

Faculty of Electronic and Computer Engineering

DESIGN AND DEVELOPMENT OF X-BAND HYBRID BANDSTOP FILTERS

Siti Sabariah Binti Sabri

Master of Science in Electronic Engineering

2016

C Universiti Teknikal Malaysia Melaka

DESIGN AND DEVELOPMENT OF X-BAND HYBRID BANDSTOP FILTERS

SITI SABARIAH BINTI SABRI

A thesis submitted in fulfillment of the requirement for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitle "Design and Development of X-band Hybrid Bandstop Filters" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature	:	
Supervisor Name	:	
Date	:	

ABSTRACT

This report presents two designs of hybrid BSF for X-band (8 – 12 GHz). The BSF is widely applied in microwave communication such as in radar and satellite. It is used at the RF receiver for protection against strong interference and blocking signals. Furthermore, it is also used to reject high-power signals outside the receiver band and is usually located at the front-end of receiver prior to pre-amplifier. Waveguide filter offers low loss and is well known for high-power and millimeter-wave applications. In contrast, it comes with bulky size, non-planar, hollow structure and high-cost of fabrication process compared to the other planar circuit design. Due to the non-planar structure, it is difficult to integrate waveguide with the other planar circuit. The main focus of this research is to produce hybrid BSF by integrating two planar circuits by using simple microstrip transition. The first design is hybrid notch BSF which consists of two-part of filter network that is integrated with the impedance inverter. SIW BPF is used as a two-port network and impedance inverter is represented by four-port directional coupler. The SIW BPF is initially designed from rectangular waveguide filter. This waveguide BPF is then converted into a planar circuit by implementing the SIW technique. This method reduces the overall size of the filter due to the dimension being inversely proportional to $\sqrt{\varepsilon_r}$ of the substrate. The second design is the hybrid reflection-mode BSF. It is constructed from the same structure of impedance inverter as the previous design, but it is connected to the even and odd-mode of SIW BPF. All simulations have been conducted using the HFSS and ADS software. In order to validate and prove the concept and theory, all simulated designs are fabricated and measured using VNA. The standard PCB with low cost fabrication process is used. Dimension of both filters is quite similar but the hybrid notch BSF produces a lower loss compared to hybrid reflection-mode BSF. Both designs have successfully transformed from BPF (Chebychev response) to BSF (Inverse-Chebychev response). The hybrid notch BSF has an insertion loss of about 3.83 dB and a return loss of 9.1 dB. Meanwhile, the insertion loss and return loss for hybrid reflection mode BSF is 5 dB and 12 dB respectively. This shows that hybrid notch produces lower loss compared to hybrid reflection-mode BSF. The design method also proves that SIW filter can be easily integrated with coupler (planar circuit), using simple transition methods such step impedance, compared to conventional waveguide. Step impedance is used to ensure a field matching between the microstrip line and SIW over a broad bandwidth. Probe feeding transition can be use for integration between waveguide and planar circuit, but it needs a metal short block with a quarter-wavelength on the substrate. This contributes to the complexity of the transition and requires another accessories in order to complete the transition.

ABSTRAK

Laporan ini membentangkan dua reka bentuk BSF hibrid untuk X-band (8.4–12 GHz). BSF digunakan secara meluas dalam komunikasi gelombang mikro seperti dalam radar dan satelit. Ia digunakan pada penerima RF untuk melindungi daripada gangguan yang kuat dan untuk menapis dan menyekat isyarat yang berkuasa tinggi di luar frekuensi penerima. Biasanya diletakkan di bahagian depan penerima sebelum pra-penguat. Penapis pandu gelombang mempunyai 'loss' yang rendah dan terkenal dengan aplikasi untuk kuasa tinggi dan untuk kegunaan gelombang milimeter. Sebaliknya, ia mempunyai saiz yang besar, bukan satah dan struktur yang berongga. Ia juga mempunyai kos yang tinggi untuk proses fabrikasi. Oleh kerana strukturnya yang bukan satah, adalah sukar untuk mengintegrasikan pandu gelombang dengan litar satah lain. Fokus utama di dalam kajian ini adalah untuk menghasilkan 'BSF' dengan mengintegrasikan antara dua satah litar dengan menggunakan peralihan mikrostrip. Reka bentuk yang pertama ialah 'hybrid notch BSF' dan ia menggunakan dua-port rangkaian penapis dan penyonsang impedans. 'SIW BPF' digunakan sebagai dua-port rangkain penapis dan penyonsang impedans diwakili oleh empat-port pegganding arah. 'SIW BPF' pada mulanya di reka daripada penapis pandu gelombang yang berbentuk segi empat. Kemudian ia ditukarkan kepada litar satah dengan menggunakan teknik 'SIW'. Keseluruhan saiz litar dapat dikurangkan kerana kesemua dimensi adalah berkadar songsang dengan $\sqrt{\varepsilon_r}$ substrat. Reka bentuk yang kedua ialah 'hybrid reflection-mode BSF'. Ia terdiri daripada struktur penyonsang impedans yang sama seperti reka bentuk sebelumnya tetapi dihubungkan dengan 'even-and oddmode SIW BPF'. Kesemua simulasi dilakukan dengan menggunakan perisian HFFS dan ADS. Untuk mengesahkan konsep dan teori, semua reka bentuk yang akan diukur menggunakan VNA. PCB digunakan untuk proses fabrikasi kerana kosnya yang rendah. Dimensi untuk kedua-dua reka bentuk adalah hampir sama tetapi 'hybrid notch' yang dihasilkan mempunyai 'loss' yang kurang berbanding 'hybrid refelction-mode'. Keduadua reka bentuk berjaya ditukarkan kepada daripada 'BPF' (penapis 'Chebychev') kepada 'BSF' (penapis songsang-'Chebychev'). 'Hybrid notch' mempunyai 'insertion loss' kirakira 3.83 dB dan 'return loss' sekitar 9.1 dB. Sementara itu, 'insertion loss' dan 'return loss' untuk 'hybrid reflection-mode' adalah 5 dB dan 12 dB. Selain itu, ia menunjukkan bahawa penapis 'SIW' boleh disepadukan dengan litar satah dengan menggunakan kaedah peralihan langkah impedans yang mudah berbanding dengan pandu gelombang konvensional. Ia digunakan untuk memastikan sepadan bidang antara garis mikrostrip dan 'SIW'. Bagi pandu gelombang ke litar satah, peralihan seperti 'probe feeding' telah digunakan tetapi ia memerlukan satu blok logam pendek dengan suku panjang gelombang pada substrat tersebut. Ini sekaligus menyumbang kepada kerumitan kepada peralihan dan memerlukan aksesori yang lain untuk melengkapkan proses peralihan tersebut.

ACKNOWLEDGEMENTS

I would like to dedicate my gratitude to my supervisor, Associate Professor Dr. Badrul Hisham bin Ahmad for his continuous assistance and advice throughout my master's program. His guidance in RF and microwave field has been tremendously valuable and without his motivation, the completion of this thesis would not have been possible.

Furthermore, I would like to express my appreciation to all my fellow friends, lecturer and staff at the FKEKK faculty of University Teknikal Malaysia Melaka (UTeM) who have given me help and support during this research.

Finally, I would like to thank my beloved parents, Sabri bin Mat Ali and Siti Khodijah binti Hashim for their prayers, encouragement and continuous support during my life and throughout my study. Special thanks is also dedicated to my sister and brothers for their support. Last but not least, I am especially grateful to Allah, who has eased my journey and made all this possible.

TABLE OF CONTENTS

i
ii
iii
iv
vii
ix
xiii
xiv
xvi
xi

CHAPTER

1.	INT	RODUCTION	1			
	1.0	Background	1			
	1.1 Recent Development in Bandstop Filter (BSF) Design					
	1.2	Problems Statement	3			
	1.3	Objectives	4			
	1.4	Original Contribution	5			
	1.5	Thesis Organization	6			
2.	LIT	ERATURE REVIEW	8			
	2.0	Introduction	8			
	2.1	Microwave Filters Application	8			

2.2	Types	of Filter Response	10
	2.2.1	Butterworth (Maximally Flat)	13
	2.2.2	Elliptic	14
	2.2.3	Chebychev and Inverse-Chebychev	14
2.3	2.3 Waveguide		
	2.3.1	Propagation Mode of Waveguide	19
2.4	Substra	ate Integrated Waveguide (SIW)	21
	2.4.1	Via Hole	23
	2.4.2	Transition Between Planar Circuit and SIW	25
		2.4.2.1 Linear Step Impedance	25

iv

		2.4.2.2 Tapered Microstrip Feeding	26
		2.4.2.3 Slot Coupling	27
	2.5	Advantages of SIW over Conventional Waveguide	27
	2.6	Bandpass Filter (BPF)	28
	2.7	Bandstop Filter (BSF)	32
		2.7.1 Hybrid Notch Bandstop Filter (BSF)	37
		2.7.2 Hybrid Reflection-mode Bandstop Filter (BSF)	38
	2.8	Directional Coupler	41
		2.8.1 Basic Operation of Directional Coupler	45
	2.9	Summary	46
3.	ME	THODOLOGY	47
	3.0	Introduction	47
	3.1	Flow Chart	48
	3.2	Rectangular Waveguide Bandpass Filter (BPF)	50
		3.2.1 Design Specifications for Rectangular Waveguide Bandpass Filter (BPF)	59
	3.3	SIW Bandpass Filter (BPF)	66
		3.3.1 Conversion from Rectangular Waveguide to SIW	66
		3.3.2 Adding the Microstrip Transition to the Filter	69
	3.4	Directional Coupler	70
		3.4.1 Design Specifications for Directional Coupler	71
		3.4.2 Single-stage of Directional Coupler	72
		3.4.3 Two-stages of Directional Coupler	73
	3.5	SIW Directional Coupler	75
		3.5.1 Design Specifications for SIW Directional Coupler	75
	3.6	Hybrid Bandstop Filter (BSF)	77
		3.6.1 Hybrid Notch Bandstop Filter (BSF)	78
		3.6.2 Hybrid Reflection-Mode Bandstop Filter (BSF)	80
	3.7	Summary	81
4.	RES	SULTS AND DISCUSSION	83
	4.0	Introduction	83
	4.1	Rectangular Waveguide Bandpass Filter (BPF)	83
		4.1.1 Simulation Result	83
	4.2	SIW Bandpass Filter (BPF)	85
		4.2.1 Simulation Result	85
	4.3	Comparison Between Rectangular Waveguide and SIW BPF	87
	4.4	Directional Coupler	88
		4.4.1 Simulation Result	88
	4.5	SIW Directional Coupler	89
		4.5.1 Simulation Result	90

v

		4.5.2	Measure	ment Result	92
	4.6	Hybrid	l Bandstop	Filter (BSF)	94
		4.6.1	Hybrid N	lotch Bandstop Filter (BSF)	94
			4.6.1.1	Simulation Result	94
			4.6.1.2	Measurement Result	96
		4.6.2	Hybrid F	Leflection Mode Bandstop Filter (BSF)	98
			4.6.2.1	Simulation Result	98
			4.6.2.2	Measurement Result	99
	4.7	Compa	arison betw	een Hybrid Notch and Hybrid Reflection-mode BSF	101
	4.8	Summa	ary		103
5.	CO	NCLUSI	ION AND	FUTURE WORK	104
	5.1	Conclu	usion		104
	5.2	Future	Work		105
RE	FERE	NCES			107
AP]	PEND	IX			117

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	Flow chart of overall design	59
3.2	Summarize values for Z_r and K_r	61
3.3	Summarize values for φ_r and θ_r	62
3.4	Theoretical values of susceptance, B	62
3.5	Parametric analysis for the position of metal posts	63
3.6	Length between metal posts for rectangular waveguide BPF	64
3.7	Length of metal post to metal post for SIW BPF	68
3.8	Position of each metal post from the wall of the SIW BPF	68
3.9	Design specifications for directional coupler	71
3.10	Design specifications for SIW directional coupler	75
3.11	The geometric parameters for SIW directional coupler	76
3.12	Design specifications for hybrid BSF	77
3.13	Summary of simulated results for ideal hybrid notch BSF	79
3.14	Summary of simulated results for ideal hybrid reflection-mode BSF	81
4.1	Summary of simulated results for rectangular waveguide BPF	85
4.2	Summary of simulated results for SIW BPF	87
4.3	Summary of simulated results for two-stages directional coupler	89
4.4	Summary of simulated results for SIW directional coupler	92
4.5	Summary of measured results for SIW directional coupler	93
4.6	Summary of simulated results for hybrid notch BSF	96
4.7	Summary of measured results for hybrid notch BSF	97
4.8	Summary of simulated results for hybrid reflection- mode BSF	99
4.9	Summary of measured results for hybrid reflection- mode BSF	101

4.10	Comparison results for hybrid notch BSF	102
4.11	Comparison results for hybrid reflection-mode BSF	102

viii

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	RF front end of a cellular base station	9
2.2	Response of the ideal filters – A (Lowpass), B (Highpass),	11
	C (Bandpass) & D (Notch)	
2.3	Ideal lowpass filter	12
2.4	Realistic lowpass filter response	13
2.5	Butterworth (Maximally Flat) response	14
2.6	Elliptic filter response	14
2.7	Chebychev response	15
2.8	Metal waveguides	17
2.9	Dielectric waveguide	17
2.10	The waveguide structure with the TE and TM modes	19
2.11	The basic structure of SIW	21
2.12	The effects of arrays of via holes	23
2.13	Via hole	24
2.14	Transition between planar circuit and SIW	25
2.15	MSL to SIW transition with tapered microstrip feeding	26
2.16	MSL to SIW transition by slot coupling	27
2.17	Two-stages of SIW bandstop filter	29
2.18	Coupling and routing schemes for two cascaded building blocks	29
	using NRNs and configuration of SIW six-pole elliptic filter	
2.19	BPF by using SIW resonator	30
2.20	Symmetrical window of SIW BPF	31

2.21	Partial height post using thick substrate	32
2.22	SIW BSF with two-radial cavity resonator	32
2.23	Configuration of rectangular cavity resonator SIW BSF	33
2.24	Configuration of circular cavity resonator SIW	33
2.25	Configuration of radial cavity resonator SIW BSF	34
2.26	Coplanar open-loop-ring BSF	34
2.27	SIW BSF using predistortion technique	35
2.28	Two-stages of SIW BSF	35
2.29	Configuration of triple-band SIW BSF	36
2.30	Bandstop waveguide filter	36
2.31	A model of the hybrid notch BSF	37
2.32	Symmetrical cross-coupled prototype network	38
2.33	A model of hybrid reflection-mode BSF	39
2.34	Broadband high directivity directional coupler	41
2.35	The 3-D of 3-dB coupler	42
2.36	Dual-apertures SIW directional coupler	43
2.37	Wideband double layer SIW directional coupler	43
2.38	Wide band crossed over SIW coupler	44
2.39	Single layer SIW directional coupler	44
2.40	Power flow in directional coupler	45
3.1	Flow chart of overall design	48
3.2	Rectangular waveguide BPF	50
3.3	Shunt inductive discontinuities in a rectangular waveguide	52
3.4	Equivalent circuit of a waveguide BPF	61
3.5	Final or equivalent circuit for the waveguide BPF	61
3.6	Waveguide with one metal post	63
3.7	The waveguide bandpass filter with the metal posts	64
3.8	The rectangular waveguide bandpass filter with metal posts	65
3.9	Simulation result for rectangular waveguide bandpass filter	65
3.10	The BPF after converted from rectangular waveguide to SIW	67
3.11	The simulated result of SIW bandpass filter without step impedance	69
3.12	The magnetic field signal flow through filter	69

3.13	S-parameter in SIW transmission line with microstrip transition	70
3.14	Ideal transmission lines for single-stage directional coupler	72
3.15	Simulated response for single-stage directional coupler	73
3.16	Ideal transmission line for two-stages of directional coupler	73
3.17	S-parameter behavior for ideal transmission line case	74
3.18	Structure of the X-band SIW directional coupler	77
3.19	Lumped equivalent circuit for hybrid notch SIW BSF	78
3.20	Frequency response of the ideal condition of hybrid notch BSF	79
3.21	Lumped equivalent circuit for hybrid reflection-mode BSF	80
3.22	Frequency response of the ideal condition of hybrid reflection-mode	81
	BSF	
4.1	The rectangular waveguide BPF with metal posts	84
4.2	Simulation result for rectangular waveguide BPF	84
4.3	The electromagnetic field distribution after adding the metal posts	85
4.4	Simulated response for SIW BPF	86
4.5	Comparison of passband response between rectangular waveguide	87
	and SIW BPF	
4.6	Two-stages of directional coupler	88
4.7	Simulated result for two-staged directional coupler	89
4.8	Top view of the SIW directional coupler	90
4.9	Simulated response for X-band SIW directional coupler	91
4.10	Magnetic E-field of SIW directional coupler	91
4.11	The prototype design of SIW directional coupler	92
4.12	Measured response for SIW directional coupler	93
4.13	Complete structure of hybrid notch SIW BSF	95
4.14	Simulated response of hybrid notch SIW BSF	95
4.15	The prototype design of hybrid notch SIW BSF	96
4.16	Measured response of hybrid notch SIW BSF	97
4.17	Complete structure of hybrid reflection-mode BSF	98
4.18	Simulated response of hybrid reflection-mode BSF	99
4.19	The prototype design of hybrid reflection SIW BSF	100
4.20	Measurement response of hybrid reflection-mode BSF	100

LIST OF APPENDIX

APPENDIX	TITLE	PAGE	
А	Standard Rectangular Waveguide Data	117	

xiii

LIST OF ABBREVIATIONS

3D	-	3-Dimensional
ADS	-	Advanced Design System
BPF	-	Bandpass Filter
BSF	-	Bandstop Filter
С	-	Coupling
CAD	-	Computer-aided Design
D	-	Directivity
DBS	-	Direct Broadcast Satellite
DGS	-	Defect Ground Structure
DSSR	-	Double Split Ring Resonator
EM	-	Electromagnetic
GPS	-	Global Positioning Satellite
HFSS	-	High Frequency Simulated Structure
Ι	-	Isolation
ISAR	-	Inverse Synthetic Aperture Radar
L	-	Insertion Loss
LNA	-	Low Noise Amplifier
LTCC	-	Low Temperature Co-fired Ceramics
MCM	-	Multichip Module
MMIC	-	Monolithic Microwave Integrated Circuits
MSL	-	Microstrip Line
NRD	-	Non-radiating Dielectric
NRN	-	Non-resonating Nodes
PA	-	Power Amplifier
РСВ	-	Printed Circuit Board
Q	-	Quality

xiv

RF	-	Radio Frequency
RX	-	Receiver
S	-	Scattering
SAR	-	Synthetic Aperture Radar
SIW	-	Substrate Integrated Waveguide
SMA	-	Sub-miniature version A
TE	-	Transverse Electric
TEM	-	Transverse Electric & Magnetic
ТМ	-	Transverse Magnetic
TX	-	Transmitter
UWB	-	Ultra Wide Band
VNA	-	Vector Network Analyzer
WGS	-	Wideband Global SATCOM
WLAN	-	Wireless Local Area Network

LIST OF SYMBOLS

ω	-	Angular frequency
ωο	-	Angular at centre frequency
ω_{c}	-	Angular at centre frequency
ω_p	-	Angular frequency at passband
ω _s	-	Angular frequency at stopband
К	-	Ripple factor
А	-	Amplitude
A _{min}	-	Minimum amplitude
α	-	Attenuation constant
С	-	Velocity of light in free space $(3x10^8)$
λ	-	Wavelength
λ_{o}	-	Wavelength at center frequency
λ_{g}	-	Guide wavelength
N	-	Number of order/degree
fo	-	Resonant frequency
f _c	-	Cut-off frequency
f _r	-	Resonant frequency
$\mathbf{f_l}$	-	Low frequency
f_h	-	High frequency
ε	-	Permittivity of free space
ε _r	-	Relative permittivity (Dielectric constant)
8	-	Ripple factor
h	-	Height or thickness

xvi

V	-	Voltage
Ι	-	Current
Z	-	Impedance
Zo	-	Characteristic impedance
Z ₁	-	First impedance
Z_2	-	Second impedance
S	-	S-parameters
S ₁₁	-	Reflection coefficient at Port 1
S ₁₂	-	Transmission coefficient from Port 2 to Port 1
S ₂₁	-	Transmission coefficient from Port 1 to Port 2
S ₂₂	-	Reflection coefficient at Port 2
Y _e	-	Even-mode admittances
Yo	-	Odd-mode admittances
Γ _e	-	Reflection-mode admittances
Го	-	Reflection-mode admittances
L _A	-	Insertion loss
L _R	-	Return loss
θ	-	Phase length (in radian)
ψ	-	Electrical length
Ψ_R	-	Electrical length (r = number)
β	-	Phase / propagation constant
B′	-	Susceptance (theoretical)
T _N	-	Function number of order
Z _r	-	Element value
w	-	Real width of SIW cavity
l	-	Real length of SIW cavity
L	-	Shunt inductor
а	-	Width of inside dimension of rectangular waveguide
b	-	Height of inside dimension of rectangular waveguide
Q _U	-	Unloaded quality factor
Р	-	Distance between metal posts

xvii

k	-	Medium wave number
μ	-	Dielectric permeability
w _{eff}	-	Effective width
l _{eff}	-	Effective length
μ_r	-	Relative permeability
d	-	Diameter of via hole
р	-	Pitch or distance between adjacent vias
w _{siw}	-	Width of SIW
D_{via}	-	Diameter if via hole
S_{vp}	-	Distance two adjacent via hole
Eo	-	Electric field at origin
E _x	-	Electric field at x-axis
Ey	-	Electric field at y-axis
E_{Z}	-	Electric field at z-axis
$H_{\mathbf{x}}$	-	Magnetic field at x-axis
Hy	-	Magnetic field at y-axis
H_{Z}	-	Magnetic field at z-axis

xviii

LIST OF PUBLICATIONS

Journal:

B. H. Ahmad, Siti Sabariah Sabri, A. R. Othman, 2013. Design of a Compact X-band Substrate Integrated Waveguide Directional Coupler. *International Journal of Engineering and Technology (IJET)*, vol. 5, no. 2 April – May 2013, pp. 1905-1911. *(Scopus)*

Conference papers:

Sabri, S. S., Ahamd, B. H., Othman, A. R., 2012. A review of Substrate Integrated Waveguide (SIW) Bandpass Filter Based on Different Method and Design, *Applied Electromagnetics (APACE), 2012 IEEE Asia-Pacific Conference* on, vol., no., pp. 210, 215, 11-13 December 2012.

Sabri, S.S.; Ahmad, B.H.; Othman, A.R., 2013. Design and fabrication of X-band Substrate Integrated Waveguide Directional Coupler, *Wireless Technology and Applications (ISWTA), 2013 IEEE Symposium on*, vol., no., pp.264, 268, 22-25 Sept. 2013.

CHAPTER 1

INTRODUCTION

1.0 Background

The rapid changes in broadband personal communications, third and fourth generation mobile, wireless, internet and ultra-wideband systems have created the need for new microwave components with more stringent specifications. Moreover, satellite systems have moved from traditional fixed telecommunications to mobile, navigation and remote sensing applications. Microwave filter is basically a device that is used to discriminate between wanted and unwanted signals within a specified frequency band. The term microwave refers to the frequency range between 300 MHz and 30 GHz.

The filter requirements in terms of selectivity have become more stringent due to the limited available frequency spectrum. Other filter specifications are generally dictated by the intend application. The technological developments have created a more demanding requirement that imposes new challenges to design, optimize and and finally to ensure the realization of these components. In the case of microwave filters, more challenging specifications such as selectivity, bandwidth, phase linearity and compactness are required. The main scope of this thesis is to find new techniques for design, optimization, practical realization and tuning of microwave filters, especially in hybrid BSF. Although the discussion in this thesis is limited to microwave filters, the techniques that are developed can be applied to other resonant microwave components with the necessary modifications.