   |

### 2. LITERATURE REVIEW

| 2.1 | Overview of the composite |                              | 9  |
|-----|---------------------------|------------------------------|----|
|     | 2.1.1                     | Matrix Phase                 | 9  |
|     | 2.1.2                     | Reinforcement                | 11 |
|     | 2.1.3                     | Classification of Composites | 11 |

| 2.1.3 | Clas | ssification of Composites        | 11 |
|-------|------|----------------------------------|----|
|       | a)   | Polymer Matrix Composites (PMCs) | 11 |
|       | b)   | Metal Matrix Composites (MMCs)   | 12 |

## c) Ceramic Matrix Composites (CMCs) 12

| 2.2 | Thermosetting Resins |                  | 13 |
|-----|----------------------|------------------|----|
|     | 2.2.1                | Polyester Resins | 13 |

|     | 2.2.2  | Vinyl Ester Resin                                 | 13 |
|-----|--------|---------------------------------------------------|----|
|     | 2.2.3  | Phenolic Resin                                    | 14 |
|     | 2.2.5  | Polyimides                                        | 14 |
|     | 2.2.4  | Epoxy                                             | 15 |
| 2.3 | Therm  | oplastic Resins                                   | 15 |
|     | 2.3.1  | Polypropylene (PP)                                | 16 |
|     | 2.3.2  | Semicrystalline Thermoplastics                    | 16 |
|     | 2.3.3  | Amorphous Thermoplastics                          | 17 |
|     | 2.3.4  | Polyether Ether Ketone (PEEK)                     | 17 |
| 2.4 | Natura | l Fibre Composites                                | 17 |
|     | 2.4.1  | Empty Fruit Bunch                                 | 24 |
|     | 2.4.2  | Kenaf Fibre                                       | 25 |
|     | 2.4.3  | Jute                                              | 27 |
|     | 2.4.4  | Abaca                                             | 27 |
|     | 2.4.5  | Hemp                                              | 27 |
|     | 2.4.6  | Flax                                              | 28 |
|     | 2.4.7  | Sisal                                             | 28 |
|     | 2.4.8  | Pineapple                                         | 28 |
|     | 2.4.9  | Banana                                            | 29 |
|     | 2.4.10 | Coir                                              | 29 |
|     | 2.4.11 | Bamboo                                            | 30 |
| 2.5 | Therm  | oset Composites                                   | 30 |
|     | 2.5.1  | Processing Technique                              | 30 |
|     |        | a) VARTM/RTM                                      | 31 |
|     |        | b) Prepreg Development                            | 31 |
|     |        | c) Compression Moulding                           | 32 |
|     |        | d) Pultrusion                                     | 32 |
| 2.6 | Therm  | oplastic Composites                               | 33 |
|     | 2.6.1  | Processing Technique                              | 33 |
|     |        | a) Film Stacking                                  | 34 |
|     |        | b) Natural Fibre Weaving                          | 35 |
|     |        | c) Suspension Impregnation                        | 35 |
| 2.7 | Applic | ations of Natural Fibre Composites (NFC)          | 35 |
| 2.8 | Mecha  | nical Characterization of Natural Fibre Composite | 39 |

|    |      | 2.8.1  | Interfacial Adhesion of Natural Fibre                   | 40 |
|----|------|--------|---------------------------------------------------------|----|
|    |      | 2.8.2  | Effect of Filler Content/ Volume Fraction               | 42 |
|    |      | 2.8.3  | Effect of Fibre Physical Properties                     | 43 |
|    | 2.9  | Tribol | ogy Characterization of Natural Fibre Composite         | 44 |
|    |      | 2.9.1  | Effect of Treatment                                     | 45 |
|    |      | 2.9.2  | Effect of Operating Parameters                          | 47 |
|    |      | 2.9.3  | Effect of Volume Fraction and Fibre Physical Properties | 49 |
|    |      | 2.9.4  | Effect of Temperature                                   | 53 |
|    | 2.10 | Wear I | Maps                                                    | 55 |
|    | 2.11 | Wear I | Failure Mechanism on Natural Fibre Composite            | 56 |
|    | 2.12 | Resear | rch Gap                                                 | 59 |
|    |      |        |                                                         |    |
| 3. | MET  | (HOD   | DLOGY                                                   | 60 |
|    | 3.1  | Experi | mental Flow                                             | 60 |
|    | 3.2  | Materi | al Preparation                                          | 62 |
|    | 3.3  | Sample | e Fabrication                                           | 64 |
|    | 3.4  | Mecha  | nical and Material Properties                           | 66 |
|    |      | 3.4.1  | Density                                                 | 66 |
|    |      | 3.4.2  | Water Absorption                                        | 66 |
|    |      | 3.4.3  | Hardness                                                | 67 |
|    | 3.5  | Tribol | logical testing                                         | 67 |
|    |      | 3.5.1  | Coefficient of Friction (COF)                           | 70 |
|    |      | 3.5.2  | Specific Wear Rate                                      | 70 |
|    | 3.6  | Surfac | e Morphology                                            | 71 |
|    |      |        |                                                         |    |
| 4. | RES  | ULTS   | AND DISCUSSION                                          | 72 |
|    | 4.1  | Materi | al Properties                                           | 72 |
|    |      | 4.1.1  | Hardness                                                | 73 |
|    |      | 4.1.2  | Water Absorption                                        | 76 |
|    | 4.2  | Tribol | ogical Properties                                       | 79 |
|    |      | 4.2.1  | Coefficient of Friction of EFBF/E and KF/E Composite    | 79 |
|    |      | 4.2.2  | Wear Rate and Wear Mode Map of EFBF/E and               |    |
|    |      |        | KF/E Composite                                          | 82 |
|    | 4.3  | Predor | ninant Wear Failure Mechanisms                          | 85 |

|    | 4.4        | Comparative Study with Other Natural Fibres | 91  |
|----|------------|---------------------------------------------|-----|
| 5. | CO         | NCLUSIONS AND RECOMMENDATIONS               | 99  |
|    | 5.1        | Conclusions                                 | 99  |
|    | 5.2        | Recommendations for Future Study            | 100 |
| RE | FERE       | ENCES                                       | 102 |
| AP | APPENDICES |                                             | 117 |

## LIST OF TABLES

| TABL | E TITLE                                                               | PAGE |
|------|-----------------------------------------------------------------------|------|
| 2.1  | Advantage and disadvantages of Natural Fibre                          | 20   |
| 2.2  | Natural fibre composite applications in industry                      | 36   |
| 2.3  | Physical and mechanical properties of natural fibres                  | 39   |
| 3.1  | Weighed of fibre and epoxy calculated for composite pin               | 65   |
| 3.2  | Disc Properties                                                       | 68   |
| 3.3  | Dry sliding test operating parameters                                 | 69   |
| 4.1  | Mechanical and material properties of the EFBF/E and KF/E composite   |      |
|      | pin and disc materials                                                | 72   |
| 4.2  | Surface roughness of the EFBF/E and KF/E composite pin after testing  | 73   |
| 4.3  | Hardness of EFBF/E and KF/E                                           | 74   |
| 4.4  | Collected data on coefficient of friction and specific wear rate from |      |
|      | the previous studies and this study.                                  | 93   |

## LIST OF FIGURES

| FIGU | RE TITLE                                                                | PAGE |
|------|-------------------------------------------------------------------------|------|
| 1.1  | Thesis flow chart                                                       | 8    |
| 2.1  | Classification of natural fibres                                        | 19   |
| 2.2  | Main chemical content in a natural fibre                                | 22   |
| 2.3  | Typical structure of a natural fibre corresponding to its important     | 23   |
|      | segments                                                                |      |
| 2.4  | Oil palm fibres from oil palm tree                                      | 25   |
| 2.5  | (a) Kenaf plant and (b) stalk of kenaf plant                            | 26   |
| 2.6  | Research Gap                                                            | 59   |
| 3.1  | Research Methodology Flow Chart                                         | 61   |
| 3.2  | (a) Empty fruit bunch fibre and (b) kenaf fibre                         | 62   |
| 3.3  | SEM image of the single (a) empty fruit bunch fibre and (b) kenaf fibre | 63   |
| 3.4  | Image of the 2-3 mm fibre (a) empty fruit bunch and (b) kenaf           | 64   |
| 3.5  | Image of the composite pin of (a) empty fruit bunch fibre and           |      |
|      | (b) kenaf fibre                                                         | 66   |
| 3.6  | (a) Actual set up of a pin-on-dics test (b) Schematic diagram of a      |      |
|      | pin-on-disc tribometer.                                                 | 68   |
| 4.1  | Average hardness at different operating temperatures and                |      |
|      | different fibre compositions EFBF/E composite and KF/E composite        | 75   |
| 4.2  | Water absorption with soaking time in hours (a) EFBF/E composite        |      |
|      | and (b) KF/E composite                                                  | 77   |
| 4.3  | Water absorption with soaking time in hours on EFBF/E composite         |      |
|      | and KF/E composite (a) 30 wt.% (b) 50 wt.% (c) 70 wt.%.                 | 78   |
| 4.4  | Graph of coefficient of friction versus temperature testing for         |      |
|      | (a) EFBF/E composite and (b) KF/E composite                             | 79   |
| 4.5  | Optical micrograph observation on the disc after sliding test at150 °C  | 80   |

| 4.6  | Graph of specific wear rate versus testing temperature on EFBF/E and    |    |
|------|-------------------------------------------------------------------------|----|
|      | KF/E composites (a) 30 wt.% (b) 50 wt.% (c) 70 wt.% (d) Wear mode       |    |
|      | map on EFBF/E composite (e)Wear mode map on KF/E composite              | 84 |
| 4.7  | Wear failure mechanisms map on EFBF/E composite with SEM                |    |
|      | micrograph                                                              | 86 |
| 4.8  | Wear failure mechanisms map on the KF/E composite with SEM              |    |
|      | micrograph                                                              | 87 |
| 4.9  | Worn surface micrograph on EFBF/E composite at different                |    |
|      | composition and temperature micrograph                                  | 89 |
| 4.10 | Worn surface micrograph on KF/E composite at different                  |    |
|      | composition and temperature micrograph                                  | 90 |
| 4.11 | (a) Coefficient of friction and (b) specific wear rate of natural fibre |    |
|      | composites under dry sliding conditions at room temperature.            | 96 |
| 4.12 | (a) Coefficient of friction and (b) specific wear rate of EFBF/E        |    |
|      | composite and KF/E composite under dry sliding conditions               |    |
|      | at different temperatures.                                              | 98 |

## LIST OF APPENDICES

| APP | ENDIX TITLE                                                        | PAGE |  |
|-----|--------------------------------------------------------------------|------|--|
| А   | Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus | 117  |  |
| В   | Standard Test Method for Water Absorption of Plastics              | 122  |  |
| С   | Standard Test Method for Rubber Property- Durometer Hardness       | 126  |  |

## LIST OF ABBREVIATIONS AND SYMBOLS

| KF      | Kenaf Fibre                                    |
|---------|------------------------------------------------|
| EFBF    | Empty Fruit Bunch Fibre                        |
| SEM     | Scanning Electron Microscope                   |
| PMCs    | Polymer Matrix Composites                      |
| MMCs    | Metal Matrix Composites                        |
| CMCs    | Ceramic Matrix Composites                      |
| NFCs    | Natural Fibre Composites                       |
| MPOB    | Malaysian Palm Oil Board                       |
| BOD     | Block-On-Disc                                  |
| POD     | Pin On Disc                                    |
| T-KF    | Treated Kenaf Fibre                            |
| UT-KF   | Un-treated Kenaf Fibre                         |
| OPRP    | Oil Palm Fibre Reinforced Polyester            |
| T-OPRP  | Treated Oil Palm Fibre Reinforced Polyester    |
| UT-OPRP | Un-Treated Oil Palm Fibre Reinforced Polyester |
| KFRE    | Kenaf Fibre Reinforced Epoxy                   |
| KPEC    | Kenaf Polyester Composite                      |
| KEC     | Kenaf Epoxy Composite                          |
| NE      | Neat Epoxy                                     |
| NP      | Neat Polyester                                 |
| G-E     | Glass-Epoxy                                    |
| OPWF    | Oil Palm Wood Flour                            |
| OPF     | Oil Palm Fronds                                |
| OPT     | Oil Palm Trunks                                |
| PALF    | Pineapple Fibre                                |
| BMBFRE  | Bamboo Fibres Reinforced Epoxy                 |
| SCRP    | Sugarcane Fibre/Polyester                      |
| CFRP    | Coir Fibres Reinforced Polyester               |

| T-BFRP     | Treated-Betelnut Fibres Reinforced Polyester       |  |
|------------|----------------------------------------------------|--|
| UT-BFRP    | Untreated-Betelnut Fibres Reinforced Polyester     |  |
| SP (T-SP)  | Treated- Sisal Fibres/Polyester Composite          |  |
| SP (UT-SP) | Untreated- Sisal Fibres/Polyester Composite        |  |
| CGRP       | Chopped Strand Mat Fibreglass Reinforced Polyester |  |
| GRP        | Glass Fibre/Polyester                              |  |
| PVC        | Polyvinyl Chloride                                 |  |
| NaOH       | Sodium Hydroxide                                   |  |
| HCL        | Hydro Chloric Acid                                 |  |
| VARTM      | Vacuum Assisted Resin Transfer Molding             |  |
| RTM        | Resin Transfer Molding                             |  |
| SMC        | Sheet Molding Compound                             |  |
| PE         | Polyethylene                                       |  |
| PET        | Poly (Ethylene Terephthalate)                      |  |
| PHA        | Poly (Hydroxyalkanoate)                            |  |
| PLA        | Poly (Lactic Acid)                                 |  |
| PP         | Polypropylene                                      |  |
| PU         | Polyurethane                                       |  |
| PEEK       | Polyether Ether Ketone                             |  |
| PHB        | Polyhydroxybutyrate                                |  |
| Ws         | Specific Wear Rate                                 |  |
| COF        | Coefficient Of Friction                            |  |
| N-O        | Normal Orientation                                 |  |
| P-O        | Parallel Orientation                               |  |
| AP-O       | Anti-Parallel Orientation                          |  |
| R-O        | Random- Orientation                                |  |
| TGA        | Thermogravimetric analysis                         |  |
| Vf         | Volume fraction                                    |  |
| wt.%       | weight percentage of fibre composition             |  |
| De         | Debonding                                          |  |
| Dl         | Delamination                                       |  |
| Db         | Debris                                             |  |
| Fr         | Fracture                                           |  |

| Cr | Micro-Crack         |
|----|---------------------|
| Fg | Fine Grooves        |
| Tf | Torn Fibre          |
| Bf | Broken fibre        |
| Df | Plastic deformation |

### LIST OF PUBLICATIONS

#### JOURNAL PAPER

- F.F. Shuhimi, M.F.B. Abdollah, M.A. Kalam, H.H. Masjuki, A. Mustafa, H. Amiruddin, *Tribological characteristics comparison for oil palm fibre/epoxy and kenaf fibre/epoxy composites under dry sliding conditions*, Tribology International, 101 (2016), pp. 247-254. DOI: <u>http://dx.doi.org/10.1016/j.triboint.2016.04.020</u> (ISI Q1).
- F.F. Shuhimi, M.F.B. Abdollah, M.A. Kalam, H.H. Masjuki, A. Mustafa, S.E. Mat Kamal, H. Amiruddin, *Effect of operating parameters and chemical treatment on the tribological performance of natural fibre composites: A review*, Particulate Science and Technology (2016), In Press. DOI: <u>http://dx.doi.org/10.1080/02726351.2015.1119226</u> (ISI Q3).

#### **CONFERENCES ATTENDED**

- F.F. Shuhimi, M.F.B. Abdollah, M.A. Kalam, H.H. Masjuki, A. Mustafa, H. Amiruddin, *Surface Durability Of Oil Palm Fibre/ Epoxy Composite At Various Temperature*, Proceedings of Mechanical Engineering Research Day 2016, Melaka, 31 March 2016, pp.108-109.
- <u>F.F. Shuhimi</u>, M.F.B. Abdollah, M.A. Kalam, H.H. Masjuki, A. Mustafa, H. Amiruddin, *Surface Durability Of Kenaf Fibre/Epoxy Composite With Different Fibre Compositions At Various Temperatures*, I<sup>st</sup> My Tribos Colloquium 2016(MTC 2016), 26<sup>th</sup> January 2016, School Of Mechanical Engineering, Engineering Campus Universiti Sains Malaysia.
- F.F. Shuhimi, M.F.B. Abdollah, M.A. Kalam, H.H. Masjuki, A. Mustafa, S.E. Mat Kamal, H. Amiruddin (2014). *Effect of Applied Load, Sliding Speed and Fibre Orientation on the Wear Performance Of Natural Fibre Composites: A Review*, 2nd Advanced Materials Conference, 25th-26th November 2014, Langkawi Malaysia.

#### **CHAPTER 1**

#### **INTRODUCTION**

### 1.1 Background

Owing to their potential as reinforcements in polymers, natural fibre polymer composites have had numerous applications in nearly every field of engineering e.g. automobiles, furniture, packing and construction (Shalwan and Yousif, 2013). Therefore, these composites can greatly impact socio-economic development (Chand and Mohammed, 2008). There are many types of natural fibres such as Kenaf (Nishino et al., 2003; Akil et al., 2011; Chin and Yousif, 2009), flax (Goutianos et al., 2006; Bos, 2004) oil palm (Yousif and El-Tayeb, 2007a; Kalam et al., 2005; Hassan et al., 2010), hemp (Pickering et al., 2007), sisal (Idicula et al., 2005), jute (Yallew et al., 2014), bamboo (Rassiah and Ahmad, 2013) and banana (Sakthive and Ramesh, 2013) fibre. The development of high-performance engineering products from natural resources is increasing due to the superior advantages of these resources over traditional glass fibres.

The current research focuses on Empty Fruit Bunch Fibre (EFBF) from oil palm and Kenaf Fibre (KF) as natural reinforcements EFBF has indicated great potential as a reinforcing material. This is of significant relevance to Malaysia as a large quantity of the biomass is generated by oil palm industries (Mohanty et al., 2005; Bakar et al., 2005; Hassan et al., 2010). Besides to utilize the waste materials for a better benefit, EFBF also have great physical and mechanical properties of the material as well that could replace synthetic fibres (Koguleshun et al., 2015). The incorporation of empty fruit bunch (EFB) into polymers to obtain cost reduction and reinforcement has been reported by various workers (Yusoff et al., 2009).

KF has a long history of cultivation in some areas of the world such as Bangladesh, Australia, Thailand, parts of Africa and Malaysia (Aji et al., 2009). It is not only produced for its use in composites but also as a viable source of raw materials for applications such as food and bio-fuel processing. All these factors make kenaf a commodity of interest, especially in developing countries (Faruk et al., 2012; Shalwan and Yousif, 2013). As part of the environmental sustainability efforts, natural fibres have been used to reinforce materials for over a thousand years (Nosonovsky and Bhushan, 2012). Moreover, the remaining empty fruit bunches are very numerous and it is a great need to find useful application of those waste materials as well as Kenaf that also grown commercially and it is certainly one of the most important plants cultivated for natural fibres globally. It has great potential to use as automotive and construction materials.

Generally, natural fibres consist of cellulose, hemi-cellulose, lignin, pectin, waxes and water soluble substances (Xess, 2012). The properties of natural fibres are greatly influenced by their chemical compositions. It is evident that the tensile strength of glass fibre is significantly higher than that of natural fibres although the modulus follows the same order, as summarised by John and Anandjiwala (2008). However, natural fibres have advantages in higher specific modulus and therefore have better specific properties preferred for weight sensitive applications (Xess, 2012).

Natural fibres were introduced with the intention of yielding lighter composites and lower costs compared to the existing fibre glass reinforced polymer composites. The low density of natural fibres is very beneficial to the automotive industry (Zini and Scandola, 2011). Natural fibres have a lower density (1.2–1.6 g/cm3) than that of glass fibre (2.4 g/cm3), which ensures the production of lighter composites (Huda et al., 2006).

The development of natural fibre reinforced composites for use as green friction products in automotive applications is important to minimise the environmental implications caused by asbestos-based products (Nosonovsky and Bhushan, 2012). Nowadays, industrial engineering faces problems of friction and wear which can lead to the replacement of components and assemblies in engineering (Unal et al., 2004). The shortage is mainly related to the lifetime of the machinery (Holmberg et al., 2012).

Several researchers, such as Kato (2000), and Chowdhury and Helali (2006), have observed that frictional force and wear rate depend on the roughness of the rubbing surfaces, relative motion, type of material, temperature, normal force, stick slip, relative humidity, lubrication and vibration. The parameters that dictate the tribological performance of polymer and its composites also include polymer molecular structure, processing and treatment, properties, viscoelastic behaviour, surface texture, etc. There have been a number of investigations exploring the influence of test conditions, contact geometry and environment on the frictional and wear behaviour of polymers and composites.

Tribological properties have been an area of interest for many scholars and researchers. Frictional and wear performance have been the points of focus for many researchers like Bajpai et al. (2013) and Yousif (2013) with respect to a composite's application in brakes, clutches, bearing, bolts and nuts. On the other hand, Shalwan and Yousif (2013) have clarified that friction is the value of energy which dissipates at the material''s contact surface. In literature, there is an evident lack of understanding about the tribological behaviour of thermoset composites based on natural fibres. This lack has significantly motivated the current study.

#### **1.2 Problem Statement**

The use of natural fibre composites in various applications has opened up new avenues for academics as well as industries to manufacture a sustainable module for future applications. Natural fibre reinforced composites are emerging very rapidly as the potential substitute to metal or ceramic-based materials in automotive, aerospace, marine, sporting and electronic industries (Pickering et al., 2015). Natural fibre composites exhibit good specific properties, but have a high variability. Such shortcomings can be overcome with the development of advanced processing techniques for the natural fibres and their composites (Chan and Stachowiak, 2005).

The tribological performance of natural fibre/polymer composites is an important element of mechanical part designs. However, tribological and mechanical properties have different goals in their performance. Mechanical properties are classified on their strength, ductility, hardness, impact resistance and fracture toughness whereas tribological properties refer to the surface properties of the material that can reduce wear. The two sets of properties in conjunction can extend the working life of materials and help save large sums of money leading to conservation of material, energy and the environment.

There are several factors related to natural fibre composites which influence the performance of the composites such as moisture absorption, volume fraction, orientation, and physical, i.e. mechanical or tribological properties. Natural fibres can improve the mechanical and tribological properties of polymers and lead to improvements in the surface characteristics (Basumatary, 2013). Basically, most of the industrial and manufacturing parts are exposed to tribological loadings such as adhesive, abrasive, etc. in their services (Yousif et al., 2010). Some studies have highlighted that the tribological behaviour of composite polymers is strongly dependent on many processing parameters